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ABSTRACT Enhancement of the dispatching capacity and grid management efficiency requires knowledge
of photovoltaic power generation beforehand. Intrinsically, photovoltaic power generation is highly volatile
and irregular, which impedes its prediction accuracy. This paper proposes deep learning-based approaches
and a pre-processing algorithm to handle these constraints. The proposed scheme employs Pearson’s
Correlation Coefficient to find the similarity between atmospheric variables and PV power generation.
Based on high PCC values, top atmospheric variables and PV power generated time series data are
passed through the Empirical Mode Decomposition (EMD) to simplify the complex data streams into
Intrinsic Mode Functions (IMFs). Further, to streamline the prediction process, the proposed correlation-
based signal synthesis (CBSS) algorithm finds combinations of these IMFs, which have a high correlation
value between atmospheric variables and PV power data. Deep learning models of algorithms Long Short
Term Memory (LSTM) and Nonlinear Autoregressive Network with Exogenous Inputs (NARX) network
with the configurations of three networks, a single network, and the direct approach employed for the
prediction of IMFs combinations. The LSTM network was analyzed under the Adaptive moment estimation
(ADAM), Stochastic Gradient Descent with Momentum (SGDM), and Root Mean Square Propagation
(RMSP) optimization. Extensive experimentation was evaluated using atmospheric data from the Climate,
Energy, and Water Research Institute (CEWRI), NARC, Islamabad, Pakistan. RMSE, MAE, MAPE, and
R2 performance measures show promising prediction results for the LSTM under the configuration of three
networks and ADAM optimization.

INDEX TERMS Photovoltaic power prediction, Pearson correlation coefficient, empirical mode
decomposition, correlation-based signal synthesis, long short-term memory, nonlinear autoregressive
exogenous.

NOMENCLATURE
RIMA Regressive Integrated Moving Average.
SVM Support Vector machine.
WPD Wavelet packet decomposition.
LSTM − DGM Long Short-Term Memory -Deep

Galerkin Method.
AD− LSTM Antidecay long short-term memory.

The associate editor coordinating the review of this manuscript and
approving it for publication was Enamul Haque.

CLSTM Convolution long short term memory.
MRTPP Multiple relevant and target variables pre-

diction pattern.
MBE Mean Bias Error.
MAE Mean Absolute Error.
MAPE Mean Absolute Percentage Error.
MSE Mean Squared Error.
MPE Main Percentage Error.
MRE Mean Relative Error.
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NRMSE Normalized Root Mean Square Error.
NMAE Normalized Mean Absolute Error.
MLP Multi-layer perception.
IMF Intrinsic Mode Function.
El(t) Lower envelope of signal.
Eu(t) Upper envelope of signal.
∇L(θi) Gradient of loss function.
m Momentum.
θi Training parameter i.

I. INTRODUCTION
Due to limitations in fossil fuels reserves and environmental
constraints, renewable energy sources (RESs) are gaining
popularity and expansion at a fast rate [1], [2]. Amongst these
RESs, solar energy has emerged as a significant resource
due to its continuity and pollution-free status [3]. Therefore,
any developing country needs to increase its solar energy
shares in a combined energy generation mix [4]. The frequent
disruption in grid power and unavailability of large-scale
grid infrastructure are limitations in providing electricity
to a dense population [5]. Due to plenty of sunlight, solar
PV can generate sufficient electric power and offer on-grid
and off-grid solutions. However, unlike conventional power
generation sources, solar PV depends on limited controllable
variables. Since solar energy is inconsistent and varying,
heavily dependent on weather data [6]. This data includes
solar irradiance, relative humidity, temperature, and wind
speed [7]. These weather-related factors cause instability and
fluctuations in output power in grid-connected and stand-
alone solar PV systems [8]. Therefore, precise and efficient
prediction of solar PV is important in the smooth functioning
and regulation of power systems [9]. Accuracy in solar PV
prediction is a key challenge in interconnecting large-scale
solar power to a conventional grid system [10].

A Unified Power Quality Conditioner (UPQC) is pro-
posed to overcome quality issues of grid-connected PV
systems [11], [12]. However, the connection of solar power
to the main grid can be done smoothly by estimating the
power obtained from the solar plants. Then, grid operators
can utilize the predicted solar power for planning and decision
processes efficiently [13]. The interdependence between
climate input data and output power is considered. It is shown
that solar irradiance has a strong correlation between output
power and predicting PV power [14]. However, the more the
number of input data variables, the accuracy of predicting
the model increases but with an increase in complexity
and computational cost [15]. Therefore, selecting important
parameters relating to climate data using correlation is needed
to achieve high accuracy with minimum computational cost.

In literature, solar PV prediction models can be classified
as statistical, physical, and AI (Artificial Intelligence) based
models [16]. Physical models forecast solar irradiance and
output power using geographical and weather data [17].
These parameters include wind velocity, ambient tempera-

ture, humidity, and air pressure. This approach is directly
related to the accuracy of climate data without considering
previous solar data [18]. The statistical models co-relate time
series and real-time data to predict future scenarios. This
approach needs historical data but computational problems
and accuracy in data remain a challenging issue [19].
AI methods include ANN, support vector machine (SVM),
adaptive neuro-fuzzy interface system (ANFIS), LSTM, deep
belief network (DBN), RNN, and CNN-based deep learning
models are suggested for the prediction of solar power
output [20]. LSTM deep learning model is implemented
to forecast using time series data. This approach becomes
difficult due to cyclic and seasonal variations in the data [21].
To predict solar irradiance and power a hybrid model is
suggested using ANN [22]. An indirect deep learning method
is implemented using the LSTM approach to estimate solar
PV power from solar irradiance with the help of weather
data [23]. The solar irradiance is predicted using the LSTM
model with sunshine hours, humidity, and temperature as
inputs. The proposed model results are compared with SVR
(support vector regression). The LSTM model improves
accuracy by evaluating root mean error criteria [24]. A multi-
horizon prediction of solar irradiance with an LSTM model
using inputs; irradiance, pressure, temperature, and wind
speed is also implemented [25]. Different deep learning
models, such as LSTM, SVR, RNN, and GRU (Gated
Recurrent Unit) are implemented to predict solar irradiance
with good accuracy [26]. In a comparative study between
deep learning networks and machine learning-based models;
Gradient Boosted Regression Tree (GBRT) and Feed Forward
Neural Network (FFNN) are evaluated [27]. The physical
models are directly related to climate parameters in predicting
solar power, whereas AI-based methods can overcome these
issues for short and long-term prediction [28]. The AI-based
methods have limitations like higher computational cost
and lower performance while handling large-size data [29].
Machine learning models can extract less complex features
frommulti-dimension data [30]. Hybrid models that combine
several deep learning methods are also gaining importance to
achieve better results in predicting solar power [31]. A hybrid
model is developed using CNN and LSTM to forecast solar
irradiance based on solar angle, wind speed, perceptible
water, wind direction, and temperature parameters [32].

The research work in literature based on solar power
forecasting related to machine learning models, ANN, RNN,
and CNN is summarized in Table 1.

A. MOTIVATION AND RESEARCH CHALLENGES
The following motivation and key scientific challenges are
associated with predicting PV power. These challenges
require further investigation.

1) Energy Crisis Fossil fuel reserves are depleted in
nature, unfriendly to the environment, and have
severe implications for climate change. Environmental-
friendly renewable energy has gotten a great deal of
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TABLE 1. Comparative analysis of related literature review.

attention recently. Current energy crises, such as imbal-
ance between supply and demand and overcoming
power shortages, can be resolved using these renewable
energy technologies [42]. Solar energy has achieved
around 849 GW capacities, featuring almost 28%

2) Renewable Energy Resources Solar PV is considered
an encouraging replacement for fossil fuels. It is turbu-
lent and irregular as it is directly related to climate data.
Due to its fluctuating property, there is an imbalance
between the supply and demand of energy. Therefore,
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FIGURE 1. Optimization flow diagram of proposed deep learning-based
PV power generation prediction.

solar energy prediction is highly recommended to
maintain accurate supply and demand of solar power
output and maintain a stable operation [43]. Large-
scale connections of solar PV into the grid pose
challenges and stability problems to the working of
conventional power grids. Accurate prediction of solar
PV will be effective in solving these issues.

3) Exploration of Deep Learning Techniques Recently,
machine learning, recurrent neural networks (RNN),
artificial neural networks (ANN), and convolution
neural networks (CNN) are introduced to predict solar
PV power. Deep learning models can perform well in
solar irradiance prediction [36]. However, these meth-
ods are still early and need further exploration [44].
These deep learning approaches have several lim-
itations, including slow convergence and efficiency
degradation. The relationship between solar radiation
and climate parameters has inspired different authors
to predict solar power accurately but mostly relies
on the linear relationship between different variables
and selecting those inputs, achieving a minimum
forecasting error [45].

Nowadays, Machine learning (ML) and deep learning (DL)
methods, such as RNNs and LSTM, to forecast solar PV are
extensively used [46]. The results of these studies depend on
several factors. It includes climate conditions and forecasting
horizon [47]. However, the focus should be on data selection
and its effect on different models that can improve the
accuracy of prediction results. Comparing several models
can provide better forecast results compared to an individual
network.

B. NOVEL CONTRIBUTIONS
Different weather conditions are considered to predict the
highly fluctuated PV power. However, a correlation-based
signal synthesis algorithm (CBSS) has been proposed to
find the interdependence between Intrinsic Mode Function
combinations of atmospheric variables and output PV power
generation data. The following contributions are made to
address the challenges mentioned earlier:
• A correlation-based signal synthesis algorithm (CBSS)
has been proposed (Figure 1 step 1) to find the highly
correlated IMF combinations of atmospheric variables
with IMF combinations of PV power generation data.

• Deep learning approaches like the LSTM and NARX
networks have been employed (Figure 1 step 2) in
three different configurations of three networks, a single
network, and a direct approach i.e., training on atmo-
spheric and PV power data without any time series signal
decomposition. Further, extensive experimentation is
performed using three different optimization schemes
of Stochastic Gradient Decent Momentum (SGDM),
Adaptive moment estimation (ADAM), and Root Mean
Square Propagation (RMSP) for the LSTM network.

• The consequent analysis demonstrates a high prediction
rate performance (Figure 1 step 3) advantage as com-
pared to the direct approach on collected atmospheric
and PV power generated data.

Different weather conditions were pre-processed before a
prediction by deep learning schemes of LSTM and NARX
to forecast the highly fluctuated and volatile generation of
PV power. To improve the forecast accuracy, the proposed
algorithm, CBSS is employed to find the appropriate and
related combinations of EMD components of vital weather
variables and PV power data. The proposed technique is
applied to locally collected data for different atmospheric
sensors. For the CBSS-LSTM integrated proposed model,
a three network composition achieved RMSE of 8.17,
R2 value of 0.99, MAE value of 3.3, and MAPE value of
2.72 for ADAM optimization. For the LSTM model and
optimization, the direct approach without any CBSS pre-
processing achieved an RMSE of 27.11, R2 value of 0.90,
MAE value of 15.61, andMAPE value of 9.72. For the NARX
network, a three-network configuration achieved RMSE of
8.24, R2 value of 0.96, MAE value of 1.46, and MAPE value
of 2.63. For the NARX, the direct approach without any
CBSS pre-processing achieved an RMSE of 25.43, R2 value
of 0.88, MAE value of 16.55, and MAPE value of 9.79.

The proposed work is divided into different sections
in this paper. Each section provides the details of the
proposed techniques. The introduction, related motivation,
and research challenges are discussed in section I, which
also represents the related literature review regarding the
PV prediction. The different experimental streams and the
proposed model are detailed in section II. Section III provides
the experimental results and discussion details that include
performance measures, different optimization schemes, and
network configuration for deep learning approaches. The last
section concludes the research work.

II. PREDICTION FRAMEWORK
A. OVERVIEW
The proposed methodology predicts photo-voltaic power
generation using deep learning approaches. These approaches
involve daily weather variables data like maximum tem-
perature, pan evaporation, and humidity. However, multiple
streams are employed to verify the effectiveness of the
proposed scheme. Each stream encloses either the NARX
or LSTM network as a basic deep-learning technique for
prediction; however, additional preprocessing is an option
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FIGURE 2. Complete block diagram of the step-by-step implementation of the proposed prediction technique.

FIGURE 3. Graphs of correlation-based chosen weather variables maximum temperature pan evaporation, minimum temperature, and photo-voltaic
power generation data.

that can further simplify the prediction process. Figure 2
provides the step-wise details of each stream separately.
To present a comprehensive comparison, Figure 2 provides
the complete block diagram of each experimental stream.
The initial phase (Figure 2 step 1) measures the similarity
between the weather variables and PV data using Pearson’s
correlation coefficient (r). It is much more convenient for
the predictor function to have a similarity between the

weather variables and PV data. This stage specifies the
variables with the highest average correlation value with PV
data and employs these variables to further process them
for prediction. In the case of direct prediction (Figure 2
step 4), the NARX network utilizes the prior selected
weather variables along the PV data for prediction. A single-
layer LSTM Network (Figure 2 step 5) is employed for
prediction using previous weather variables. This network
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FIGURE 4. Intrinsic Mode Functions (IMFs) and residuals of atmospheric recordings of maximum and minimum temperature, pan
evaporation, and photo-voltaic power data by Empirical Mode Decomposition (EMD).

contains a fully connected layer and a regression layer for
forecasting.

Empirical Mode Decomposition (EMD) employs these
selected features in step 1 to give intrinsic mode functions
(IMFs) and residual of each weather variable and PV
generation (Figure 2 step 2). The IMFs are further fed
into the proposed correlation-based signal synthesis (CBSS)
algorithm (Figure 2 step 3) to find the newly added IMFs of
PV and weather variables having the highest correlation. The
synthesized data is given to a single-layer LSTM Network
(Figure 2 step 6a) holding three outputs and three single-
layer LSTM Network (Figure 2 step 6b) holding one output.
Similarly, newly constructed data is presented to a NARX
network (Figure 2 step 7a) with three outputs and three
NARX networks (Figure 2 step 7b) with three outputs.
Finally, for each stream, evaluation (Figure 2 step 8) is used
to determine the prediction accuracy. Conventional methods
like Mean Square Error (MSE) and Mean Average Error
(MAE) are employed for the performance evaluation.

B. CORRELATION-BASED SIGNAL SYNTHESIS (CBSS)
A strong correlation between input and output prediction data
suggests any change in input data is related to predictable
changes in output data that can improve predictable accuracy

[48]. Application of Person’s correlation formula results
in selecting climate variables displayed in Figure 3. All
the possible IMFs of these selected variables are shown in
Figure 4. To find the strong impact of the possible IMF
combinations of input data on the possible IMF combinations
of photovoltaic power generation data, the dot product of
both has been considered to analyze the dependency of
IMF combinations of atmospheric input data and target PV
power generation data. A scalar product or dot product
identifies the closeness of two data vectors or variables. This
measure supports understanding the impact of one variable on
another variable. Element-wise multiplication and addition of
two vectors are performed to compute their scaler product.
Further, a R ratio is calculated by dividing this product by the
absolute value of two vectors.

R =
X .P
|X ||P|

(1)

X is the IMF combination of weather variables and P is the
IMF combination of PV power generation data. The measure
results in a range from +1 to −1. It indicates a strong
correlation if the value lies near +1, while −1 suggests a
negative correlation. However, near zero or zero specifies
no correlation between the two variables. This analysis aims
to find the possible IMF combinations that maximize the
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FIGURE 5. IMF combinations of PV power generation along with its corresponding maximum temperature, pan evaporation, and
minimum temperature weather variable’s IMF combinations.
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correlation between input weather variables and PV power
generation data.

The proposed algorithm 1 in Appendix aims to search
for possible combinations of IMFs of selected input weather
conditions that maximize the correlation value with possible
IMF combinations of PV output data. Therefore, the first step
is to acquire the pairs of each IMF of each weather variable,
including the PV generation data. Algorithm X obtains these
combinations from lines 1 to 9. Line 5 computes every sum of
IMF’s time series. To find the correlation between each IMF
combination of each weather condition and each combination
of PV generation data, algorithm 1 utilizes lines 10 to 17.
Line 13 specifically computes the correlation values between
these combinations. Then, line 15 selects the correlation
values with the top three highest values. However, that
selection is based on the condition that corresponding pairs
should have unique IMF components. It is to ensure that each
IMF should contribute equally to prediction. For each output
IMF combination, lines 18 to 20 sum the selected correlation
values at line 15 across all input IMF combinations of weather
variables. It results in a sum value of Sy for each output.
For lines 21 to 27, the algorithm selects the quotient (Ny
divided by 2 ) number of combinations and its corresponding
indics if the total number of combinations of PV data is odd.
The else line 25 selects the Ny

2 number of combinations
and their corresponding indices. Based on selected indices, Y
combinations are chosen from Ck,v,f for the next processing
step of prediction.

Table 2 exhibits the best correlation-based combinations
of IMFs of each weather condition and PV generation
data. Algorithm 1 yields these combinations. The first
column identifies the pairs of output combinations (OCs),
where OC1, OC2, and OC3 represent IMF 1 and residual,
IMF 2 and IMF 3, and IMF 4 and IMF 5, respectively.
Similarly, input combinations (IC) are selected, where IC-IJ
represents input IMF combination J th combination number
of weather condition I. The investigation considers three
IMF combinations for 1st and 2nd weather variables and
two IMF combinations for 3rd weather variables. The table
also mentions the correlation value R along with IMF
combinations. These correlation values are between input
combinations ICs and output combinations OCs. Figure 5
shows the IMF combinations of PV power generation
(in red) and corresponding IMF combinations of selected
atmospheric data like maximum temperature (in orange),
minimum temperature (in blue), and pan evaporation (in
green) data.

III. EXPERIMENTAL RESULTS AND DISCUSSION
A. DATA ACQUISITION
To predict the solar PV power generation, a 100 KW grid-
connected system is considered. The experiment evaluation
utilizes 24-hour’ data recorded at 0900 hours daily. The
employed meteorological data is documented at the Climate,
Energy and Water Research Institute (CEWRI) field station,

FIGURE 6. Atmospheric data sensors located at CEWRI field station,
NARC, Islamabad, Pakistan (a) Temperature Sensor (b) Grid-connected
Distribution Transformer (c) Pan Evaporation (d) Solar PV Panels (e) Wind
Sensor.

National Agricultural Research Centre (NARC), Islamabad,
Pakistan. The recording location has latitude and longitude
coordinates of 33.4◦ north and 73.8◦ east with an altitude
of 1632 feet. The location has multiple temperature, wind,
pan evaporation, and solar sensors, as shown in Figure 6.
Initially, the methodology includes meteorological data like
the maximum temperature, minimum temperature, wind
speed, pan evaporation, rainfall, and relative humidity at
0900 hours daily. Additionally, the experimental analysis
utilized the relative and average humidity at 1400 hours.
All the daily data, including PV power generation data,
is considered for prediction from June to December 2020.
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TABLE 2. Output IMF combinations (OCs) and its corresponding input combinations (ICs) by algorithm 1.

FIGURE 7. Pearson’s correlation coefficient value of each atmospheric
variable with photo-voltaic power generation data.

B. PIVOTAL ATMOSPHERIC VARIABLES TO PV POWER
PV Power generation can depend on various atmospheric
data streams. Maximum or minimum temperature, pan
evaporation, humidity, and relative humidity are considered
PV power data prediction factors. However, their effect on
prediction is not the same for all weather factors. Some
factors have more influence over predicting PV power data
than others. To determine the most influential data factors,
Perason’s Correlation Coefficient (PCC) is employed. The
lowest values of PCC are utilized to discard the unrelated
weather data variables for the input data stream. This data
pre-processing not only simplifies the prediction but also
mitigates the computational complexity of the prediction
process.

rx,y =

∑N
i (xi − x̄)(yi − ȳ)√∑N

i (xi − x̄)2
∑N

i (yi − ȳ)2
(2)

In equation 2, rx,y denotes the Perason’s Correlation Coef-
ficient between yi PV power generation data and a possible
weather data series xi. Meanwhile, N denotes the length
of time series data. x̄ and ȳ are the averages of x and y,
respectively.

Figure 7 displays the PCC values for all the atmospheric
variables for 30 days. Among these weather variables, maxi-
mum and minimum temperatures have the lowest variations.
Both of these data series, including pan evaporation, have
the highest PCC value compared to the rest of the weather
variables. Therefore, wind and humidity-related factors are
removed from the input.

C. EMD
Empirical Mode Decomposition (EMD) typically includes
the adaptive decomposition of any complex signal into
multiple intrinsic mode functions (IMFs). These IMFs
represent the energies related to different intrinsic time
scales and separate any event in time and frequency. The
decomposition of the time series consists of the following
steps.

1) The EMD algorithm’s basic step separates each
Intrinsic Mode Function (IMF) from the signal. The
approach involves finding the minima and maxima to
create the upper Eu(t) and lower El(t) envelopes of the
signal. Next, we calculate the local mean using these
two envelopes.

µ =
Eu(t)+ El(t)

2

2) The original signal x is subtracted from this local mean
µ to produce an oscillating component, y. Assume y
as new signal x. and repeat the process from step 1 to
acquire new y.

yi = x − µ

3) The process repeats until the stoppage criterion is
satisfied. The condition is fulfilled when y does not
have more than two extrema of the same sign, ensuring
that y is in single oscillatory mode. If the above
condition is not satisfied, the process repeats itself.

4) After extraction of all IMFs, the residual signal is
obtained after subtracting the sum of all IMFs from the
original signal.

RES = x −
N∑
i

yi (3)

Each residual represents the overall tendency in the
original signal.

D. PERFORMANCE MEASURES
Root Mean Square Error(RMSE) is the most commonly used
performancemeasure to verify the prediction. It calculates the
mean difference between the predicted values of an estimator
and the original ground values. Mathematically, it represents
the standard deviation of differences between data inputs
and the regression line called residual. RMSE measures the
tightness of these points around the regression line. The more
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TABLE 3. Experimental results of the proposed and conventional technique and their corresponding units usage on LSTM and NARX.

TABLE 4. Experimental results of the proposed and conventional technique and their corresponding units usage on GRU.

the RMSE value near 1, the less the residual values. In other
words, it sticks around the line more tightly.

RMSE =

√∑N
i (yi − xi)2

N
(4)

In equation 4, yi denotes the actual values, xi is the predicted
value and N denotes the total length of yi or xi.
Mean absolute error (MAE) measures the absolute differ-
ence between the original value and the predicted value.
Mathematically, it computes the non-negative error between
the prediction and the original value. It provides the
mathematical framework for averaging errors on all the data
points.

MAE =

∑N
i |yi − xi|
N

(5)

In equation 5, yi denotes the actual values, xi is the predicted
value and N denotes the total length of yi or xi.
The mean absolute percentage error (MAPE) measures the
accuracy of the prediction or forecasting method. It is
commonly used as it provides the relative error. Even it is
utilized as a loss function in regression training models. The
mathematical framework of MAPE is defined as

MAPE =
1
N

N∑
i

|
yi − xi
yi
| (6)

In equation 6, yi denotes the original value, xi is the predicted
value and N denotes the total length of yi or xi.
Performance measure of R2 determines the fitness of

regression or prediction model data. It calculates the

proportion of variation in the dependent variable that
can be attributed to the independent variable. The value
of R2 ranges between 0 and 1. The value near zero
means the data does not fit well to the regression model
while the value near one implies good data fitness to
the regression model. However, it does not give any clue
about the accuracy of the regression model. Therefore,
R2 is typically utilized with other performance mea-
sures. The mathematical framework of the stated method
is as follows.

R2 = 1−

∑N
i (yi − xi)∑N
i (yi − ŷ)

(7)

In equation 7, yi denotes the original value, xi is the predicted
value and ŷ denotes the average over y.

E. EXPERIMENTAL SETUP
The experimental evaluation involves deep learning
approaches like LSTM and NARX networks. Three con-
figurations are being considered for the LSTM network
to acquire the complete analysis. First, for three IMF
combinations of PV power generation, three individual
LSTM networks are trained separately for a combination.
In the second configuration, a single network is trained,
having all three outputs, one for each combination. Lastly,
a direct approach uses the maximum and minimum
temperature and pan evaporation as inputs. In contrast, the
target prediction is power generation PV time series data.
Each network is trained using three different optimization
functions.

VOLUME 12, 2024 40745



M. D. Sabir et al.: Prediction of Solar PV Power Using Deep Learning With Correlation-Based Signal Synthesis

FIGURE 8. Graphs of prediction results of LSTM and NARX networks where 1st row, graphs (a-c) represent three LSTM networks with output, while 2nd

row, graphs (d-f) are related to a single LSTM network an output, and 3rd row graphs (g-i) are results of direct approach. The last row graphs (j-l)
provides the results of the NARX network.

Stochastic Gradient Descent with Momentum (SGDM)
[49] optimization is the ubiquitous scheme among these.
To update parameters, SGD is an iterative process that
involves the minimization of the loss function by taking

small steps in the direction of the negative gradient of the
loss function. However, simple SGD oscillates with the
longest downward step towards achieving the minima of
object function. Therefore, an additive term of momentum is
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FIGURE 9. Graphs of errors across various configurations.

included to mitigate the oscillations. The standard update of
parameters is

θi+1 = θi−l∇L(θi)+ m(θi − θi−1) (8)

In equation 8, θi denotes training parameter i while learning
rate l should be greater than zero. m denotes the momentum
term. While ∇L(θi) denotes the gradient of the loss function.
SGDM employs a single learning rate for all parameter
updates. On the contrary, Root Mean Square Propagation
(RMSP) utilizes different learning rates for different parame-

ter updates. It computes the moving average of the square of
each element of the parameter gradient,

ui+1 = α2ui − (1− α2)[∇L(θi)]2 (9)

θi+1 = θi −
l∇L(θi)
√
ui + ε

(10)

In equation 9, α2 is the decay rate of the moving average.
Whereas, in equation 10, ε is the small value for prevention
in case of square root value of ui is zero. Adaptive
moment estimation (ADAM) [50] has a comparable updation
mechanism to RMSP. Additionally, it includes the moment
term as well. Parameter gradients and corresponding squared
values are used to calculate the moving averages of each
element.

mi+1 = α1mi + (1− α1)∇L(θi) (11)

ui+1 = α2ui + (1− α2)[∇L(θi)]2 (12)

θi+1 = θi −
lml
√
ui + ε

(13)

In equations 11 and 12, α1 and α2 are the decay rates of
gradients and their squares, respectively. Equation 13 shows
the RMSP-like parameter updation procedure.

The experimental evaluation for all proposed methods
and direct approaches shows the enhanced performance of
overall LSTM variants over the NARX networks. Table 3
exhibits RMSE, MAE, MAPE, and R2 performance criterion.
Figures 8(a), (d), (f) show the SGDM optimization responses
for three, single and direct LSTM networks. For three LSTM
networks, 14.44, 10, 6.8, and 0.9 are the corresponding
values of RMSE, MAE, MAPE, and R2. Similarly, for a
single LSTM network, 16.03, 8.39, 5.78, and 0.96 are values
for the same performance measures. In contrast, the direct
approach has values of 17.5, 11.01,7.02, and 0.96 for the same
performance criteria. For SDGM optimization, three and
single network has better overall performance responses as
compared to the direct approach. ADAMoptimization reports
8.17, 3.30, 2.72, and 0.99 values of RMSE, MAE, MAPE,
and R2, respectively. The single network has 8.40, 2.81,
2.41, and 0.99 values for criteria. In comparison, the direct
approach holds the values of 27.11, 15.61, 9.72, and 0.90 for
the above-mentioned performance values. The three networks
demonstrate overall better performance than the rest of the
networks. Comparing Figures 8(b), (e), (h) show the overall
better prediction of three networks as compared to the direct
and single networks. For RMSPROP optimization, the three
networks demonstrate performance values of 8.19, 4.18, 9,72,
and 0.99 respectively. In contrast, single network values are
8.74, 4.84, 3.62, and 0.93 respectively. The direct approach
has 22.95, 13.21, 8.26, and 0.93 respectively. Figures 8(c), (f),
(i) demonstrate the better overall prediction scores of the three
networks as compared to the direct or single network scores.
Figures 8(j), (k), (l) demonstrate the prediction curves for the
three, single and direct NARX networks. The three output
NARX network has performance values of 15.45,11.43,6.39,
and 0.96 for RMSE, MAE, MAPE, and R2 respectively.
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For a single network, these values are 8.24, 2.63, 1.46, and
0.96 respectively. The direct approach has values of 25.43,
16.55, 9.79, and 0.88 respectively. Overall single NARX
networks have better performance scores as compared to the
three and direct NARX networks. The LSTM three network
with ADAM optimization has the best RMSE value of 8.17,
while the LSTM single network with ADAM optimization
has the best MAE value of 2.81. Similarly, the single
NARX network has the best value of 1.46 and the LSTM
three network with ADAM optimization has the best R2

value of 0.99.
Table 3 demonstrates the Neural Network units utilized

for each configuration of the NARX network. It also
exhibits the LSTM units for each optimization type and
network configuration. Single-layer LSTM shows better
overall performance over NARX. However, within the LSTM
network, the three network approach performs better than
other network configurations but at the cost of more LSTM
units.

Experimentation is extended to Gated Recurrent Units
(GRUs) implementation in Table 4. The lowest RMSE
achieved is 7.26, which belongs to GRU three network
implementation with the ADAM optimization. The same
optimizer configuration with a single network results in
the minimum MAE value of 2.99. While for the same
network and optimization configuration, the MAPE and
R2 values are 2.13 and 0.99, respectively. On average,
for all experimentations, the time cost of three network
configurations is the least as compared to other conventional
and proposed methods.

Figure 9 represents the error analysis of the proposed
optimizations and configurations. The error and its standard
deviation are considered for the three single network
configurations across all optimization schemes. The ADAM,
RMSPROPS, and SGDM optimization schemes represent
the error averages across all configuration network config-
urations of the single, three networks, and direct approach.
The direct approach shows the maximum error in all
error measures. Figure 9.a shows the average and standard
deviation of MSE. Figure 9.b represents the average and its
standard deviation of MAE. And Figure 9.c demonstrates the
same for MAPE.

IV. CONCLUSION
Deep learning approaches and a proposed pre-processing
reconstruction algorithm, are proposed to improve the
prediction of highly irregular, random, and uncertain PV
power generation in this paper. The proposed approach
employs PCC to select the environment variables based
on similarity with PV power data. PCC removed unrelated
atmospheric variables. EMD decomposes the time series data
of selected atmospheric variables e.g., minimum, maximum
temperature, pan evaporation, and PV power generation.
Despite using PCC, these decomposed components have no
relation to facilitate the prediction of PV power decomposed
components. To improve the accuracy of the proposed model

TABLE 5. Metrics used in algorithm 1.

a correlation-based signal synthesis (CBSS) algorithm was
proposed to establish the combination of these decomposed
components related to combinations of PV power based
on correlation. Further, LSTM and NARX deep learning
approaches are utilized to find the prediction of PV power
data for three different network configurations. These were
using three different networks for each output, a single
network for all output, and a direct approach without
preprocessing. For the LSTM network, Adaptive moment
estimation (ADAM), Stochastic Gradient Descent with
Momentum (SGDM), and Root Mean Square Propagation
(RMSP) optimization are utilized.

The results demonstrate under the LSTM approach with
ADAM and RMSPROP optimization R2 value is above 99%,
which shows a good fit. Compared to other approaches,
these two optimizations significantly differ between RMSE
and MAE. These error measures have relatively low values
for these model mixtures, which indicate superiority over
other models. To meet the supply and demand of power,
improve dispatching capacity, and gird planning of the power
department, a PV power forecasting method is proposed,
which is advantageous to the power department. In future
work, further improving prediction accuracy is achievable
using optimization for layers and the number of units in
LSTM networks. The optimization is possible using different
heuristic methods.

APPENDIX
CBSS ALGORITHM FOR PV FORECAST
Table 5 is representing all variables and metrics used in
algorithm 1.
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Algorithm 1 Correlation-Based Signal Synthesis (CBSS)
Algorithm
Input: IMFs of weather variables and PV generation data
Output: Selected output combinations C ′y′u,k ′v,f
1: k← 1
2: for all f in N do
3: for all i in Nf do
4: for all j← i+ 1 in Nf do
5: Ck,f ← Add cfi and c

f
j EMD component of f

6: k← k + 1
7: end for
8: end for
9: end for

10: for all y in Ny do
11: for all f in N − 1 do
12: for all k in Nc do
13: ry,k,f ← Compute correlation between Ck,f and

Cy,fy
14: end for
15: ry,k ′(1:3),f ← ∀k select top three values from

ry,1:NC ,f such that their additive components
ofcombination do not repeat

16: end for
17: end for
18: for all y in Ny do
19: Sy←

∑N−1
f=1

∑3
l=1 ry,l,f

20: end for
21: if Ny is odd then
22: Cy′(1:quotient(Ny,2)) ← ∀y select quotient(Ny, 2)

combinations and their indices with highest values of
Sy such that their additive components ofcombination
do not repeat

23: Y← [1 : quotient(Ny, 2)]
24: else
25: C

y′(1:
Ny
2 )
← ∀y select Ny

2 combinations and their
indices with highest values of Sy such that their
additive components ofcombination do not repeat

26: Y←[1 : Ny2 ]
27: end if
28: for all u in Y do
29: for all v in 3 do
30: for all f in N − 1 do
31: C ′y′u,k ′v,f←Ck ′v,f
32: end for
33: end for
34: end for
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