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Abstract: The reliability of critical infrastructures, such as power distribution networks, is of key 

importance for modern societies. The reliability of such complex systems can, in principle, be 

assessed by Monte Carlo simulation. However, the size and complexity of these systems, and the 

rarity of the failure events, can make the calculations quite demanding. Survival signature can help 

to address this issue, as it allows modelling the structure of the system separately from the 

probabilistic modelling for the reliability assessment. However, survival signature calculation suffers 

from the curse of dimensionality. Then, in this work, we propose a novel approach to approximate 

the survival signature of a system, which stands on the use of entropy to drive the sampling by Monte 

Carlo simulation (MCS) towards non-trivial system structure configurations, so as to save 

computational cost. The approach is exemplified by calculating the reliability of a generic synthetic 

multi-component network and the feasibility of its application is shown on a real-world network. 
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1. INTRODUCTION 

Infrastructures, such as power grids and transportation networks, are systems with complex network 

topology whose reliability assessment can be done by traditional methods, such as fault trees or 

reliability block diagrams, only if the size is relatively small or if the system can be decomposed in 

simple parts [1]. For realistically large networks instead, the reliability problem complexity increases 

exponentially with the network size [2]. To cope with this problem, Monte Carlo Simulation (MCS) 

can be used to generate a large number of replicas of the system random process of transition across its 

reachable states, recording system failures to eventually estimate its reliability [3]. However, systems 

with large numbers of reliable components require large computational efforts to obtain accurate 

estimates, and this can make the reliability problem practically intractable [4]. 

In recent years, the concept of system signature has been introduced to assist the reliability assessment 

of large systems made up of many components that fail with independent and identically distributed 

(iid) failure times [5]. Generalization of the signature to systems with multiple types of components 

(i.e., not iid) has been obtained by the adoption of the concept of survival signature [6], which is 

attractive for application to real-world networks. The advantage of the survival signature in reliability 

assessment is that it allows the separation of the system structure from the probabilistic information. 

This facilitates the consideration of dependencies, common cause failures and imprecisions in 

components characterization, offering a basis for analyzing complex networks efficiently [7]. 

Simulation approaches have been successfully applied to approximate the probabilistic time-dependent 

part of the reliability, both in the case of repairable and non-repairable components [8]. For the structural 

part instead, the approaches proposed over the years (including binary decision diagrams [9]), perform 

well only for systems with a limited number of components, whereas they fail as the network size 

increases.  

Recently, percolation theory in combination with MCS has been proposed [10] to evaluate the survival 

signature of systems for which the full combinatorial evaluation would be intractable. Percolation 

theory is useful to study the macroscopic failure behavior of network systems in relation to the 

microscopic states of their components, denoted as nodes, by searching the connections between the 
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two end-nodes of the network [11]. The failure of a node (i.e., component) is modeled by its removal 

from the network and, as the number of removed nodes increases, the network undergoes the transition 

from being connected to being disconnected. Nevertheless, the computational cost related to MCS 

remains too high when dealing with large numbers of non-trivial network configurations, especially 

when the number of components and component types that make up the complex system increases [10].  

In this paper, we present an automatic procedure for the approximation of the survival signature which 

combines percolation theory with entropy-driven MCS [12]. Once the values of the survival signature 

for trivial configurations are found by percolation, MCS is driven by the entropy function to carry out 

the survival signature assessment. Specifically, entropy is used to drive the simulation process towards 

the most unknown regions of the survival signature, so as to efficiently allocate the simulation efforts 

in the procedure of approximation [13].  

The reminder of the paper is structured as follows. Section 2 presents an overview of the concept of 

survival signature and survival function. In Section 3, the entropy-driven MCS method for the survival 

signature approximation is presented. The application of the method is illustrated in Section 4 on a 

synthetic generic network and, then, applied to a real-world network, specifically, the electricity 

transmission network of Great Britain. In Section 5 some conclusions are drawn. 

 

2. SURVIVAL SIGNATURE 

Let 𝑥 = (𝑥1, 𝑥2, … , 𝑥𝑚) ∈ {0,1}𝑚 be a Boolean vector describing the state of a system of m components, 

where each entry is 𝑥𝑖 = 1 if the i-th component functions or 𝑥𝑖 = 0 if not. The system reliability 

structure function is denoted as 𝜑 ∶ {0,1}𝑚  → {0,1}, and it is defined for all 2𝑚 possible 𝑥, such that 

𝜑(𝑥) = 1 if the system functions and 𝜑(𝑥) = 0 if the system does not function in correspondence of 

state vector 𝑥. We assume that the system is coherent, i.e., the structure function is not decreasing if the 

number of functioning components increases, which also implies 𝜑(0) = 0 and 𝜑(1) = 1, i.e., the 

system functions if all components function and it is failed if all components are failed. Let 𝑆𝑙 denote 

the set of state vectors 𝑥 with exactly l of the m components functioning, so that ∑ 𝑥𝑖
𝑚
𝑖=1 = 𝑙.  
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The survival signature Φ(𝑙), with 𝑙 = {0, 1, … , 𝑚}, is defined in Eq. (1) as the probability that the system 

functions given that exactly l components function: 

 

Φ(𝑙) =  (
𝑚

𝑙
)

−1

∑ 𝜑(𝑥)

𝑥∈𝑆𝑙

 (1) 

 

If the m components are partitioned into 𝐾 ≥ 2 different types, with 𝑚𝑘 components of the specific 

type k, so that ∑ 𝑚𝑘
𝐾
𝑘=1 = 𝑚, the state vector can be written as 𝑥 = (𝑥1, 𝑥2, … , 𝑥𝐾), with 𝑥𝑘 =

(𝑥1
𝑘 , 𝑥2

𝑘 , … , 𝑥𝑚𝑘
𝑘 ) representing the states of the components of type k. The survival signature becomes 

Φ(𝑙1, 𝑙2, … , 𝑙𝐾), as in Eq. (2), with 𝑙𝑘 = 0, 1, … , 𝑚𝑘 for 𝑘 = 1, 2, … , 𝐾, and it is defined as the 

probability that the system functions given that 𝑙𝑘 out of 𝑚𝑘 components of type k function, for each 

𝑘 = 1, 2, … , 𝐾 [6]: 

 

Φ(𝑙1, 𝑙2, … , 𝑙𝐾) =  [∏ (
𝑚𝑘

𝑙𝑘
)

𝐾

𝑘=1

]

−1

× ∑ 𝜑(𝑥)

𝑥 ∈ 𝑆𝑙1,𝑙2,…,𝑙𝐾

 (2) 

 

Since the state vectors 𝑥𝑘 with exactly 𝑙𝑘 components functioning are (𝑚𝑘
𝑙𝑘

), where 𝑙𝑘 = ∑ 𝑥𝑖
𝑘𝑚𝑘

𝑖=1 , the 

set of all the allowed combinations of all components is denoted as 𝑆𝑙1,𝑙2,…,𝑙𝐾
, with magnitude 

∏ (𝑚𝑘
𝑙𝑘

)𝐾
𝑘=1 ; also, assuming that the failure times of the 𝑚𝑘 components of type k are iid, all the state 

vectors 𝑥𝑘 ∈ 𝑆𝑙𝑘
 are equally likely to occur.  

In practice, the analytical calculation of Eq. (2) for the entries (𝑙1, 𝑙2, … , 𝑙𝐾) requires the structure 

function 𝜑(𝑥) to be evaluated (𝑚1
𝑙1

) ∙ (𝑚2
𝑙2

) ∙ … ∙  (𝑚𝐾
𝑙𝐾

) times, leading to 2𝑚 structure function 

evaluations in total, a combinatorial explosion giving rise to a potentially significant computational 

burden for large systems. Eventually, the generalized survival signature is a multidimensional array 

with size (𝑚1 + 1) ×  (𝑚2 + 1) × ⋯ × (𝑚𝐾 + 1) (including the case 𝑙𝑘 = 0 in which none of the 

components of type k are working).     
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Considering the probability that the system functions at time 𝑡 > 0, the survival function of the system, 

i.e., the reliability, can be calculated as in Eq. (3) [6]: 

 

𝑃(𝑇𝑠 > 𝑡) =  ∑ ∑ …

𝑚2

𝑙2=0

 

𝑚1

𝑙1=0

∑ Φ(𝑙1, 𝑙2, … , 𝑙𝐾)

𝑚𝐾

𝑙𝐾=0

𝑃 (⋂{𝐶𝑡
𝑘 =  𝑙𝑘}

𝐾

𝑘=1

) (3) 

 

where 𝐶𝑡
𝑘 ∈ {0, 1, … , 𝑚𝑘} is the number of components of type k that function at time 𝑡 > 0, described 

by the probability 𝑃(𝐶𝑡
𝑘). It is important to notice that in Eq. (3) the structure of the system is kept 

separated from the probabilistic information (i.e., the failure time distributions of the components), 

which is the main advantage of the survival signature approach. Indeed, even if the survival signature 

needs to be calculated for all ∏ (𝑚𝑘 + 1)𝐾
𝑘=1  different 𝑙 = (𝑙1, 𝑙2, … , 𝑙𝐾) vectors, this calculation has to 

be done only once and, then, coupled with the probabilistic part. If the cumulative distribution function 

(CDF) 𝐹𝑘(𝑡) for component type k is known, and the failure times of the different component types are 

independent, the probabilistic part can be simplified as in Eq. (4): 

 

𝑃 (⋂{𝐶𝑡
𝑘 =  𝑙𝑘}

𝐾

𝑘=1

) =  ∏ 𝑃(𝐶𝑡
𝑘 =  𝑙𝑘)

𝐾

𝑘=1

= ⋯ =  ∏ ((
𝑚𝑘

𝑙𝑘
) 𝐹𝑘(𝑡) 𝑚𝑘−𝑙𝑘[1 − 𝐹𝑘(𝑡) ]𝑙𝑘)

𝐾

𝑘=1

 (4) 

 

The method proposed in this work addresses the quantification of the structure part of the survival 

function, Φ(𝑙1, 𝑙2, … , 𝑙𝐾), whereas for what concerns the probabilistic part, 𝑃(⋂ {𝐶𝑡
𝑘 =  𝑙𝑘}𝐾

𝑘=1 ), the 

reader is invited to refer to [4], [14]–[16] for efficient Monte Carlo sampling techniques, such as line 

sampling, subset simulation and Adaptive Kriging Monte Carlo Sampling (AK-MCS), applied for 

generating random component failure times. 

 

3. ENTROPY-DRIVEN MONTE CARLO SIMULATION METHOD  



 6 

In this Section, a novel method for the survival signature approximation of large infrastructure networks 

is presented. An overview of the method is shown in Fig. 1, in terms of the main steps of i) input 

definition, ii) percolation theory application and iii) entropy-driven MCS application. 

 

 

 

Figure 1 - Flowchart of the methodology proposed for the survival signature approximation. 

 

3.1.  Input definition 

The survival signature has to be computed for each entry (𝑙1, 𝑙2, … , 𝑙𝐾), which means for each 

combination of the number of working components among the K types of components. To evaluate the 

system state for each 𝑥  ∈  𝑆𝑙1,𝑙2,…,𝑙𝐾
, for each (𝑙1, 𝑙2, … , 𝑙𝐾), the structure function, which is a Boolean 

function incorporating all the path sets of functioning nodes/components for which the system functions 

[17], is to be used. It is worth noting that the evaluation of the system state for an entry 𝑙 defines a 
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Bernoulli process, since the structure function can either result in a functioning state for the system, i.e., 

𝜑(𝑥) = 1, or in a non-functioning state, i.e., 𝜑(𝑥) = 0,  and so: 

 

𝑝 (𝑙)  ~ 𝐵𝑒𝑟𝑛𝑜𝑢𝑙𝑙𝑖 (𝜇𝑙) (5) 

 

where 𝑙 = (𝑙1, 𝑙2, … , 𝑙𝐾). In this way to every 𝑙 is associated a probability distribution 𝑝 (𝑙), with 

parameter 𝜇𝑙. In general, 𝜇𝑙 is an uncertain parameter, described in a Bayesian framework by a prior 

Beta distribution, i.e., 𝜇𝑙~𝐵𝑒𝑡𝑎(𝛼𝑙 , 𝛽𝑙) [18]. It is straightforward that the parameter 𝜇𝑙 corresponds to 

the survival signature of Eq. (4) with entry 𝑙, Φ(𝑙) = 𝜇𝑙, and, as shown in [18], 𝛼𝑙 represents the number 

of successes, i.e., the number of times the system is functioning, whereas 𝛽𝑙 represents the number of 

failures, i.e., the number of times that the system is not functioning. 

 

3.2. Percolation theory 

Percolation theory is used to calculate the trivial solutions of Eq. (2), i.e., those for which the number 

of non-functioning components is sufficient to determine a non-functioning network. The percolation 

process consists in: 

• computing the critical fraction of non-functioning components 𝑓𝑐 for which the network makes 

a transition from functioning to non-functioning, as follows: 

𝑓𝑐 = 1 −  
1

𝑘 − 1
 (6) 

where 𝑘 =  〈𝑑2〉/〈𝑑〉, 𝑑 is the node degree, 〈𝑑〉 and 〈𝑑2〉 are the first and second moments of 

the degree distribution for the network (this information is usually retrievable from the network 

adjacency matrix defining the connections among the network nodes), and 
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• finding the trivial entries that are those for which there is no network connectivity and whose 

survival signature can be set to zero, here taken as the entries of the survival signature for which 

the fraction of functioning components is lower than 1 − 𝑓𝑐, i.e., those satisfying Eq. (7): 

∑ 𝑙𝑘

𝐾

𝑘=1

< (1 − 𝑓𝑐) ∙ ∑ 𝑚𝑘

𝐾

𝑘=1

    ⟹    Φ(𝑙) ≈ 0 (7) 

 

3.3. Entropy-driven Monte Carlo simulation 

Entropy 𝐼(𝜇) is defined as in Eq. (8), [12], where 𝑓(𝜇) is a prior probability distribution with uncertain 

parameter 𝜇:  

𝐼(𝜇) = 𝐸 [𝑙𝑜𝑔(𝑓(𝜇))] =  ∫ 𝑙𝑜𝑔(𝑓(𝜇))𝑓(𝜇)𝑑𝜇 (8) 

 

In a Bayesian framework, when a new evidence 𝑦 is available for 𝜇, the prior distribution 𝑓(𝜇) is 

updated to get the posterior distribution 𝑓(𝜇|𝑦); thus, entropy becomes 𝐼(𝜇|𝑦) and the information gain 

is [18]: 

∆𝐼(𝜇|𝑦) =  𝐼(𝜇|𝑦) − 𝐼(𝜇). (9) 

 

which represents the increment of information for the characterization of that specific pdf. Due to 

stochasticity of the simulation process, it is preferable to consider the expected information gain  

𝐸[∆𝐼(𝜇|𝑦)], instead of ∆𝐼(𝜇|𝑦) [12].  

Entropy is here used to evaluate the remaining entries 𝑙. The entropy-driven MCS is performed as 

follows: 

Step 1. Estimate the prior probability distributions 𝑓(𝜇𝑙) associated with the remaining entries  

𝑙 = (𝑙1, 𝑙2, … , 𝑙𝐾) by collecting a limited number 𝑁 of random samples 𝑥𝑙 ∈ 𝑆𝑙1,𝑙2,…,𝑙𝐾
 of 

the components states vector and evaluating 𝜑(𝑥𝑙) that results in the system state when 𝑙 

components are functioning. If, for a given entry 𝑙, 𝜑(𝑥𝑙) is always the same, i.e., equal to 

1, meaning that the system always reaches a functioning end-state, or equal to 0, vice versa, 
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the confidence on the prior distribution Beta(𝛼𝑙 , 𝛽𝑙) is high [18] and we assume Φ(𝑙) = 1 

in the former case and Φ(𝑙) = 0 in the latter. A pseudo-code for the retrieval of the prior 

distribution for each survival signature entry is shown in Fig. 2;  

 

Figure 2 – Pseudocode of the pre-exploration algorithm (Step 1), to be performed for each non-trivial entry. 

 
Step 2. For the remaining entries 𝑙, compute the expected entropy gain of each distribution 

𝑓(𝜇𝑙) = 𝐵𝑒𝑡𝑎(𝛼𝑙 , 𝛽𝑙) using Eq. (10), as shown in [18]: 

 

𝐸[∆𝐼(𝜇𝑙)] =  𝐿𝑊 ∙  𝐼(𝜇𝑙|𝜑(𝑥𝑙) = 1) + 𝐿𝐹 ∙  𝐼(𝜇𝑙|𝜑(𝑥𝑙) = 0) −   𝐼(𝜇𝑙) (10) 

𝐿𝑊 =
𝛼𝑙

𝛼𝑙 + 𝛽𝑙
 (11) 

𝐿𝐹 =
𝛽𝑙

𝛼𝑙 + 𝛽𝑙
 (12) 

Step 3. Select the entry 𝑙∗ with the largest value of the expected information gain: 

 

𝑙∗ =  argmax
𝑙

𝐸[∆𝐼(𝜇𝑙)] (13) 
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and collect a random sample 𝑥𝑙∗ ∈ 𝑆𝑙1
∗,𝑙2

∗,…,𝑙𝐾
∗ from its probability distribution 𝑝(𝑙∗), so 

that 𝜑(𝑥𝑙∗) = 1 or 𝜑(𝑥𝑙∗) = 0; 

Step 4. Calculate the posterior distribution 𝑓(𝜇𝑙∗|𝜑(𝑥𝑙∗)), whose parameters become: 

• (𝛼𝑙∗  , 𝛽𝑙∗) = (𝛼𝑙∗ + 1 , 𝛽𝑙∗) if the system is functioning, 

• (𝛼𝑙∗  , 𝛽𝑙∗) = (𝛼𝑙∗  , 𝛽𝑙∗ + 1) if the system is non-functioning, 

and update the corresponding expected entropy gain 𝐸[∆𝐼(𝜇𝑙∗|𝜑(𝑥𝑙))] by means of Eq. 

(10). As we shall see in what follows, every piece of evidence (or sample) collected narrows 

the resulting posterior distribution: as the information content increases, the entropy value 

increases and the expected entropy gain decreases. Fig. 3 shows an example of expected 

entropy gain decreasing with increasing parameters of the Beta distribution. 

 
Figure 3 – Expected entropy gain for a generic Beta distribution. 

Step 5. Compute the survival signature for the entry 𝑙∗, Φ(𝑙∗), using Eq. (14): 

𝜇𝑙 =
𝛼𝑙

𝛼𝑙 + 𝛽𝑙
= Φ(𝑙) (14) 

 



 11 

where 𝛼𝑙 + 𝛽𝑙 =  𝑁𝑙 is the number of instances of 𝑥𝑙 ∈ 𝑆𝑙 collected for the specific entry 𝑙;  

Step 6. Compute the variance of the estimate of the survival signature for entry 𝑙∗ as in Eq. 

(15): 

𝑉𝑙  =
1

𝑁𝑙  − 1
∑|Φ𝑖(𝑙) − Φ(𝑙) |

2

𝑁𝑙 

𝑖=1

 (15) 

where Φ(𝑙) is the mean of Φ(𝑙). 

Repeat Steps 2-6 until 𝑉𝑙 is smaller than 𝑉, a threshold value set by the analyst. A pseudo-code for the 

implementation of the Steps 2-6 is shown in Fig. 4. 
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Figure 4 – Pseudocode of the entropy-driven MCS (Steps 2-6). 

 

4. STUDY CASES 

4.1. The synthetic multi-component network 

We consider the network in Fig. 5 that has 𝑚 = 6 components, of 𝐾 = 2 types, 𝑘 = 1, 2, and 

specifically  𝑚1 = 𝑚2 = 3 components of each type. The failure times of components of type 1 follow 

an exponential distribution with 𝜆 = 1, in arbitrary units of inverse time, whereas the failure times of 

components of type 2 follow a Weibull distribution with scale parameter 𝑎 = 1 and shape parameter 

𝑏 = 2. 
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Figure 5 – The synthetic multi-component network considered as case study (the numbers indicate the components types). 

The survival signature Φ( 𝑙1, 𝑙2) for all (𝑙1, 𝑙2) ∈ {0, 1, 2, 3} (which indicate the number of functioning 

components of type 𝑘 = 1 and 𝑘 = 2, respectively) is given in matrix form, whose dimension is  

(𝑚1 + 1) × (𝑚2 + 1) = (3 + 1) × (3 + 1) = 4 × 4, in Table 1. This result can be calculated 

analytically using Eq. (2), once the structure function of the system is available, and it is used hereafter 

as benchmark for the crude MCS and the entropy-driven MCS approach proposed. 

Table 1 - Survival signature for the network in Fig. 5. 

𝑙1\𝑙2 0 1 2 3 

0 0 0 0 0 

1 0 0 1/9 1/3 

2 0 0 4/9 2/3 

3 1 1 1 1 

 

To proceed with the entropy-driven MCS approach, all the possible combinations of (𝑙1, 𝑙2) ∈

{0, 1, 2, 3} are defined, and the critical fraction of non-functioning components 𝑓𝑐 for percolation is 

computed, resulting in 𝑓𝑐 = 0.6. By means of Eq. (7), the identified trivial entries are (𝑙1, 𝑙2) =

{(0,0) ; (0,1); (0,2); (1,0); (1,1); (2,0)}. For the remaining non-trivial entries, the probability 

distributions 𝑝(𝑙1, 𝑙2) are quantified within the pre-exploration step (Step 1), in which 𝑁 = 20 samples 
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are collected for each entry and used to obtain the informative distributions shown in Fig. 6. The entries 

(𝑙1, 𝑙2) = {(0,3); (2,1); (3,0); (3,1); (3,2); (3,3)} result in a consistent outcome, peaked in either 0 or 

1: the corresponding survival signature is assigned equal to 0 for (𝑙1, 𝑙2) = {(0,3); (2,1)} and equal to 

1 for (𝑙1, 𝑙2) = {(3,0); (3,1); (3,2); (3,3)}. 

 

Figure 6 - Beta distributions for every survival signature entry after pre-exploration (Step 1). 

Steps 2-6 are, thus, performed setting 𝑉 = 0.005 for the remaining (𝑙1, 𝑙2) =

{(1,2) ; (1,3); (2,2); (2,3)}. 𝑉 = 0.005 guarantees that the survival signature estimate reaches a good 

level of convergence, as shown in Fig. 7 for the entry (𝑙1, 𝑙2) = (1,3). 
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Figure 7 – 𝛷(1,3) vs number of samples (top). Variance of 𝛷(1,3) vs number of samples (bottom). 

The evolution of the entropy-driven MCS for the four remaining entries, in terms of expected entropy 

gain and parameters 𝛼 and 𝛽, is illustrated in Fig. 8 (left), where each stepwise line is referring to the 

simulation of a specific entry and it oscillates about a straight line that represents the 𝛼 − 𝛽 ratio 

corresponding to the exact survival signature for the entry, explicitly shown in Fig. 8 (right) for the 

entry (𝑙1, 𝑙2) = (1,3). The oscillations are related to the randomness of the simulation process.  

 
Figure 8 – Expected entropy gain evolution through the entropy-driven MCS as function of the Beta distribution parameters, 

3D (left) and 2D (right). On the right, the continuous line represents the evolution for entry  (𝑙1, 𝑙2) = (1,3). 

The survival signature approximation resulting from the application of the entropy-driven MCS  method 

is given in Table 2. 



 16 

Table 2 – Survival signature for the network in Fig. 5 approximated by entropy-driven MCS. 

𝑙1\𝑙2 0 1 2 3 

0 0 0 0 0 

1 0 0 0.0951 0.3317 

2 0 0 0.4434 0.6691 

3 1 1 1 1 

 

The result is benchmarked with that obtained by the crude MCS method that is separately performed 

and stopped when the variance is smaller than 𝑉 = 0.005 for each entry (𝑙1, 𝑙2) of the survival signature, 

as for the entropy-driven MCS approach. To further verify the results, in light, also, of the stochasticity 

of both the crude MCS method and the entropy-driven MCS method, the approximation of the survival 

signature has been performed 500 times; for each of these, the number of required samples for the 

approximation has been collected and its distribution plotted in the boxplot of Fig. 9: the median of the 

samples required to approximate the whole survival signature for the entropy-driven MCS method is 

794.7, whereas for the crude MCS is 831.2; the maximum number of samples is 2498 for the entropy-

driven MCS method, whereas it is 2811 for the crude MCS.  
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Figure 9 – Boxplot for the number of samples required to approximate the survival signature using the crude MCS method 

(left) and the entropy-driven MCS method (right). 

Not only the computational savings are confirmed, but also the accuracy of the approximation is proven, 

as shown in Table 3, where the survival signatures computed analytically using Eq. (2), approximated 

by means of the crude MCS and approximated by the entropy-driven MCS are listed: the average 

relative error over the estimate provided by the entropy-driven MCS is 3.87%, smaller than the error of 

4.11% obtained by the crude MCS. 

 

Table 3 – Survival signature of the network of Fig. 5 computed analytically with Eq. (2) (left), approximated by means of crude 

MCS (center), and approximated by entropy-driven MCS (right). The average relative error for the approximated survival 

signature is given. 

𝑙1 𝑙2 𝜱(𝒍𝟏, 𝒍𝟐) - Analytical 𝜱(𝒍𝟏, 𝒍𝟐) - MCS 
𝜱(𝒍𝟏, 𝒍𝟐) - Entropy-driven 

MCS  

0 [0,1,2,3] 0 0 0 

[1,2] [0,1] 0 0 0 

1 2 0.1111 0.0945 0.0951 

1 3 0.3333 0.3303 0.3317 

2 2 0.4444 0.4417 0.4434 

2 3 0.6667 0.6623 0.6691 

3 [0,1,2,3] 1 1 1 
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Average relative 

error [%]: 

   

- 4.11 3.87 

 

The system reliability can be finally estimated by means of the survival function, as in Eq. (3): 

 

𝑃(𝑇𝑠 > 𝑡) =  ∑ ∑ Φ( 𝑙1, 𝑙2)

3

𝑙2=0

(
3

𝑙1
)

3

𝑙1=0

[1 − 𝑒−𝑡]3−𝑙1[𝑒−𝑡]𝑙1 (
3

𝑙2
) [1 − 𝑒−𝑡2

]
3−𝑙2

[𝑒−𝑡2
]

𝑙2
 (16) 

 

In Fig. 10, the reliability (i.e., the survival function) for a mission time 𝑇𝑚 = 2 years is shown for the 

analytical solution (continuous line), the crude MCS method (crosses) and the entropy-driven MCS 

(dots). 

 
Figure 10 – Survival function of the system in Fig. 5 computed with: analytical survival signature (continuous line), survival 

signature approximated by the crude MCS method (crosses) and survival signature approximated by the entropy-driven MCS 

method (dots).  
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4.2. The electricity transmission network of Great Britain 

We consider the topological model of the electricity transmission network of Great Britain shown in 

Fig. 11 [19]. The network comprises of  𝑚 = 29  components, of 𝐾 = 2 types, 𝑘 = 1, 2, 𝑚1 = 5 

and 𝑚2 = 24. We assume that the failure times of components of type 1 follow an exponential 

distribution with 𝜆 = 1, in arbitrary units of inverse time, and the failure times of components of type 

2 follow a Weibull distribution with parameters 𝑎 = 1 and 𝑏 = 2. 

 
Figure 11 – Topology of the electricity transmission network of Great Britain. Components of type 1 are shown in blue, 

components of type 2 are shown in orange (adapted from [19]). 

The network survival signature is an array with dimension 6 × 25, and its exact, analytical, 

computation is provided in [10]. To determine the structure function for the network, the efficiency 

metric defined in [20], is used: 

𝐸(𝐺) =  
1

𝑛(𝑛 − 1)
∑

1

𝑑𝑖,𝑗
𝑖≠𝑗∈𝐺

 (17) 

where G is the network with 𝑛 nodes and 𝑑𝑖,𝑗 is the length of the shortest path between two nodes 𝑖 and 

𝑗, computed by means of the Floyd-Warshall algorithm [21]. To assess the network state, it is assumed 

that the network is non-functioning if the loss of efficiency due to the failing components exceeds 50%, 

as in Eq. (18): 
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𝑖𝑓 
𝐸 (𝐺(𝑥))

𝐸(𝐺)
< 0.5 ⇒ 𝜑(𝑥) = 0 (18) 

whereas the network is functioning, i.e., 𝜑(𝑥) = 1, otherwise. 

The entropy-driven MCS of Section 3 is applied to the network in Fig. 11. In particular, once the 

percolation threshold is computed (𝑓𝑐 = 0.64) and the trivial entries are solved, 𝑁 = 100 samples are 

used in the pre-exploration, Step 1, and the entropy-driven MCS is performed for driving the simulation 

among the remaining entries, setting 𝑉 = 0.005 as stopping criterion. 

The survival signature is given in Table 4, where the exact (analytical) survival signature for the network 

is listed, along with the results provided by the crude MCS and the entropy-driven MCS approach. 

 

Table 4 – Survival signature of the network of Fig. 11 computed analytically with Eq. (2) (left), approximated by means of 

crude MCS (center), and approximated with entropy-driven MCS (right). The average relative error for the approximated 

results is given. 

𝑙1 𝑙2 
𝜱(𝒍𝟏, 𝒍𝟐) - 

Analytical 
𝜱(𝒍𝟏, 𝒍𝟐) - MCS 

𝜱(𝒍𝟏, 𝒍𝟐) - Entropy-

driven MCS  
[0-5] [0-12] 0 0 0 
0 [13-22] 0 0 0 

1 [13-17] 0 0 0 

2 [13-15] 0 0 0 

3 [13-14] 0 0 0 

4 13 0 0 0 

5 13 1.202e-06 0 0 

4 14 1.835e-06 0 0 

5 14 5.155e-04 1.998e-05 1.998e-05 

3 15 1.682e-06 0 0 

4 15 3.954e-04 0 1.998e-05 

5 15 0.0165 0.0097 0.0103 

2 16 2.712e-07 0 0 

3 16 1.796e-04 9.99e-06 0 

4 16 0.0147 0.0083 0.0073 

5 16 0.1492 0.1228 0.1168 

2 17 3.265e-05 0 0 
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3 17 0.0104 0.0042 0.0047 

4 17 0.1497 0.1197 0.1199 

5 17 0.4631 0.4158 0.4192 

1 18 1.486e-06 0 0 

2 18 0.0055 0.0018 0.0015 

3 18 0.1387 0.1091 0.1097 

4 18 0.4550 0.4142 0.4149 

5 18 0.7371 0.7028 0.7051 

1 19 0.0017 2.276e-04 8.869e-05 

2 19 0.1150 0.0857 0.0899 

3 19 0.4358 0.3979 0.4018 

4 19 0.7284 0.6938 0.6916 

5 19 0.9129 0.8863 0.8942 

1 20 0.0738 0.0518 0.0538 

2 20 0.3807 0.3469 0.3502 

3 20 0.7187 0.6700 0.6772 

4 20 0.9129 0.8873 0.8849 

5 20 0.9890 0.9789 0.9793 

1 21 0.2482 0.2327 0.2340 

2 21 0.6734 0.6151 0.6204 

3 21 0.9281 0.8938 0.8922 

4 21 0.9924 0.9845 0.9843 

5 21 0.9995 0.9998 0.9996 

1 22 0.5529 0.4371 0.4393 

2 22 0.9435 0.9044 0.9051 

3 22 0.9971 0.9944 0.9919 

0 23 0.2917 0 0 

1 23 0.9667 0.9224 0.9270 

[4-5] 22 1 1 1 

[2-5] 23 1 1 1 

[0-5] 24 1 1 1 

Average relative error [%]: 
      
- 10.08 10.10 

 

To further compare the performance of the entropy-driven MCS method with that of the crude MCS 

the procedure is repeated 100 times: for each of these, the number of samples are collected and plotted 
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in the boxplots of Fig. 12. The median of the number of samples required for the approximation with 

the entropy-driven MCS is 1.620 × 104, whereas with the crude MCS it is 1.903 × 104; the 

maximum number of samples is 1.896 × 104 for the entropy-driven MCS method, and 2.169 × 104 

for the crude MCS. Again, the computational savings are confirmed and the average relative errors are 

comparable, being 10.10% for the entropy-driven MCS and 10.08% for the crude MCS. 

 
Figure 12 – Boxplot for the number of samples required to approximate the survival signature for the network in Fig. 11 using 

the crude MCS method (left) and the entropy-driven MCS method (right). 

Eventually, the network reliability is computed by means of the survival function, Eq. (3): 

 

𝑃(𝑇𝑠 > 𝑡) =  ∑ ∑ Φ( 𝑙1, 𝑙2)

24

𝑙2=0

(
5

𝑙1
)

5

𝑙1=0

[1 − 𝑒−𝑡]5−𝑙1[𝑒−𝑡]𝑙1 (
24

𝑙2
) [1 − 𝑒−𝑡2

]
24−𝑙2

[𝑒−𝑡2
]

𝑙2
 (17) 

 

In Fig. 13 the network reliability for a mission time 𝑇𝑚 = 1 year is given for the analytical survival 

signature (continuous line), the survival signature computed by means of the crude MCS method 

(crosses) and by means of the entropy-driven MCS (dots). 
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Figure 13 – Survival function of the system in Fig. 11 computed with: analytical survival signature (continuous line), survival 

signature approximated by the crude MCS method (crosses) and survival signature approximated by the entropy-driven MCS 

method (dots).  

A satisfying agreement between the curve obtained using the approximated survival signature and the 

one computed analytically is found for both the entropy-driven MCS and the crude MCS, which 

demonstrates that the method proposed is suitable.  

 
5. CONCLUSIONS 

The survival signature has proven to be a practical method for the reliability assessment of complex 

systems with multiple types of components. However, methods for its exact computation are applicable 

only to small networks and efficient simulation methods are needed to provide an approximation, for 

enabling application to large complex systems. A new method for efficiently computing the survival 

signature has been presented in this paper. The method is based on the entropy-driven MCS and its 

feasibility to reduce the computational cost while guaranteeing accuracy is proven on two networks, for 

which the analytical survival signatures can be evaluated and benchmarked with those approximated by 
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crude MCS and by entropy-driven MCS. The beneficial computational effect of the entropy-driven 

MCS method over the crude MCS method has turned out to be larger, as expected, for the real-world 

network, i.e., the electricity network of Great Britain, than for the synthetic small network: this is 

because the larger the number of survival signature entries, the more the reduction of the sample size 

(and computational cost) when entropy is used as driving criterion of the simulation. 

 

 

References 

 

[1] N. L. Dehghani, S. Zamanian, and A. Shafieezadeh, “Adaptive network reliability analysis: 

Methodology and applications to power grid,” Reliability Engineering and System Safety, vol. 

216, 2021, doi: 10.1016/j.ress.2021.107973. 

[2] Y. Kim and W.-H. Kang, “Network reliability analysis of complex systems using a non-

simulation-based method,” Reliability Engineering and System Safety, vol. 110, pp. 80–88, 

2013, doi: 10.1016/j.ress.2012.09.012. 

[3] E. Zio, The Monte Carlo Simulation Method for System Reliability and Risk Analysis. London: 

Springer London, 2013. doi: 10.1007/978-1-4471-4588-2. 

[4] E. Zio and N. Pedroni, Reliability estimation by advanced monte carlo simulation, simulation 

methods for reliability and availability of complex systems. London: Springer, pp. 3-39, 2010. 

doi: 10.1007/978-1-84882-213-9_1. 

[5] Samaniego FJ, System Signatures and their Applications in Engineering Reliability 

(International Series in Operations Research & Management Science). New York: Springer, pp. 

21-36, 2007. doi: https://doi.org/10.1007/978-0-387-71797-5. 

[6] F. P. A. Coolen and T. Coolen-Maturi, Generalizing the signature to systems with multiple types 

of components. Complex systems and dependability. Advances in intelligent and soft 

computing, vol. 170, Berlin, Heidelberg: Springer, pp. 115-30, 2013. doi: 10.1007/978-3-642-

30662-4-8. 



 25 

[7] X. Huang and F. P. A. Coolen, “Reliability sensitivity analysis of coherent systems based on 

survival signature,” Proceedings of the Institution of Mechanical Engineers, Part O: Journal of 

Risk and Reliability, vol. 232, no. 6, pp. 627–634, 2018, doi: 10.1177/1748006X18754974. 

[8] E. Patelli, G. Feng, F. P. A. Coolen, and T. Coolen-Maturi, “Simulation methods for system 

reliability using the survival signature,” Reliability Engineering and System Safety, vol. 167, 

pp. 327–337, 2017, doi: 10.1016/j.ress.2017.06.018. 

[9] S. Reed, “An efficient algorithm for exact computation of system and survival signatures using 

binary decision diagrams,” Reliability Engineering and System Safety, vol. 165, pp. 257–267, 

2017, doi: 10.1016/j.ress.2017.03.036. 

[10] J. Behrensdorf, T.-E. Regenhardt, M. Broggi, and M. Beer, “Numerically efficient computation 

of the survival signature for the reliability analysis of large networks,” Reliability Engineering 

and System Safety, vol. 216, 2021, doi: 10.1016/j.ress.2021.107935. 

[11] D. Li, Q. Zhang, E. Zio, S. Havlin, and R. Kang, “Network reliability analysis based on 

percolation theory,” Reliability Engineering and System Safety, vol. 142, pp. 556–562, 2015, 

doi: 10.1016/j.ress.2015.05.021. 

[12] P. Turati, N. Pedroni, and E. Zio, “An entropy-driven method for exploring extreme and 

unexpected accident scenarios in the risk assessment of dynamic engineered systems,” in Safety 

and Reliability of Complex Engineered Systems - Proceedings of the 25th European Safety and 

Reliability Conference, ESREL 2015, 2015, pp. 761–769. doi: 10.1201/b19094-102. 

[13] T. J. , & C. D. F. Loredo, “Bayesian Adaptive Exploration,” Statistical Challenges in Astronomy, 

pp. 57–70, 2003. 

[14] M. de Angelis, E. Patelli, and M. Beer, “Line sampling for assessing structural reliability with 

imprecise failure probabilities,” in Vulnerability, Uncertainty, and Risk: Quantification, 

Mitigation, and Management - Proceedings of the 2nd International Conference on Vulnerability 

and Risk Analysis and Management, ICVRAM 2014 and the 6th International Symposium on 

Uncertainty Modeling a, 2014, pp. 915–924. doi: 10.1061/9780784413609.093. 



 26 

[15] L. Puppo, N. Pedroni, A. Bersano, F. di Maio, C. Bertani, and E. Zio, “Failure identification in 

a nuclear passive safety system by Monte Carlo simulation with adaptive Kriging,” Nuclear 

Engineering and Design, vol. 380, 2021, doi: 10.1016/j.nucengdes.2021.111308. 

[16] E. Patelli and G. Feng, Efficient simulation approaches for reliability analysis of large systems. 

International Conference on Information Processing and Management of Uncertainty in 

Knowledge-Based Systems, pp. 129-140, 2016. doi: 10.1007/978-3-319-40596-4_12. 

[17] E. Zio, An introduction to the basics of reliability and risk analysis. World Scientific Publishing, 

Singapore, pp. 128-130, 2007. 

[18] Y. Hu, “A guided simulation methodology for dynamic probabilistic risk assessment of complex 

systems,” PhD Thesis, University of Maryland, pp. 78-89, 2005. uri: 

http://hdl.handle.net/1903/2472. 

[19] M. K. Bukhsh WA, “Network data of real transmission networks,” 2013. Published online at: 

https://www.maths.ed.ac.uk/optenergy/NetworkData/index.html. 

[20] E. Zio, “From complexity science to reliability efficiency: A new way of looking at complex 

network systems and critical infrastructures,” International Journal of Critical Infrastructures, 

vol. 3, no. 3–4, pp. 488–508, 2007, doi: 10.1504/IJCIS.2007.014122. 

[21] R. W. Floyd, “Algorithm 97: Shortest path,” Commun ACM, vol. 5, no. 6, p. 345, 1962, doi: 

10.1145/367766.368168. 

  


