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HIGHER ORDER GRADIENTS OF MONOGENIC FUNCTIONS

LUCA BARACCO AND STEFANO PINTON

Abstract. Given a monogenic function on the quaternionic algebra H, the Clifford algebra Rn

or the octonionic algebra O we prove that |∇mf |α is subharmonic for some α > 0 where ∇mf

is the m-th order gradient of f . We find also the optimal value of α. This is generalization of a
result of Calderon and Zygmund.
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1. Introduction and main results

In this paper we are interested in the study of some properties of Fueter regular functions of
a quaternionic or octonionic variable and monogenic functions in Clifford algebras. Fueter’s func-
tions and monogenic functions are important examples of the attempt to generalize holomorphic
functions to the more general setting of non commutative algebras. These types of functions are
defined as the solutions of two partial differential equations involving the so called Weyl’s (∂̄) and
Dirac’s (D) operators. The difference between the two is that in ∂̄ also the derivative with respect
to the real part is taken. Apart from that they are similar and their solutions have properties which
are analogous to those of harmonic functions. In fact since these operators factorize the Laplacian
it turns out that regular and monogenic functions have harmonic components. Often we will refer
to these two classes of functions as monogenic. We are interested in the subharmonicity of the
norm of the generalized gradient of monogenic functions. Subharmonicity is a useful property and
is important for instance when looking for estimates. A classical example of this kind of applica-
tion is in the proof of Hartogs theorem on separate holomorphic functions where subharmonicity
of |∂nf |α is used for every α and all order of derivative n (see [1] and the references therein). Such
property is true only for harmonic functions in two variables and for holomorphic functions. It is
easy to see that this is no longer true already for harmonic functions in more than two variables.
Nonetheless it was proved in [11] that for a harmonic function f in Rn the power of the gradient
|∇f |α is subharmonic for α ≥ n−2

n−1 . Later [5] extended this result to higher order gradients proving

that |∇mf |α is subharmonic for α ≥ n−2
n+m−2 and that such lower bound is optimal. For regular

functions in [12] it is proved that |f |α is subharmonic for α ≥ 2
3 and in [10] the same result holds

in the octonions for α ≥ 6
7 . In this note we want to extend the technique of [5] to higher order

gradients of monogenic functions on quaternions, Clifford algebras and octonions. Our results are
the following:
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2 LUCA BARACCO AND STEFANO PINTON

Theorem 1.1. Let Ω ⊂ H be an open set and f : Ω → H be a monogenic function. Then for every
positive integer m we have

|∇mf |α is subharmonic for α ≥ 2

m+ 3
(1.1)

Theorem 1.2. Let Ω ⊂ Rn and let f : Ω → Rn be a monogenic function. For all m ∈ N we have

|∇mf(x)|α is subharmonic (1.2)

for α ≥ n−2
n+m−1

Theorem 1.3. Let Ω ⊂ O and let f : Ω → O be a monogenic function. For all m ∈ N we have

|∇mf(x)|α is subharmonic

for α ≥ 6
7+m

.

In Theorems 1.1 and 1.2 we shall use the orthogonal basis of regular/monogenic polynomials
introduced by Sommen (see [6]) while on Theorem 1.3 we adapt this technique to the non associative
algebra O.

2. Quaternions and Fueter regular functions

We begin by recalling some notations. Let H be the algebra of quaternions. Naturally H is
isomorphic to R4 and a quaternion x can either be expressed in terms of coordinates (x0, x1, x2, x3)
or as a sum of numbers multiplied by some imaginary units like x0+x1i+x2j+x3k. In this last case
the computation rules are as follows: i2 = j2 = k2 = −1, i · j = −j · i = k, j · k = −k · j = i, k · i =
−i · k = j. For this reason x0 is called the real part and is denoted by (x)0 while x1i + x2j + x3k

is called the imaginary part. Similarly for the other components (x)i = xi.
We define the usual conjugation · : H 7→ H as

x = x0 + x1i+ x2j+ x3k = x0 − x1i− x2j− x3k

and employ it to define a real scalar product and a norm on H in the following way

(x, y) = (yx)0, |x| = (x, x)
1
2 .

We introduce the Cauchy-Fueter operators:

∂̄ := ∂x0
+ i∂x1

+ j∂x2
+ k∂x3

∂ = ∂x0
− i∂x1

− j∂x2
− k∂x3

and the Dirac operator

D := i∂x1
+ j∂x2

+ k∂x3
.

Let Ω be an open subset of H and let f : Ω → H be a C1 function.

Definition 2.1. We shall say that f is left regular if

∂̄f = ∂x0
f + i · ∂x1

f + j · ∂x2
f + k · ∂x3

f = 0 (2.1)

Most of the properties of regular functions come from the fact that ∂̄ appears as a factor in the
factorization of the Laplace operator,

∆(f) = ∂̄∂f = ∂∂̄f (2.2)

in particular regular functions have harmonic components. For a natural number m let β =
(β1, ..., βm) ∈ {0, 1, 2, 3}m be a multi index and let

∂βf = ∂xβ1
...∂xβm

f , (2.3)

m is said to be the length of β and is denoted by |β|. If f is regular it is easy to see that ∂βf is
regular too. We shall indicate with ∇mf the set of all m derivatives of f and set

|∇mf |2 :=
∑

|β|=m

|∂βf |2. (2.4)

In order to prove Theorems 1.1 we follow the proof of [5] with some modifications. The key tool is
the following lemma and for the sake of completeness we give a short proof (see [5] pages 212 and
213).
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Lemma 2.2. Let φ : R≥0 → R be a C2 concave, increasing function and Uj : R
n → R be harmonic

functions for j = 1, . . . , l (here l is an arbitrary positive integer). Let

u :=

l∑

j=1

|Uj |2 and U the vector valued function U = (U1, . . . , Ul)
T .

We have M := supΩ′

{
|∇u|2
2u∆(u)

}
≤ 1 where Ω′ := {x ∈ Rn : U(x) 6= 0, ∇(U) 6= 0} and moreover if

2Mtφ′′(t) + φ′(t) ≥ 0

then φ(u) is subharmonic.

Proof. We begin by observing that

∆(φ(u)) = φ′′(u)|∇u|2 + φ′(u)∆(u).

Since

∆(u) = 2

l∑

j=1

|∇(Uj)|2 + 2

l∑

j=1

Uj∆(Uj) = 2

l∑

j=1

|∇(Uj)|2 = 2

n∑

i=1

|∂xi
U |2

and

|∇u|2 = 4

n∑

i=1




l∑

j=1

Uj∂xi
(Uj)




2

= 4

n∑

i=1

(U, ∂xi
U)

2

we see that whenever U(x) = 0 then ∆(φ(u(x))) = φ′(u(x))∆(u(x)) ≥ 0 and whenever∇(U(x)) = 0
then ∆(φ(u(x))) = 0 (here we denoted by | · |2 and (·, ·) the modulus and the standard scalar
product in Rl). If U(x) 6= 0 and ∆(φ(u(x))) 6= 0 then

|∇u|2
2u∆(u)

=
4
∑n

i=1 (U, ∂xi
U)

2

4|U |2∑n
i=1 |∂xi

U |2
Cauchy-Schwartz

≤ 1

this implies that M ≤ 1. Moreover

∆(φ(u)) = ∆(u)

(
2φ′′(u)u

|∇u|2
2u∆(u)

+ φ′(u)

)
≥ ∆(u) (2Mtφ′′(u) + φ′(u)) ≥ 0

which implies that φ(u) is subharmonic. �

Remark 2.3. The previous lemma holds when

2Mtφ′′(t) + φ′(t) = 0

in particular for φ(t) = Ct1−
1

2M .

We will apply the previous lemma for u = |∇mf |2 and φ(t) = t1−
1

2M (note that in our case the
index j of the Lemma 2.2 will take in account the multi index β of the derivatives of order m of
f and the fact that f takes values in H) . Our Theorem 1.1 follows if we prove that M ≤ m+3

2(m+2) .

This is our goal.

Proposition 2.4. Let f : Ω → H, where Ω is an open domain of H, be a Fueter-regular function
and let m be a natural number. Let u be

u = |∇mf |2 =
∑

|β|=m

(∂βf, ∂βf) (2.5)

then, when defined, we have
|∇u|2
2u∆u

≤ (m+ 3)

2(m+ 2)
(2.6)

The proof needs the following lemmas from [5] adapted to this particular case and it is postponed
at the end of this section. If r > 0 by Bn

r we mean the ball centered at 0 of radius r in a vector
space of dimension n. When r = 1 we will omit it sometimes and when no confusion arise, we will
also omit the dimension of the ball at the exponent. We will use the same notation for the sphere
denoted by Sn−1

r
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Lemma 2.5. Let U : H → H be a harmonic quaternionic valued function which means that
U = U0 + iU1 + jU2 + kU3 where each Ul is harmonic. Assume that U is homogeneous of degree
m. Then:

1 there is constant Cm depending only on m such that
∑

|β|=m

|∂βU(0)|2 = Cm

∫

B1

|U |2dλ4.

2 if V is another harmonic homogeneous quaternionic valued function then
∑

|β|=m

(∂βU(0), ∂βV (0)) = Cm

∫

B1

(U, V )dλ4

Proof. By Lemma 1 in [5] we have the first identity for all components Ui for i = 0, ..., 3. Taking
the sum we have the conclusion. Similarly for the second identity �

Before giving the proof of Proposition 2.4 we need some preliminary considerations. By the
definition of u we have that the terms in the left side of 2.6 are given by

|∇u|2 =

3∑

i=0

(∂iu)
2 =

3∑

i=0

(
∑

|β|=m

2(∂β∂if, ∂
βf))2

and

∆u =

3∑

i=0

∂2
i

∑

|β|=m

(∂βf, ∂βf) = 2
∑

|β|=m,i=0,..3

(∂β∂if, ∂
β∂if) (2.7)

where the first identity follows from the fact that each ∂βf is regular and hence harmonic. Now
using Lemma 2.5 we want to express the terms in 2.5 and 2.7 as integrals over the unit ball. It is
not restrictive, after a translation, to assume that the point under consideration is 0 and we start
by considering 2.5 and 2.7 at 0. Since only the derivatives of order m and m+ 1 of f are needed
we consider the Taylor series at 0 of f which is of the form

f(x) =

∞∑

m=0

fm(x)

where fm are homogeneous Fueter-regular polynomials of degreem. We see that 2.5 and 2.7 become
respectively

|∇u(0)|2 =

3∑

i=0


 ∑

|β|=m

2(∂β∂ifm+1, ∂
βfm)




2

(0)

= 4C2
m

3∑

i=0

(∫

B1

(∂ifm+1, fm)(x)dλ4

)2

(2.8)

and

∆u(0) = 2

3∑

i=0

∑

|β|=m

(∂β∂ifm+1, ∂
β∂ifm+1)(0)

= 2Cm

∫

B1

|∂ifm+1(x)|2dλ4

(2.9)

while

u(0) =
∑

|β|=m

|∂βfm(0)|2 = Cm

∫

B1

|fm(x)|2dλ4. (2.10)

To prove Proposition 2.4 we need to estimate |∇u(0)|2
2u(0)∆u(0) which is equal to

∑3
i=0

(∫
B1
(∂ifm+1, fm)(x)dλ4

)2
(∫

B1
|fm(x)|2dλ4

)(∑3
i=0

∫
B1

|∂ifm+1(x)|2dλ4

) . (2.11)
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Definition 2.6. For m ∈ N we define the space of H valued homogeneous polynomials of degree
m

Pm(H,H) := {f(q) =
∑

|α|=m

cα (xα0

0 xα1

1 xα2

2 xα3

3 ) =
∑

|α|=m

cαx
α, cα ∈ H α = (α0, .., α3) ∈ N4}

and the corresponding space of Fueter regular polynomials

Mm(H,H) := {f ∈ Pm(H,H)|∂̄f = 0}

Clearly we need to compute the supremum of 2.11 for fm ∈ Mm(H,H) and fm+1 ∈ Mm+1(H,H).
Note that the vector spacesMm(H,H) are finite dimensional and we put on them the norm induced
by L2(B1).

Lemma 2.7. If M is the following

M := sup
06=fm∈Mm

06=fm+1∈Mm+1





∑3
i=0

(∫
B1
(∂ifm+1, fm)(x)dλ4

)2
(∫

B1
|fm(x)|2dλ4

)(∑3
i=0

∫
B1

|∂ifm+1(x)|2dλ4

)





(2.12)

we also have

M = max
06=fm+1∈Mm+1

{
1

2(m+ 3)(m+ 1)

‖∂0fm+1‖2
‖fm+1‖2

}
. (2.13)

Proof. Starting from equation (2.12) it is not restrictive to assume that
∫

B1

|fm(x)|2dλ4 = 1 and

3∑

i=0

∫

B1

|∂ifm+1(x)|2dλ4 = 1

(2.14)

and so we have

M = sup
fm∈Mm,‖fm‖=1

fm+1∈Mm+1,
∑

3

i=0
‖∂ifm+1‖2=1

{
3∑

i=0

(∫

B1

(∂ifm+1, fm)(x)dλ4

)2
}
. (2.15)

Since fm+1 and fm are in two finite dimensional spaces we first fix fm+1 and calculate the maximum
value

m(fm+1) := sup
‖fm‖=1




∑

i=0,..,3

(∫

B4

(∂ifm+1, fm)dλ4

)2




The maximum will be attained on an element fm such that:

for h ∈ Mm with

∫

B

(fm, h)dλ4 = 0 we have

3∑

i=0

(∫

B

(∂ifm+1, fm)dλ4

)

︸ ︷︷ ︸
call this term ξi

∫

B

(∂ifm+1, h)dλ4 = 0
(2.16)

it follows that ∑
ξi∂ifm+1 = Λfm (2.17)

for some Λ ∈ R. This Λ is exactly m(fm+1). By taking the L2-product of 2.17 with fm we have

∫

B

(
∑

ξi∂ifm+1, fm)dλ =

3∑

i=0

ξ2i = Λ = m(fm+1)

and by squaring 2.17

∑

i,j=0,..,3

ξiξj

∫

B

(∂ifm+1, ∂jfm+1)dλ4 = m2(fm+1).
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Let X = 1√
m(fm+1)

∑
i ξi∂i. Clearly X is a unitary derivative and we have that

∫

B

|Xfm+1|2dλ4 = m(fm+1).

It turns out that m(fm+1) is actually the maximum of the following

max∑
3
i=0

ζ2
i =1

∑

h,k=0,..,3

ζhζk(∂hfm+1, ∂kfm+1) = max
|ζ|=1

A(ζ, ζ). (2.18)

where A = (ahk)h,k=0,..,3 is the 4× 4 matrix whose entries are

ahk =

∫

B

(∂hfm+1, ∂kfm+1)dλ4.

In fact since A is symmetric the solution of 2.18 is the largest eigenvalue of A, say Λ′, and it is

attained at the corresponding eigenvector ζΛ′ . Therefore by choosing fm = 1√
Λ′

∑3
i=0(ζΛ′ )i∂ifm+1

we see that it satisfies 2.16, hence Λ′ = m(fm+1). By choosing a suitable c ∈ H and considering

f̃m+1(q) := fm+1(cq) we can assume that X = ∂0. Finally we have

M = max
fm+1∈Mm+1

∑
3

i=0
‖∂ifm+1‖2=1

m(fm+1) = max
fm+1∈Mm+1

∑
3

i=0
‖∂ifm+1‖2=1

{‖∂0fm+1‖2}. (2.19)

We note that the condition
∑3

i=0 ‖∂ifm+1‖2 = 1 can be expressed in terms of ‖fm+1‖. If u and v
are two homogeneous harmonic polynomials of degree m+ 1 we have:

3∑

i=0

∫

B

(∂iu, ∂iv)dλ4 =

∫

S

u∂νvdΣ = (m+ 1)

∫

S

uvdΣ = 2(m+ 1)(m+ 3)

∫

B

uvλ4. (2.20)

If we apply 2.20 to the components of fm+1 we have that

3∑

i=0

‖∂ifm+1‖2 = 2(m+ 1)(m+ 3)‖fm+1‖2. (2.21)

Therefore by plugging this into formula 2.19 we get our conclusion. �

Remark 2.8. The maximum problem

max
fm+1∈Mm+1

{
1

2(m+ 3)(m+ 1)

‖∂0fm+1‖2
‖fm+1‖2

}

is a hard one but it simplifies a lot if we can find an orthogonal decompositionMm+1(H,H) = ⊕µGµ

with the property that ∂0(Gµ) are still orthogonal to each other and such that
‖∂0g̃µ‖2

‖g̃µ‖2 is constant

for g̃µ ∈ Gµ for fixed µ. In fact in this way the maximum reduces to

max
µ

{
1

2(m+ 3)(m+ 1)

‖∂0g̃µ‖2
‖g̃µ‖2

}
(2.22)

The difficult part is to find such orthogonal decomposition of Mm+1(H,H). In analogy with
harmonic functions the spirit of the next step is to express the elements in Mm+1(H,H) by using
their restriction to the imaginary space (≃ R3). This is possible by using the Cauchy-Kowalevski
extension operator (which will be denoted by ·̃). After that we exploit the Fischer decomposition
of polynomials into monogenic functions. To this end we follow [6] and consider the monogenic
functions which annihilate the Dirac operator D in R3 where we shall identify

R3 = {x ∈ H|x0 = 0}
and indicate its elements with x = x1i+ x2j+ x3k.

Definition 2.9. We define

Mm(R3,H) =
{
f ∈ Pm(R3,H) such that Df = 0

}

We have the following
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Theorem 2.10 (Fischer decomposition).

Pm(R3,H) =

m⊕

j=0

xjMm−j(R3,H)

Note that this decomposition is orthogonal with respect to the L2(B3) product in the unit ball
of R3 ( see Proposition 2.11 below and [6] ). We apply this decomposition to the restriction of

fm+1|R3 and get fm+1(x) =
∑m+1

j=0 xjgm+1−j(x). We recall that given a polynomial p(x) on R3

with values in H the Fueter regular extension p̃ to H is given by the Cauchy-Kowalevski operator
exp(−x0D)p namely

p̃(x) =
+∞∑

k=0

(−x0D)k

k!
p(x). (2.23)

Since fm+1(x) = ˜fm+1|R3(x), we have

fm+1(x) =

m+1∑

j=0

x̃jgm+1−j(x) (2.24)

which is the decomposition we are looking for. In order to obtain the regular extension of the terms
of type xjgm+1−j(x) described in the Fischer decomposition we need to compute the D operator
on terms of the kind xsf(x), f ∈ Mk(R3,H). It is easy to check (see for instance [3]) that

Dxs =

{
−sxs−1 if s is even

−(s+ 2)xs−1 if s is odd

therefore if gk is a homogeneous monogenic polynomial of degree k we have

Dxsgk(x) =

{
−sxs−1gk(x) if s is even

−(s+ 2 + 2k)xs−1gk(x) if s is odd.
(2.25)

Putting equation 2.23 and 2.25 together

˜xsgk(x) =




s∑

j=0

cs,k,j
(x0)

j

j!
xs−j


 gk(x). (2.26)

where cs,k,j are real constants. We are now able to prove that the decomposition in (2.24) and its
∂0-dervative are indeed orthogonal decompositions

Proposition 2.11. Let f ∈ Mk(R3,H) and g ∈ Mh(R3,H) be two homogeneous monogenic
polynomials of degree h and k. We have

∫

B3

ḡxfdλ3 = 0.

Moreover if h 6= k
∫

B4

(
x̃ng(x)

)(
x̃mf(x)

)
dλ4 = 0 for m,n ∈ N. (2.27)

Proof. To prove the first part of the proposition we begin by observing that
∫

B3

ḡxfdλ3 =
1

h+ k + 4

∫

S2

ḡxfdΣ. (2.28)

This last integral, by the divergence formula, is equal to
∫

B3

((Dgf + ḡDf)dλ3 = 0. (2.29)
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For the second part we start decomposing the integral into slices and applying the first part of the
proposition

∫

B4

(
x̃ng(x)

)(
x̃mf(x)

)
dλ4 =

∫ 1

−1



∫

B3√
1−x2

0

(
x̃ng(x)

)(
x̃mf(x)

)
dλ3


 dx0 (2.30)

=

∫ 1

−1



∫

B3√
1−x2

0

ḡ(x)(p(x0, x))f(x)dλ3


 dx0

where p is a polynomial, with real coefficients, in x0 and x obtained after replacing the extensions
·̃ with their expression as in 2.26. Note that in the inner integral the terms are of type

c(x0)

∫

B3√
1−x2

0

ḡ(x)xjf(x)dλ3

If j is even then xj = (−1)
j
2 |x|j and integrating on spherical shells the integral is 0 because f and

g have different degree. If j is odd then on spherical shells the integral is 0 by equations (2.28) and
(2.29). �

Corollary 2.12. Let m, s1, s2 be positive integers such that 0 ≤ s1 < s2 ≤ m. If f ∈ Mm−s1(R3,H)

and g ∈ Mm−s2(R3,H) then ˜xs1f(x) and x̃s2g(x) are orthogonal in L2(B), moreover ∂0 ˜xs1f(x)

and ∂0x̃s2g(x) are orthogonal in L2(B).

Proof. The orthogonality of ˜xs1f(x) and x̃s2g(x) follows from Proposition 2.11 by taking the real

part of the integral in equation (2.27), while the orthogonality of ∂0 ˜xs1f(x) and ∂0x̃s2g(x) follows
by noticing that (

∂0x̃s2g(x)

)
∂0 ˜xs1f(x) = ḡ(x)p(x0, x)f(x)

where p is a polynomial and therefore the same computations as in (2.30) apply. �

Remark 2.13. Following the proof of Proposition 2.11 it is possible to prove directly with similar

computations the orthogonality of ˜xs1f(x) and x̃s2g(x) i.e.
∫

B4

(
x̃s2g(x), ˜xs1f(x)

)
dλ4 = 0 for s1, s2 ∈ N

To compute the maximum in 2.22 we first give the following

Proposition 2.14. Let f ∈ Mk(R3,H) be a non zero monogenic polynomial. We have

‖∂0x̃sf(x)‖2

‖x̃sf(x)‖2
=

(2k + s+ 2)(k + s+ 2)s

k + s+ 1
.

Proof. We first need a better form for 2.26. To this end we follow [6], we put r2 = x2
0 + |x|2 and

note that the term between brackets in 2.26 is a homogeneous polynomial of degree s in x0 and
x. The terms with an even power of x can be expressed as polynomial functions of r2 − x2

0 and
therefore we have that

x̃sf(x) = rs(A(
x0

r
) +B(

x0

r
)
x

r
)f(x). (2.31)

By imposing the condition ∂̄x̃sf(x) = 0 we find that A and B must have the following form:

x̃sf(x) = dk,sr
s

(
Ck+1

s (
x0

r
) +

x

r

2k + 2

s+ 2k + 2
Ck+2

s−1 (
x0

r
)

)
f(x)

where Cµ
n is the Gegenbauer’s polynomial defined by the relations

1

(1− 2xt+ x2)µ
=

+∞∑

n=0

Cµ
n(t)x

n.
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and dk,s are some constants of which we will not keep track because they will cancel in the quotient.
(for the details of the computations we refer to [6] where basically we have the same calculations
done for the Clifford algebra generated by 3 vectors). We have

‖x̃2f(x)‖2
d2k,s

=

∫

B

r2s
(
(Ck+1

s (
x0

r
))2 + (

|x|
r

2k + 2

s+ 2k + 2
Ck+2

s−1 (
x0

r
))2
)
|f(x)|2dλ4

=

∫ 1

0

(∫

S3

(
(Ck+1

s (x0))
2 + (1− x2

0)(
2k + 2

s+ 2k + 2
Ck+2

s−1 (x0))
2

)
|f(x)|2dΣ

)
r2s+2k+3dr

=
1

2(s+ k + 2)

∫ 1

−1

(∫
√

1−x2
0
S2

(
(Ck+1

s (x0))
2 + (1− x2

0)(
2k + 2

s+ 2k + 2
Ck+2

s−1 (x0))
2

)

× |f(x)|2 dΣ2√
1− x2

0

)
dx0

=
1

2(s+ k + 2)

∫ 1

−1

(1− x2
0)

k+ 1
2

(
(Ck+1

s (x0))
2 + (1− x2

0)(
2k + 2

s+ 2k + 2
Ck+2

s−1 (x0))
2

)
dx0

×
∫

S2

|f(x)|2dΣ2.

(2.32)

We recall that ∫ 1

−1

(Cµ
ν (x))

2(1− x2)µ−
1
2 dx =

21−2µΓ(ν + 2µ)π

ν!(ν + µ)Γ(µ)2
(2.33)

and the last line of 2.32 becomes

1

2(s+ k + 2)

2−2kπΓ(s+ 2k + 2)

(s)!Γ(k + 1)2

(
1

(2k + s+ 2)

)∫

S2

|f(x)|2dΣ2. (2.34)

Since ∂0(r) =
x0

r
and ∂0(

x0

r
) =

r2−x2
0

r3
we have that

∂0x̃sf(x)

dk,s
= rs−1

(
s
x0

r
Ck+1

s (
x0

r
) +

(
Ck+1′

s (
x0

r
)
)
(1− (

x0

r
)2)

+
x

r

2k + 2

s+ 2k + 2

(
(s− 1)

x0

r
Ck+2

s−1 (
x0

r
) + Ck+2′

s−1 (
x0

r
)(1− (

x0

r
)2)
))

f(x).

(2.35)

Since the Gegenbauer polynomials satisfy the equation

(1− t2)Cµ′

s (t) + stCµ
s (t) = (s+ 2µ− 1)Cµ

s−1(t) (2.36)

by plugging into 2.35 we have

∂0x̃sf(x)

dk,s
= rs−1(s+ 2k + 1)

(
(Ck+1

s−1 (
x0

r
) +

x

r

(2k + 2)

s+ 2k + 1
Ck+2

s−2 (
x0

r
)

)
f(x). (2.37)

Now we repeat the computations that we have done in 2.32 and get

‖∂0x̃sf(x)‖2
d2k,s

=
(s+ 2k + 1)

2(s+ k + 1)

2−2kπΓ(s+ 2k + 1)

(s− 1)!Γ(k + 1)2

∫

S2

|f(x)|2dΣ2.

Finally we have that

‖∂0x̃sf(x)‖2

‖x̃sf(x)‖2
=

(2k + s+ 2)(k + s+ 2)s

k + s+ 1
.

�

Proof of Proposition 2.4. We have

|∇u|2
2u∆u

Lemma 2.7
≤ max

fm+1∈Mm+1

{
1

2(m+ 3)(m+ 1)

‖∂0fm+1‖2
‖fm+1‖2

}

Remark 2.8
= max

0≤µ≤m+1

gm+1−µ∈Mm+1−µ(R3,H)

{
1

2(m+ 3)(m+ 1)

‖∂0x̃µgm+1−µ(x)‖2

‖x̃µgm+1−µ(x)‖2

}
(2.38)
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Applying Proposition 2.14 to the ratio
‖∂0x̃µgm+1−µ(x)‖2

‖x̃µgm+1−µ(x)‖2
, where k = m+ 1− µ and s = µ, we have

that: the last maximum in (2.38) is attained for µ = m+ 1 and its value is m+3
2(m+2) . �

Proof of Theorem 1.1. The conclusion follows immediately by applying Lemma 2.2 and Proposition
2.4. �

3. Subharmonicity of higher gradients of monogenic functions on Clifford

algebras

In this section we will repeat the same computations for monogenic functions on Clifford alge-
bras. Let Rn be the standard vector space of dimension n and e1, ..., en be the canonical base. We
shall indicate by Rn the Clifford algebra generated by these vectors. Every element a ∈ Rn can be
written as

a =
∑

A⊂{1,...,n}
aAeA

where aA ∈ R and eA = ei1 · · · eik with A = {i1 < ... < ik} and by convention e∅ = 1. We call a∅
the real part of a. We recall that Rn is endowed with a non degenerate scalar product with respect
to which the powers eA form an orthonormal system. This scalar product is defined in terms of
an involution which generalizes the conjugation in Rn namely we define on the elements of the
canonical base:

eA := (−1)ke∗A

where e∗A = eik · · · ei1 and extend this definition by linearity to the full Rn. The scalar product
between two elements a and b is

(a,b) = (ba)∅ (3.1)

and moreover |a|2 = (a, a) =
∑

A a2A. We identify Rn inside Rn by x = (x1, ..., xn) = x1e1 + ...+
xnen.

Definition 3.1. Let Ω be an open subset of Rn and let f : Ω → Rn be a C1 function. We say that
f is monogenic if

Dnf(x) = (e1∂1 + ...+ en∂n)f = 0

Definition 3.2. We define Pk(Rn,Rn) as the space of homogeneous polynomials of degree k with
values in Rn. Similarly we define

Mk(Rn,Rn) =
{
f ∈ Pk(Rn,Rn)|Dnf = 0

}

Let β = (i1, ..., im) be a multi-index, where ij ∈ {1, ..., n}∀j, and define ∂βf(x) = ∂i1 · · ·∂imf(x).

Definition 3.3. Let f as before and m a positive integer. We define the m-th gradient ∇mf as
the set of all derivatives ∂βf(x) for all β with lenght m and set

u = |∇mf |2 =
∑

|β|=m

|∂βf |2

We want to find precisely for which α we have that u
α
2 is subharmonic. We follow the same

proof of the preceding section. In particular if fm, fm+1 are monogenic homogeneous polynomials
of degree m and m+ 1 we look for the maximum M :

M := max
fm∈Mm(Rn,Rn)

fm+1∈Mm+1(Rn,Rn)

∑n
i=1

(∫
B1
(∂ifm+1, fm)(x)dλ4

)2
(∫

B1
|fm(x)|2dλ4

)(∑n
i=1

∫
B1

|∂ifm+1(x)|2dλ4

) . (3.2)

It is similar, as in the previous paragraph, to see that such maximum is equivalent to

M = max∑n
i=1

ζ2
i =1

fm+1∈M(Rn,Rn)∑n
i=1

‖∂ifm+1‖2=1





∑

h,k=1,..,n

ζhζk(∂hfm+1, ∂kfm+1)



 . (3.3)
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For every fixed fm+1 in (3.3) the maximum is reached for some ζ ∈ Rn. Up to the choice of an
s ∈ Spin(n) we can assume, by considering sfm+1(s

−1xs) that ζ = (0, ..., 1) or, in other words,
that ∂ζ = ∂n (see [6] section 1.12.2). As was shown in (2.21) we have that

n∑

i=1

‖∂if‖2 = (m+ 1)(2m+ n+ 2)‖f‖2

and

M = max
fm+1∈Mm+1(Rn,Rn)

{
1

(2m+ n+ 2)(m+ 1)

‖∂1fm+1‖2
‖fm+1‖2

}
. (3.4)

In order to compute M we need to find an orthogonal decomposition of Mm+1(Rn,Rn) similar to
that in Remark 2.8 (see (3.5)). To this end we exploit again the Fischer decomposition theorem.
We consider the splitting Rn = Rn−1⊕Ren and identify in this manner Rn−1 inside Rn. With this
identification we take Mk(Rn−1,Rn) to be the space of monogenic homogeneous polynomials in
x1, ...., xn−1 of degree k with values in Rn. Moreover we shall indicate with x = x1e1 + ...+ xnen
a vector in Rn and with x = x1e1 + ...+ xn−1en−1 a vector in Rn−1.

Theorem 3.4 (Fischer decomposition in Rn, [6] ). We have the following decomposition

Pk(Rn−1,Rn) =

k⊕

j=0

xjMk−j(Rn−1,Rn)

We note that this decomposition is orthogonal also in L2(Bn−1). As we did in the previ-
ous section starting from fm+1 ∈ Mm+1(Rn,Rn) and using the Fischer decomposition to its

restriction fm+1|Rn−1 , we can first decompose fm+1(x) =
∑m+1

s=0 xsgm+1−s(x) where gm+1−s ∈
Mm+1−s(Rn−1,Rn) and then we can regain fm+1(x) considering its monogenic extension using
the Cauchy-Kowalevski operator exp(xnenDn−1):

fm+1(x) =

m+1∑

s=0

˜xsgm+1−s(x) (3.5)

where ˜xsgm+1−s(x) = exp(xnenDn−1)(x
sg(x)).

Proof of Theorem 1.2. The proof goes as the one of Theorem 1.1, we only need to adapt Proposition
2.14. We consider elements of the type xsf(x) where f is a monogenic homogeneous polynomial
of degree k in Rn−1 (as in the decomposition (3.5)). It follows that

x̃sf(x) =

s∑

i=0

(
cs,i,nx

i
nx

s−iein
)
f(x)

=|x|s
(
A(

xn

|x| ) +B(
xn

|x| )
(x)

|x| en
)
f(x)

(3.6)

where cs,i,n are some convenient real constants. We look for an explicit formula for A and B and

since Dnx̃sf(x) = 0, following [6], we have that

x̃sf(x) = dn,k,s|x|s
(
C

n
2
+k−1

s (
xn

|x| ) +
n+ 2k − 2

n+ 2k + s− 2
C

n
2
+k

s−1 (
xn

|x| )
x

|x|en
)
f(x)

where dn,k,s is a constant which depends only on n, k and s (see also [9]). We compute next

‖x̃sf(x)‖2 and we have
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‖x̃sf(x)‖2
d2n,k,s

=

∫

Bn

r2s
(
(C

n
2
+k−1

s (
xn

|x| ))
2 + (

|x|
|x|

n+ 2k − 2

n+ 2k + s− 2
C

n
2
+k

s−1 (
xn

|x| ))
2

)

× |f(x)|2dλn

=

∫ 1

0

(∫

Sn−1

(
(C

n
2
+k−1

s (xn))
2 + (1− x2

n)(
n+ 2k − 2

n+ 2k + s− 2
C

n
2
+k

s−1 (xn))
2

)
|f(x)|2dΣ

)

× rn+2s+2k−1dr

=
1

n+ 2s+ 2k

∫ 1

−1

(∫
√

1−x2
0
Sn−2

(
(C

n
2
+k−1

s (xn))
2 + (1− x2

n)(
n+ 2k − 2

n+ 2k + s− 2
C

n
2
+k

s−1 (xn))
2

)

×|f(x)|2 dΣn−2√
1− x2

n

)
dxn

=
1

n+ 2s+ 2k

∫ 1

−1

(1− x2
n)

n
2
+k− 3

2

(
(C

n
2
+k−1

s (xn))
2 + (1 − x2

n)(
n+ 2k − 2

n+ 2k + s− 2
C

n
2
+k

s−1 (xn))
2

)
dxn

×
∫

Sn−2

|f(x)|2dΣ2.

(3.7)

by 2.33 we have

‖x̃sf(x)‖2
d2n,k,s

=
24−n−2kΓ(n+ 2k + s− 2)π

s!(n+ 2k + s− 2)(n+ 2k + 2s)Γ(n2 + k − 1)2

∫

Sn−2

|f(x)|2dΣn−2 (3.8)

Similarly for ∂nx̃sf(x):

∂nx̃sf(x)

dn,k,s
= |x|s−1

(
sC

n
2
+k−1

s (
xn

|x| )
xn

|x| + C
′n
2
+k−1

s (
xn

|x| )(1 − (
xn

|x| )
2)

+ (
n+ 2k − 2

n+ 2k + s− 2
)((s− 1)C

n
2
+k

s−1 (
xn

|x| )

+ C
n
2
+k′

s−1 (
xn

|x| )(1 − (
xn

|x| )
2))

x

|x|en
)
f(x)

(3.9)

and by equation 2.36 we have

∂nx̃sf(x)

dn,k,s
= (n+2k+s−3)|x|s−1

(
C

n
2
+k−1

s−1 (
xn

|x| ) +
n+ 2k − 2

n+ 2k + s− 3
C

n
2
+k

s−2 (
xn

|x| )
x

|x|en
)
f(x). (3.10)

It follows by applying the same computation as in 3.8 with s− 1 in place of s that

‖∂nx̃sf(x)‖2
d2n,k,s

=

(
24−n−2kΓ(n+ 2k + s− 3)(n+ 2k + s− 3)π

(s− 1)!(n+ 2k + 2s− 2)Γ(n2 + k − 1)2

)
×

×
∫

Sn−2

|f(x)|2dΣn−2.

(3.11)

Taking the quotient between 3.8 and 3.11 we have

‖∂nx̃sf(x)‖2

‖x̃sf(x)‖2
=

s(n+ 2s+ 2k)(n+ 2k + s− 2)

n+ 2k + 2s− 2
. (3.12)

Since k + s = m+ 1, the maximum M is reached for s = m+ 1 and by plugging into 3.4 we have

M =
n+m− 1

n+ 2m
. (3.13)

Finally we have that |∇mf |α is subharmonic for α ≥ 2M−1
M

= n−2
n+m−1 . �
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4. Monogenic functions on the octonions

We consider the case of the octonions O. This algebra is built by the well known Cayley-Dickson
construction. Starting from H we consider on H2 the following binary operation · : H2 ×H2 → H2

(a, b) · (c, d) = (ac− db̄, cb+ ād) (4.1)

We define O to be H2 equipped with the usual sum and with the product · defined in (4.1). It
turns out that O with the norm inherited from H2 is a composition algebra which means

|(a, b) · (c, d)|2 = |(a, b)|2|(c, d)|2.
The dimension over R of O is 8 and a basis is given by e0 = (1, 0), e1 = (i, 0), ..., e7 = (0,k). We
note that e2j = −1 for j > 0, e20 = 1 and eiej = −ejei for i 6= j, i > 0 and j > 0. Clearly e0 is
the unity of O and for this reason it is also denoted by 1. We have that O splits naturally in two
subspaces called the real and the imaginary part (here identified with R7)

O ≃ Re0 ⊕ Re1 ⊕ ...⊕ Re7︸ ︷︷ ︸
∼=R7

.

For every x ∈ O we write

x = x0e0 +

7∑

i=1

xiei = x0 + (x)

x0 is called the real part of x and x the imaginary part of x. We define the conjugate of an octonion
x as x̄ = x0 − x. It is easy to check that xy = ȳx̄ and that the bilinear map 〈x, y〉 := (ȳx)0 defines
a real scalar product on O and such that 〈x, x〉 = |x|2. We define the Weyl operator

∂̄ =
7∑

i=0

ei∂i

and the Dirac operator

D = ∂x =

7∑

i=1

ei∂i.

Remark 4.1. The product defined in 4.1 is not associative but the following hold:

x(ax) = (xa)x, (xx)a = x(xa), ∀x, a ∈ O (4.2)

x̄(xa) = |x|2a (4.3)

in particular it makes sense to consider the powers in O. Moreover the subalgebra generated by
two octonions is associative. (see [4] page 76)

We have

∂∂̄ = ∂̄∂ = ∆

and

D2 = −∆x1,...,x7
.

Definition 4.2. A C1 function f : Ω → O, where Ω is an open subset of O (or R7) is monogenic
if

∂̄f = 0 ( resp. Df = 0)

We introduce for a positive integer k the space of homogeneous polynomials of degree k on O (or
R7) Pk(O,O) (resp. Pk(R7,O)) and the corresponding space of monogenic polynomials Mk(O,O)

(resp. M(R7,O)). Similarly for a multi-index β ∈ {0, ..., 7}k we introduce ∂βf = ∂β1
...∂βk

f and
define |∇kf(x)|2 :=

∑
|β|=k |∂βf(x)|2. In order to prove that |∇mf |α is subharmonic we exploit

again Lemma 2.2 and the following

Proposition 4.3. Let f : Ω → O be a monogenic function and let u(x) =
∑

|β|=m |∂βf(x)|2. Then
we have

|∇u|2
2u∆u

≤ m+ 7

2(m+ 4)
(4.4)

Before getting to the proof of Proposition 4.3 we need some preliminaries:
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Theorem 4.4. The following decompositions hold:

Pk(O,O) =

k⊕

j=0

x̄jMk−j(O,O)

and similarly

Pk(R7,O) =
k⊕

j=0

xjMk−j(R7,O)

Proof. We introduce on Pk(O,O) a scalar product. For Ri(x) =
∑

|α|=k a
i
αx

α for i = 1, 2 (here

α = (α0, ..., α7) ∈ N8 is a multiindex, |α| = α0 + ...+ α7 and xα = xα0

0 ...xα7

7 ) we define

〈R1(x), R2(x)〉 :=




∑

|α|=k

ā1α∂
α




∑

|α|=k

a2αx
α






0

(4.5)

=


∑

|α|=k

ā1αa
2
αα!




0

(4.6)

Since (a(bc))0 = ((ab)c)0 for all a, b, c ∈ O we have that for R1 ∈ Pk−1(O,O)

〈x̄R1(x), R2(x)〉 =
〈
R1(x), ∂̄R2(x)

〉

from which followsMk(O,O) ⊂
{
x̄Pk−1(O,O)

}⊥
. For the opposite inclusion suppose that ∂̄R2 6= 0

and choose R1 = ∂̄R2. Then clearly 〈x̄R1, R2〉 =
〈
R1, ∂̄R2

〉
6= 0 hence R2 /∈

{
x̄Pk−1(O,O)

}⊥
. We

have the splitting
Pk = Mk ⊕ x̄Pk−1 (4.7)

and by repeating the same argument on Pk−1 we have the conclusion. The proof of the second
decomposition is similar, with ∂̄ replaced by D �

As we did in the first and second section we need to find an orthogonal decomposition of
Mm+1(O,O) similar to that described in Remark 2.8. Starting from a polynomial f ∈ Pk(R7,O)
the monogenic extension to O is given by the Cauchy-Kowalevski extension operator :

f̃(x) =

∞∑

i=0

(−1)i
xi
0

i!
Dif(x).

Combining the Fischer decomposition and the Cauchy-Kowalevski extension we can decompose
any fm+1 ∈ Mm+1(O,O) in the same way as we did in the previous sections

fm+1(x) =

m+1∑

s=0

˜xsgm+1−s(x).

We observe that the orthogonality of this decomposition and of its ∂x0
-derivative can be proved

as we did in the Proposition 2.11 and Corollary 2.12 with foresight to use the real scalar product
instead of the hermitian one (see Remark 2.13). This is because we need the associativity when we
compute explicitly ∫

B8

(x̃ng(x), x̃mf(x))0 dV

.
We need to compute D(xsf(x)) with f ∈ Mk(R7,O). For this we need the following lemmas

Lemma 4.5. Let f ∈ Mk(R7,O) then

D(xf(x)) = −(2k + 7)f(x).

Proof. We have

D(xf(x)) =
7∑

i=1

ei∂i(xf) = −7f(x) +
7∑

i=1

ei(x∂if(x))

For evaluating the last term on the right side we observe that for t ∈ O we have

〈ei(x∂if(x)), t〉 = 〈x∂if(x),−eit〉 = −2 〈x, ei〉 〈∂if(x), t〉+ 〈xt, ei∂if(x)〉
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by the braid and exchange properties (see [4]). Taking the sum for i = 1, ..., 7 we have
〈

7∑

i=1

ei(x∂if(x)), t

〉
=

〈
−2

7∑

i=1

xi∂if

︸ ︷︷ ︸
=kf(x)

, t

〉
+

〈
xt,Df(x)︸ ︷︷ ︸

=0

〉

and since it holds for all t we have

7∑

i=1

ei(x∂if(x)) = −2kf(x)

and this yields the conclusion. �

Lemma 4.6. Let f ∈ Mk(R7,O) and s a positive integer. The following holds

D(xsf(x)) =

{
−sxs−1f(x) if s is even

−(s+ 6 + 2k)xs−1f(x) if s is odd
(4.8)

Proof. We begin with the case when s = 2n+ 1. Thanks to Remark 4.1 we have that

D(x2n+1f(x)) =(−1)nD(|x|2nxf(x))

=(−1)nn|x|2n−2x2f(x) + (−1)n|x|2n
7∑

i=1

ei(eif(x))

+ (−1)n|x|2n
7∑

i=0

ei(x∂if(x))

=− (s+ 6 + 2k)xs−1f(x)

where the last line follows from Lemma 4.5. The case s even is similar.
�

We can now proceed as in the other cases

Proof of Proposition 4.3. By a similar argument we see that at a point, say 0, we have that

|∇u|2
2u∆u

(0) =

∑7
i=0

(∫
B8 [∂ifm+1, fm] (x)dλ8

)2
(∫

B8 |fm(x)|2dλ8

)(∑7
i=0

∫
B8 |∂ifm+1(x)|2dλ8

)

where fm and fm+1 are the terms of degree m and m+ 1 in the Taylor expansion of f at 0.
The proof reduces to prove that M = m+7

2(m+6) where

M := max
06=fm∈Mm(O,O)

06=fm+1∈Mm+1(O,O)

∑7
i=0

(∫
B8 [∂ifm+1, fm] (x)dλ8

)2
(∫

B8 |fm(x)|2dλ8

) (∑7
i=0

∫
B8 |∂ifm+1(x)|2dλ8

) .

By repeating the same argument as in section 2, and using the fact that f(ux) is monogenic for
all u ∈ O, we have

M = max
fm+1∈Mm+1(O,O)

{
1

2(m+ 5)(m+ 1)

‖∂0fm+1‖2
‖fm+1‖2

}
. (4.9)

At this point we only need to find an orthogonal decomposition of Mm+1(O,O) of the type
described in Remark 2.8. We start by finding the monogenic extension to O of xjf(x) where
f ∈ Mk(R7,O). By Lemma 4.6 we have

x̃jf(x) =

j∑

i=0

(ck,j,ix
i
0x

j−i)f(x)
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for some real coefficients ck,j,i which do not depend on f . Let r2 = |x|2 and set x̃jf(x) = rj(A(x0

r
)+

B(x0

r
)x
r
)f(x) and by imposing ∂̄x̃jf(x) = 0 we found that the extension is given by

x̃jf(x) = dk,j |x|j
(
Ck+3

j (
x0

|x| ) +
2k + 6

2k + j + 6
C4+k

j−1 (
x0

|x| )
x

|x|

)
f(x).

The computations are exactly like the ones in section 3 with n = 8. In the end we have M = m+7
2(m+4)

which finishes the proof. �

Proof of Theorem 1.3. Follows from Proposition 4.3 and Lemma 2.2. �

Remark 4.7. In Theorems 1.1, 1.2 and 1.3 we saw that, according to the dimension n of the alge-
bra where f takes its values, |∇mf |α0,m,n is subharmonic for α0,m,n = n−2

n+m−1 . As observed in [5]

Theorem 2, this is the best possibile choice for the exponent α0,m,n indeed if φ(|∇mf |) is subhar-
monic for any monogenic or regular functions f and φ is continuous then φ(t) = ω(tα0,m,n) where
ω : R≥0 → R is a convex increasing function. The proof of this fact follows without substantial
modification the proof in [5].
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