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1. Introduction

The starting point is the well-known Sobolev inequality in Rn firstly showed in [110]
(see also [75,96] for alternative proofs and [15, Theorem IX.9], [79, Theorem 7.10],
and [126, Theorem 2.4.1] for further references): given n � 3 and 1 < p < n, there
exists a positive constant S D S.n; p/ such that

(1.1) krukLp.Rn/ � SkukLp� .Rn/; for all u 2 W 1;p.Rn/;

where
p� WD

np

n � p

is the so-called Sobolev critical exponent and the spaceW 1;p.Rn/ is the usual Sobolev
space of functions u 2 Lp.Rn/ such that ru 2 Lp.Rn/. Actually, thanks to a short
interpolation argument (see e.g. [15, Corollary IX.10]), it is immediate to see that the
following version of the Sobolev inequality

(1.2) krukLp.Rn/ � SkukLp� .Rn/; for all u 2 PW 1;p.Rn/;

holds, where
PW 1;p.Rn/ WD

®
u 2 Lp

�

.Rn/ W ru 2 Lp.Rn/
¯

is a homogeneous Sobolev space. It is homogeneous in the same sense the Sobolev
inequality (1.2) is homogeneous under rescaling f�.�/ WD f .�=�/. As we will see the
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homogeneous Sobolev space PW 1;p.Rn/ is better than the Sobolev spaceW 1;p.Rn/ in
order to study extremals of the Sobolev inequality.

An interesting and fascinating aspect is to prove the sharp version of the Sobolev
inequality (1.2), this means that one wants to characterize the extremals of (1.2), i.e.,
functions that realize the equality in (1.2), and to compute the best constant in (1.2).
This has been done independently in two contemporary papers: [7, 112] by using
symmetrizations. In particular, they show that the extremals of (1.2) can be explicitly
computed and are of the form

(1.3) Ua;�;x0.x/ WD
a�

1C �
p
p�1 jx � x0j

p
p�1

�n�p
p

;

where a 2 R, � > 0, and x0 2 Rn can be chosen arbitrarily; moreover, the best constant
in (1.2) is given by

(1.4)
p
�n

1
p

�
n � p

p � 1

�p�1
p
�
�.n=p/�.1C n � n=p/

�.1C n=2/�.n/

� 1
n

:

In this paper, we focus on the different approach, proposed in [43], to prove the sharp
Sobolev inequality (see Section 2 for more details). The approach in [43] is based on
the optimal transport technique and, actually, this approach is suitable to be adapted
to show also the sharp Sobolev inequality in Rn in the anisotropic setting, i.e., in Rn

endowed with a generic anisotropic norm. In this context, the (anisotropic) Sobolev
inequality becomes the following: given n � 3 and 1 < p < n, there exists a positive
constant S D S.n; p;H/ such that

(1.5)
H.ru/

Lp.Rn/
� SkukLp� .Rn/; for all u 2 PW 1;p.Rn/;

where H W Rn ! R is an anisotropic norm (or gauge); i.e.,
H is positive, positively homogeneous of degree one1 and convex2;

(1) H.��/ D �H.�/, for all � > 0 and � 2 Rn. Note that, in general, we do not require H
to be symmetric, so it may happen that H.�/ ¤ H.��/.

(2) We mention two typical classes of anisotropic norms: the first ones are the so-called
`p-norms given by

H.x/ D kxkp WD
�
jx1j

p
C � � � C jxnj

p
�1=p

; for 1 < p <1 and x 2 RnI

the second ones are the so-called crystalline norms: given a finite set ¹pj ºNjD1 � Rn n ¹0º, with
N 2 N, consider

H.x/ WD max
1�j�N

x � pj ; for x 2 Sn�1:
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and
PW 1;p.Rn/ WD

²
u 2 Lp

�

.Rn/ W

Z
Rn
H.ru/p dx < C1

³
:

Moreover, thanks to [43] we know that the extremals of (1.5) are of the form

UH
a;�;x0

.x/ WD
a�

1C �
p
p�1H0.x0 � x/

p
p�1

�n�p
p

;

where a 2 R, � > 0, and x0 2 Rn can be chosen arbitrarily and where H0 is the dual
norm of H ; explicitly

H0.�/ WD sup
H.�/D1

� � �; for all � 2 Rn:

Another interesting aspect related to the Sobolev inequality is about its validity in
convex cones of Rn. We recall that an open cone † � Rn is given by

† WD
®
tx W t 2 .0;C1/; x 2 !

¯
;

for some open domain ! � Sn�1. In particular, we are interested in convex cones and
so we recall that every convex cone † of Rn can be decomposed in the following way:

† D Rk � C ;

for some k 2 ¹0; : : : ; nº and C � Rn�k is a convex cone that does not contain a line
and with only one vertex O (from now on and for simplicity we will assume that O

coincides with the origin). The Sobolev inequality in convex cones has been firstly
established in [84] and it has been generalized to the anisotropic setting in [19], where
it takes the following form: given n � 3 and 1 < p < n, there exists a positive constant
S† D S†.n; p;H/ such that

(1.6)
�Z

†

H.ru/p dx

� 1
p

� S†

�Z
†

ˇ̌
u.x/

ˇ̌p�
dx

� 1
p�

; for all u 2 PW 1;p.†/;

where † � Rn is a convex cone, H is an anisotropic norm in Rn, and

PW 1;p.†/ WD

²
u 2 Lp

�

.†/ W

Z
†

H.ru/p dx < C1

³
:

The point is that in [19] the characterization of extremals of (1.6) (i.e., the sharp
anisotropic Sobolev inequality in convex cones) is missing, indeed they deduce the
anisotropic Sobolev inequality in convex cones as a corollary of the anisotropic isoperi-
metric inequality (the Wulff inequality, see Section 1.1 for more details) in convex
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cones. Actually, in [84] the sharp Sobolev inequality can be found in the case p D 2
andH.�/ D j � j. Exploiting the optimal transport approach, in [34], we prove the sharp
anisotropic Sobolev inequality in convex cones computing the extremals and we show
that they are of the form

UH
a;�;x0

.x/ WD
a�

1C �
p
p�1H0.x0 � x/

p
p�1

�n�p
p

;

where a 2 R and � > 0 can be chosen arbitrarily and where, as before, H0 is the dual
norm of H . Moreover, if † D Rn, then x0 may be any point of Rn, if † D Rk � C

with k 2 ¹1; : : : ; n� 1º and C does not contain a line, then x0 2 Rk � ¹Oº; otherwise
x0 D O.

1.1. Analogies with the isoperimetric inequality

We conclude this introduction by mentioning that the same picture drown for the
Sobolev inequality holds also for the isoperimetric inequality. The classical Euclidean
isoperimetric inequality states that, for any bounded open (smooth) set E � Rn, the
perimeter P.E/ controls the volume jEj: more precisely,

(1.7) P.E/ � njB1j
1
n jEj

n�1
n ;

where B1 is the unit ball in Rn. Moreover, the equality holds if and only if E is a ball
(see [47] and also [98]). A way to define the perimeter (in the smooth setting) is the
following:

P.E/ WD

Z
@E

dHn�1;

where Hn�1 denotes the .n� 1/-dimensional Hausdorff measure in Rn (for the general
definition of perimeter we refer to the book [85]). More in general, we can consider
the notion of anisotropic perimeter, i.e., the perimeter induced by an anisotropic norm
H in Rn; i.e.,

PH .E/ WD

Z
@E

H
�
�.x/

�
dHn�1.x/;

where �.x/ denotes the unit outward normal at x 2 @E. The corresponding anisotropic
isoperimetric inequality, known as the Wulff inequality, is the following:

(1.8) PH .E/ � njKj
1
n jEj

n�1
n ;

where K is the Wulff shape (or Alexandrov’s body) associated to H ; explicitly

K WD
®
x 2 Rn W x � � < H.�/; for all � 2 Sn�1

¯
:



extremals and critical points of the sobolev inequality 971

In addition, the equality holds if and only if E D x C �K for some x 2 Rn and � > 0
(see [113, 114, 124] and also [71]). In the context of a convex cone † of Rn, the
definition of perimeter becomes the following:

P.E;†/ WD

Z
@E\†

dHn�1
I

i.e., we consider the relative perimeter of the set E with respect to †. The analogue
of (1.7) in a convex cone † of Rn is the following isoperimetric inequality: for every
bounded open (smooth) set E � †, we have

P.E;†/ � njB1 \†j
1
n jEj

n�1
n :

Furthermore, if the cone contains no lines, then the equality holds if and only if E is a
spherical sector centered at the vertex of the cone (see [83] and also [5, 8, 18,19,59,
80, 102] for generalizations and different proofs). In particular, in [19] and in [59], the
authors prove the following Wulff inequality in a convex cone †:

(1.9) PH .E;†/ � njK \†j
1
n jEj

n�1
n ;

where PH .E;†/ denotes the anisotropic relative perimeter of the set E with respect
to †; i.e.,

PH .E;†/ WD

Z
@E\†

H
�
�.x/

�
dHn�1.x/:

Moreover, if the cone contains no lines, then the equality holds in (1.9) if and only if
E D �K, for some � > 0.

Organization of the paper

The paper is organized as follows: in Section 2, we show how to apply the optimal
transport approach to prove the sharp Sobolev inequality in a convex cone † of Rn;
in Section 3, we investigate another important aspect related to the sharp Sobolev
inequality, i.e., the characterization of critical points. Finally, in Section 4 we present
some stability results related to the extremals and to the critical points of the Sobolev
inequality.

2. Proof by optimal transport

The idea to apply the optimal transport theory to prove functional and geometric
inequalities dates back to Gromov (see the appendix in the book [92]), who applied
the Knothe map3 to prove the isoperimetric inequality (1.7). This approach has been

(3) In his original argument, Gromov did not use the optimal transport map but instead the
Knothe map; see e.g. [66, Section 1.4] for more details.
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brilliantly used in [66] to show the so-called Wulff inequality, i.e., the anisotropic
isoperimetric inequality (1.8). We mention also that in [59] the optimal transport
approach is used to prove the anisotropic Sobolev inequality in a convex cone (1.9).

Finally, the optimal transport approach has been also used to prove the Brunn–
Minkowski inequality (see e.g. [89]) and to prove the anisotropic Gagliardo–Nirenberg
inequalities (see [43]).

Here we sketch the proof of the sharp Sobolev inequality in a convex cone † of Rn

in the isotropic case (i.e., whenH is the Euclidean norm) and we refer to [43, Sections 2
and 4] and to [34, Appendix A] for the proof in the anisotropic setting in the case
† � Rn and in the conical case, respectively. In particular, we prove the following
theorem.

Theorem 2.1 (Sharp Sobolev inequality in convex cones). Given n� 3 and 1 < p < n,
let † be a convex cone of Rn. Then there exists a positive constant S† D S†.n; p/
such that

(2.1)
�Z

†

ˇ̌
ru.x/

ˇ̌p
dx

� 1
p

� S†

�Z
†

ˇ̌
u.x/

ˇ̌p�
dx

� 1
p�

; for all u 2 PW 1;p.†/:

Moreover, the inequality is sharp and the equality in (2.1) is attained if and only if
u.x/ D Up.x/, where

Ua;�;x0.x/ WD
a�

1C �
p
p�1 jx � x0j

p
p�1

�n�p
p

;

with a 2R, � > 0, and x0 2 x†. Furthermore, writing†DRk �C with k 2 ¹0; : : : ; nº,
with C�Rn�k a convex cone that does not contain a line, and with only one vertex O,
then

(i) if k D n, then † D Rn and x0 may be a generic point in Rn;

(ii) if k 2 ¹1; : : : ; n � 1º, then x0 2 Rk � ¹Oº;

(iii) if k D 0, then x0 D O.

As already mentioned, a key ingredient in the proof of Theorem 2.1 is the optimal
transport theory (see [4, 104, 121, 122] for general references); in the next subsection
we recall briefly some basic tools from optimal transport theory and we recall the main
theorem that we are going to use. In what follows,† will be a convex cone of Rn, even
if some results are true more in general.

2.1. Optimal transport theory

Given two probability densities F and G on † (i.e., two nonnegative functions in
L1.†/ such that kF kL1.†/ D kGkL1.†/ D 1), we say that a map T W †! † sends
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F onto G, and we will call it a transport map, if

T#F D GI

i.e., the push forward of F through T is G. Explicitly, if

(2.2)
Z
E

G.y/ dy D

Z
T �1.E/

F.x/ dx; for every E Borel subset of †;

or, equivalently, ifZ
†

b.y/G.y/ dy

D

Z
†

b
�
T .x/

�
F.x/ dx; for every b W †! R nonnegative Borel function:

(2.3)

Moreover, we consider the following cost function c W † �†! R given by

c.x; y/ D
jx � yj2

2

and we define the total cost of a transport map T as

cost.T / WD
Z
†

c
�
x; T .x/

�
F.x/ dx:

In general, we are interested in the optimal transport map, i.e., the transport map T

that minimizes the total cost, i.e.,

cost.T / D min
®

cost.�/ W � W †! †; �#F D G
¯
:

The main ingredient is the following existence theorem for the optimal transport map
(see e.g. [48]).

Theorem 2.2. If F andG are two probability densities on†, then there exist a convex
function ' W †! R such that the transport map T W †! †, defined by

T .x/ WD r'.x/;

is the unique optimal transport map that sends F onto G. We will refer to T as the
Brenier map. Moreover, T is differentiable F.x/ dx-a.e. and

(2.4)
ˇ̌
det
�
rT .x/

�ˇ̌
D

F.x/

G
�
T .x/

� ; F .x/ dx-a.e. x 2 †.

Observe that if T is a diffeomorphism, then the change of variables y D T .x/ in
(2.2) and (2.3) shows that T solves (2.4), which in terms of ' becomes the following
Monge–Ampère equation:

(2.5)
ˇ̌
det
�
r
2'.x/

�ˇ̌
D

F.x/

G
�
r'.x/

� :
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More in general, (2.4) and (2.5) hold for F.x/ dx-a.e. x 2 † without further assump-
tions onF andG below integrability (see e.g. [122, Chapter 10] and [48, Theorem 3.6]).
In this case, being ' a convex function, it admits, almost everywhere, a second-order
Taylor expansion as shown in [56, Chapter 6].

2.2. Proof of Theorem 2.1

The first step in the proof of Theorem 2.1 is the following:

Lemma 2.3. Given n � 3, 1 < p < n, and q D p=.p � 1/, let † be a convex cone
of Rn. Whenever f 2 PW 1;p.†/ and g 2 Lp�.†/ are two functions with kf kLp� .†/ D
kgkLp� .†/, then

(2.6)
Z
†

ˇ̌
g.x/

ˇ̌p�.1� 1n / dx � p.n � 1/

n.n � p/
krf kLp.†/

�Z
†

jyjq
ˇ̌
g.y/

ˇ̌p�
dy

� 1
q

;

with equality if

f .x/ D g.x/ D U1;1;O.x/ D
1�

1C jxj
p
p�1

�n�p
p

I

recall that O coincides with the origin.

Proof of Lemma 2.3. First of all, it is well known that whenever f 2 PW 1;p.†/, then
rjf j D ˙rf almost everywhere, so f and jf j have equal Sobolev norms. Thus,
without loss of generality, we may assume that f and g are nonnegative and, by
homogeneity, satisfy

kf kLp� .†/ D 1 D kgkLp� .†/:

Secondly, we prove (2.6) in the special case when f and g are smooth functions with
compact support inside x†; the general case will follow by approximation.

Now, consider the two probability densities

F.x/ D f p
�

.x/ and G.x/ D gp
�

.x/

on †. Let T W †! † be the optimal transport map given by Theorem 2.2. Thanks to
the regularity theory developed in [42], we know that T is a diffeomorphism and it
satisfies

(2.7)
ˇ̌
det
�
rT .x/

�ˇ̌
D

f p
�

.x/

gp
�
�
T .x/

� ; for all x 2 †.
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From the definition of F and G and from the transport condition (2.3), with b.y/ D
G�

1
n .y/, we know thatZ

†

gp
�.1� 1n /.y/ dyD

Z
†

G1�
1
n .y/ dyD

Z
†

G�
1
n .y/G.y/ dy

D

Z
†

G�
1
n

�
T .x/

�
F.x/ dxD

Z
†

g�
p�

n

�
T .x/

�
f p
�

.x/ dx:

(2.8)

While, from (2.7) we get

(2.9)
Z
†

g�
p�

n

�
T .x/

�
f p
�

.x/ dx D

Z
†

ˇ̌
det
�
rT .x/

�ˇ̌ 1
nf p

�.1� 1n /.x/ dx:

Since T Dr', for some convex function' W†!R, thenrT Dr2' is symmetric and
non-negative definite. In particular, det.rT / � 0 and from the arithmetic-geometric
inequality we get

(2.10)
ˇ̌
det.rT /

ˇ̌ 1
n �

1

n
div.T /:

Hence, combining (2.10) with (2.8) and (2.9),Z
†

gp
�.1� 1n /.y/ dy �

1

n

Z
†

div
�
T .x/

�
f p
�.1� 1n /.x/ dx

D �
p�

n

�
1 �

1

n

�Z
†

f p
�.1� 1n /�1.x/T .x/ � rf .x/ dx

C
1

n

Z
@†

f p
�.1� 1n /.x/T .x/ � �.x/ d�.x/;

where we have used the integration by parts formula. Now, observe that since T .x/ 2 x†,
for all x 2 x†, the convexity of † implies that

(2.11) T .x/ � �.x/ � 0; for all x 2 @†:

Thus,

(2.12)
Z
†

gp
�.1� 1n /.y/ dy � �

p�

n

�
1 �

1

n

�Z
†

f p
�.1� 1n /�1.x/T .x/ � rf .x/ dx;

and from Hölder’s inequality we conclude that

�

Z
†

f p
�.1� 1n /�1.x/T .x/ � rf .x/ dx � krf kLp.†/

�Z
†

ˇ̌
T .x/

ˇ̌q
f p
�

.x/ dx

� 1
q

D krf kLp.†/

�Z
†

jyjqgp
�

.y/ dy

� 1
q

;

(2.13)
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hence,Z
†

gp
�.1� 1n /.y/ dy �

p�

n

�
1 �

1

n

�
krf kLp.†/

�Z
†

jyjqgp
�

.y/ dy

� 1
q

;

which is (2.6) since
p�

n

�
1 �

1

n

�
D
p.n � 1/

n.n � p/
:

In the special case f D g D U1;1;O , the Brenier map coincides with the identity
map; i.e., T .x/ D x and det.rT / D 1. This implies that the inequalities in (2.10) and
(2.11) become equalities; in particular also in (2.12) the inequality becomes equality.
Moreover, from a direct computation one can show that

�

Z
†

U
p�

q

1;1;O
.x/rU1;1;O.x/ � x dx

D krU1;1;OkLp.†/

�Z
†

jxjqU
p�

1;1;O
.x/ dx

� 1
q

;

which ensures that also in (2.13) the equality holds. This is the end of the proof of the
lemma.

We are now in position to prove Theorem 2.1

Proof of Theorem 2.1. An immediate consequence of Lemma 2.3 is the following
duality principle:

(2.14) sup
kgk

Lp
�
.†/
D1

R
†

ˇ̌
g.x/

ˇ̌p�.1� 1n / dxR
†
jyjq

ˇ̌
g.y/

ˇ̌p�
dy
D
p.n � 1/

n.n � p/
inf

kf k
Lp
�
.†/
D1
krf kLp.†/;

with U1;1;O extremal in both variational problems.
From (2.14), the proof of (2.1) is immediate. Indeed, let u 2 PW 1;p.†/ and let

U1;1;O be the extremal, then from (2.14) we have

krU1;1;OkLp.†/

kU1;1;OkLp� .†/

D inf
kf k

Lp
�
.†/
D1
krf kLp.†/ �

krukLp.†/

kukLp� .†/
;

thus,

krukLp.†/ �
krU1;1;OkLp.†/

kU1;1;OkLp� .†/

kukLp� .†/

which is (2.1). The fact that the inequality is sharp follows from the fact that uDU1;1;O

realizes the equality.
Now we deal with the characterization of extremals. We want to prove the following:
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A function u 2 PW 1;p.†/ realizes the equality in the Sobolev inequality (2.1) if
and only if there exist a 2 R, � > 0, and x0 2 x† as in Theorem 2.1 (i), (ii), and
(iii) such that

u.x/ D aU1;1;O

�
�.x � x0/

�
D Ua;�;x0.x/:

To prove this fact, we follow the approach in [34, Appendix A], in [43, Section 4],
and in [66, Appendix A]. Firstly, we observe that if u is an extremal, then also juj will
be an extremal and then the conclusion of the theorem will force u to have constant
sign. Hence, it is enough to consider nonnegative functions u 2 PW 1;p.†/. Secondly,
given two nonnegative measurable functions f and g such that

R
†
f p
�

D
R
†
gp
� ,

then saying that f .x/ D a g.�.x � x0//, for a 2 R, � > 0, and x0 2 x†, is equivalent
to say that the Brenier map T W †! † which sends f p� onto gp� is of the form
T .x/ D z�.x � x0/, for some z� > 0 and x0 2 x†. Furthermore, we can assume thatR
†
up
�

D 1. So thanks to Lemma 2.3 and to the first part of the proof of this theorem,
we just have to set g D U1;1;O and prove that

a nonnegative function u 2 PW 1;p.†/ such that

kukLp� .†/ D kU1;1;OkLp� .†/.D 1/

achieves equality in (2.6) if and only if there exist a 2 R, � > 0, and x0 2 x† as
in Theorem 2.1 (i), (ii), and (iii) such that

u.x/ D aU1;1;O

�
�.x � x0/

�
;

The main issue is that we have proved Lemma 2.3 (i.e., (2.6)) in the case when f
and g are compactly supported; this restriction on f and g had no implication on the
final inequality but it prevents to preserve the equality cases.

The idea is to proceed in two steps:

(1) generalize the proof of (2.6) in order to obtain the right inequality (i.e., for all
admissible f and g not necessarily smooth and with compact support);

(2) trace back all the equality cases in the previous proof, without further assumptions
on f and g.

Observe that once this is done, then the equality in the arithmetic-geometric inequality
(2.10) would imply that rT is a point-wise multiple of the identity, from which it is
easy to show that T .x/ D �.x � x0/, for some � > 0 and x0 2 x†.

The first step can be done as in [43, Proof of Lemma 7] by showing that the inequalityZ
†

div
�
T .x/

�
up
�.1� 1n /.x/ dx � �

p�

n

�
1�

1

n

�Z
†

up
�.1� 1n /�1.x/T .x/ � ru.x/ dx
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holds true. This step can be performed by approximation and regularization and we
refer to [43, Proof of Lemma 7] for the technical details.

Once we have this formula, we prove that u is positive. This can be done arguing
as in [43, Step 1 of the proof of Proposition 6] or arguing as in [34, Appendix A] by
using the notion of indecomposability4 of the support of u. Here we sketch this second
proof. Assume, by contradiction, that the support of u is decomposable; i.e., one could
write u D u1 C u2, where u1 and u2 have disjoint supports. Then, of courseZ

†

ˇ̌
ru.x/

ˇ̌p
dx D

Z
†

ˇ̌
ru1.x/

ˇ̌p
dx C

Z
†

ˇ̌
ru2.x/

ˇ̌p
dx;

while from (2.1) and the fact that u is an extremal, we would get�Z
†

u.x/p
�

dx

� p

p�

D
1

S
p
†

Z
†

ˇ̌
ru.x/

ˇ̌p
dx

D
1

S
p
†

Z
†

ˇ̌
ru1.x/

ˇ̌p
dx C

1

S
p
†

Z
†

ˇ̌
ru2.x/

ˇ̌p
dx

�

�Z
†

u1.x/
p� dx

� p

p�

C

�Z
†

u2.x/
p� dx

� p

p�

:

Since u1 and u2 have disjoint support, thenZ
†

u.x/p dx D

Z
†

u1.x/
p dx C

Z
†

u2.x/
p dx:

By the concavity of the function t 7! tp=p
� , we conclude that either u1 or u2 vanishes.

Hence, we have that the support of u is indecomposable. Once we know this, we can
apply the classical interior regularity result in [20] for solutions of the Monge–Ampère
equation to conclude that ' 2 W 2;˛

loc . This implies that rT has no singular part5, hence

(4) A set of finite perimeterE is said the be indecomposable if for every F � E having finite
perimeter and such that

Per.E/ D Per.F /C Per.E n F /;

we have that
min

®
jEj; jE n F j

¯
D 0:

This is a measure-theoretic notion similar to the topological notion of connectedness and we
refer to [3] for more details.

(5) A different and more direct proof of this fact can be found in [43, Step 2 in the proof of
Proposition 6].



extremals and critical points of the sobolev inequality 979

the equality in the arithmetic-geometric inequality (2.10) implies that the matrix rT

is a multiple of the identity which implies that T .x/ D �.x � x0/, for some � > 0 and
x0 2 x† (see [43, Step 3 in the proof of Proposition 6]). Of course, from this fact, the
result follows easily, as already discussed. Finally, properties (i), (ii), and (iii) on the
location of x0 follow for instance from the fact that T has to map † onto †.

2.3. Weighted Sobolev inequalities

Actually the optimal transport approach is also suitable to prove a more general class
of sharp weighted Sobolev inequalities. Given 1 < p < n, a convex cone† of Rn, and
given a weightw 2 C 0.Rn/ such that it is positive, homogeneous of degree ˛ � 0, and
w
1
˛ is concave if ˛ > 0, there exists a positive constant S D S.n;p; a;w;H/ such that�Z
†

H
�
ru.x/

�p
w.x/dx

� 1
p

� S

�Z
†

ˇ̌
u.x/

ˇ̌ˇ
w.x/dx

� 1
ˇ

; for all u 2 PW 1;p.†/;

where
ˇ WD

p.nC a/

nC a � p
:

Results of this kind can be found in [9, 19, 34], where the case of (more general) sharp
weighted Sobolev inequalities in convex cones is treated.

3. Critical points

Besides the study of the extremals of the Sobolev inequality in Rn, one interesting
and challenging aspect is the study of critical points of the Sobolev inequality. For
simplicity and for later convenience, we define the following 2-parameters subclass of
extremals:

(3.1) U�;x0.x/ WD

h
n
�
n�p
p�1

�p�1
�p
in�p
p2�

1C �
p
p�1 jx � x0j

p
p�1

�n�p
p

;

where � > 0 and x0 2 Rn. We will refer to this kind of functions as Aubin–Talenti
bubbles. Roughly speaking, the idea is the following: let u be an Aubin–Talenti bubble
and we compute the first variation of the Sobolev inequality (which is zero) in order to
find the associated Euler–Lagrange equation. Explicitly, let

u.x/ D U�;x0.x/;

and compute

d

d"

�
kruC "r'kLp.Rn/ � SkuC "'kLp� .Rn/

�ˇ̌
"D0
D 0; for all ' 2 C1c .R

n/:
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A direct computation yields toZ
Rn
jrujp�2ru � r' dx �

Z
Rn
up
��1' dx D 0; for all ' 2 C1c .R

n/;

which is the weak formulation of the following quasilinear PDE:

(3.2) �puC u
p��1

D 0 in Rn;

which is called the critical p-Laplace equation and where �pu is the usual p-Laplace
operator defined in the following way:

�pu WD div
�
jrujp�2ru

�
:

Note that with the definition of Aubin–Talenti bubbles (3.1), we find that every Aubin–
Talenti bubble solves (3.2) exactly. Summing up, we have shown that the Aubin–Talenti
bubbles are solutions of the quasilinear problem

(3.3)

´
�puC u

p��1 D 0 in Rn;

u > 0:

The natural question now is the following:
Are the Aubin–Talenti bubbles (3.1) the only solutions to (3.3)?

This question has attracted a lot of interest both in the PDEs and in the differential
geometry communities. Indeed, it is well known that the critical Laplace equation (so
p D 2) is related to the Yamabe problem. Thanks to the efforts made in [6,97,105,115,
125] (see also the survey [82]), we know the validity of the following theorem.

Theorem 3.1. Let .M; g0/ be a compact Riemannian manifold of dimension n � 3.
Then there exists a metric g on M which is conformal to g0 and has constant scalar
curvature.

If we write the conformal change from g0 to g in the following way:

g D u
4
n�2g0

for some positive and smooth function u WM ! R, then finding g is equivalent to ask
that u solves the PDE

4.n � 1/

n � 2
�g0u �Rg0uCRgu

nC2
n�2 D 0;

where Rg0 and Rg denote the scalar curvature of M with respect to g0 and g, respec-
tively. When .M; g0/ is the round sphere, by stereographic projection we get that the
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previous PDE becomes
4.n � 1/

n � 2
�uCRgu

nC2
n�2 D 0 in Rn;

and hence (up to constants)

�uC u
nC2
n�2 D 0 in Rn;

which is the critical Laplace equation.
Turning back to question of characterization of solutions to (3.3), the state of the

art is presented in the following theorem.

Theorem 3.2. Let 1 < p < n and let u be a solution to (3.3) such that u 2 PW 1;p.Rn/.
Then u D U�;x0 , for some � > 0 and x0 2 Rn.

In the semilinear case p D 2, the theorem, without the assumption u 2 PW 1;2.Rn/,
has been proved in the celebrated paper [21] (see also [26, 78, 97] for the previous
important results) by using the method of moving planes (see the reviews [16, 36])
and the Kelvin transform. In the quasilinear case p ¤ 2, the problem is more difficult
because of the nonlinear structure of the p-Laplace operator and because of the lack of
regularity of the solutions. Moreover, in the quasilinear case the Kelvin transform is
not available. The first result related to the quasilinear case has been obtained in [44]
for 2n

nC2
� p < 2; the result has been extended to the case 1 < p < 2 in [119] and to

the case 2 < p < n in [106] exploiting a fine analysis of the behavior of the solutions
at infinity that allows to exploit the moving plane method as developed in [45, 46]
(see also [108]). We point out that the big difference between the semilinear and the
quasilinear case is the additional assumption, in the quasilinear case, that u has finite
energy, i.e., u 2 PW 1;p.Rn/: to prove the analogue result, removing this assumption, is
an open and challenging problem6.

Finally, we mention that even in the semilinear case the assumption u > 0 is
fundamental; indeed it is possible to construct many sign-changing solutions to

�uC ujuj2
��2
D 0 in Rn;

which are not radial (see [53] and also [49,50,90,91,93]). Moreover, we refer to positive
solutions of (3.2) since, from the maximum principle for quasilinear equations (see
e.g. [118]), non-negative solutions to (3.2) are either zero or positive.

The same procedure of computing the first variation of the Sobolev inequality can
be done also starting from the anisotropic Sobolev inequality in convex cones (1.6). In

(6) We refer to the recent papers [24,99,120] where the authors provide positive (and partial)
answers to this problem.
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analogy to (3.1), we consider the following subclass of extremals:

(3.4) UH
�;x0

.x/ WD

�
n
�
n�p
p�1

�p�1
�p
�n�p
p2�

1C �
p
p�1H0.x0 � x/

p
p�1

�n�p
p

;

where � > 0 and x0 2 x† is such that if†D Rn, then x0 may be any point of Rn, and if
†D C �Rk with k 2 ¹: : : ; n� 1º and C does not contain a line, then x0 2 Rk � ¹Oº;
otherwise x0 D O. We will refer to this kind of functions as anisotropic Aubin–Talenti
bubbles.

As before, let
u.x/ D UH

�;x0
.x/

and computing as before the first variation of the anisotropic Sobolev inequality in
convex cones, we obtainZ

†

Hp�1.ru/rH.ru/ � r' dx D

Z
†

up
��1' dx; for all ' 2 C1.†/;

i.e., the weak formulation of the Neumann quasilinear problem

(3.5)

´
�Hp uC u

p��1 D 0 in †;
a.ru/ � � D 0 on @†:

where � is the outward normal to @†,

a.ru/ WD Hp�1.ru/rH.ru/

and �Hp u is the so-called anisotropic (or Finsler) p-Laplace operator defined in the
following way

�Hp u WD div
�
a.ru/

�
:

In [34], we prove the following result which is the generalization of Theorem 3.2 for
positive solutions to the problem (3.5).

Theorem 3.3. Let 1 < p < n and let † D Rk � C be a convex cone of Rn, where C

does not contain a line. LetH be a norm of Rn such thatH 2 is of classC 2.Rnn¹Oº/\
C 1;1.Rn/ and it is uniformly convex7. Let u be a positive solution to (3.5) such that
u 2 PW 1;p.†/. Then u.x/ D UH

�;x0
.x/ for some � > 0 and x0 2 x†. Moreover,

(i) if k D n, then † D Rn and x0 may be a generic point in Rn;

(7) i.e., there exist two constants 0 < � � ƒ such that

�Id � H.�/D2H.�/CrH.�/˝rH.�/ � ƒ Id 8� 2 Rn n ¹Oº

(note that D2.H2/ D 2H D2H C 2rH ˝rH ).
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(ii) if k 2 ¹1; : : : ; n � 1º, then x0 2 Rk � ¹Oº;

(iii) if k D 0, then x0 D O.

As already mentioned, case (i) in Theorem 3.3 has been already proved in [21, 44,
106, 119] when † D Rn and H is the Euclidean norm. Actually in the Euclidean case
and when p D 2, the classification result in convex cones was proved in [84, Theorem
2.4] by using the Kelvin transform (inspired by [77, 97]).

For general 1 < p < n, the Kelvin transform and the method of moving planes
are not helpful neither for anisotropic problems nor inside cones. In [34], we provide
a new approach to the characterization of solutions to critical p-Laplace equation,
which is based on integral identities rather than the method of moving planes. This
approach takes inspiration from [109], where the authors prove nonexistence results
generalizing the ones in [77] to 1 < p < n and takes inspiration also from [12–14,29,37],
where the authors prove symmetry and rigidity results for overdetermined problem
(see [100,101,107,123]) in the anisotropic and in the conical settings.

Finally, we mention that also in this case the assumption u > 0 is fundamental.
Indeed, it is possible to construct sign-changing solutions to8<:�uC juj2

��2u D 0 in †;

@�u D 0 on @†:

which are non-radial (see [41]).

4. Quantitative studies

In this section, we present some results for two important and fascinating problems
related to the sharp Sobolev inequality in Rn: the study of the stability of the extremals
and of the critical points.

4.1. Almost extremals

In this subsection, we investigate another important aspect related to the sharp Sobolev
inequality in Rn: the stability of the Sobolev inequality (1.2) or the quantitative version
of the Sobolev inequality (1.2).

Firstly, we indicate with Mp the .nC 2/-dimensional manifold of all functions of
the form (1.3), i.e.,

Mp WD

²
Ua;�;x0.x/ WD

a�
1C �

p
p�1 jx � x0j

p
p�1

�n�p
p

W a 2 R; � > 0; x0 2 Rn
³
:
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Secondly, we define the Sobolev deficit

ıp.u/ WD
krukLp.Rn/

kukLp� .Rn/
� S; for all u 2 PW 1;p.Rn/I

observe that, thanks to the sharp Sobolev inequality:
ı.u/ � 0 for all u 2 PW 1;p.Rn/ and ı.u/ D 0 if and only if u 2Mp .

The idea, based on a question in [17], is the following:
for p D 2 the Sobolev deficit can be estimated from below by some appropriate
distance between u and M2

This problem has been solved in [11], by showing that there exists a positive constant
c D c.n/ such that

ı2.u/ � c inf
v2M2

�
kru � rvkL2.Rn/

krukL2.Rn/

�2
; for all u 2 PW 1;2.Rn/I

and the result is optimal (in terms of the distance and in terms of the exponent 2).
Now, the natural question is as follows:
What about the general case, i.e., 1 < p < n?

The complete answer to this question has been recently provided in [69] (see also
[28, 68, 94] for previous results) where the authors prove the following quantitative
estimate: for 1 < p < n there exists a positive constant c D c.n; p/ such that

ıp.u/ � c inf
v2Mp

�
kru � rvkLp.Rn/

krukLp.Rn/

�˛
; for all u 2 PW 1;p.Rn/;

where the exponent ˛ is given by max¹2; pº and it is optimal.

4.2. Almost critical points

In this subsection, we consider the Euler–Lagrange equation associated to the Sobolev
inequality for p D 2, i.e., positive solutions to

(4.1) �uC u2
��1
D 0 in Rn:

In this subsection, we want to investigate the following naïf question:
If u almost solves (4.1), then is it close to an Aubin–Talenti bubble?

In order to answer this question, we define the following deficit:

ı.u/ WD k�uC u2
��1
kH�1 ; for all u 2 PW 1;2.Rn/ and u > 0I

then it is clear, from Theorem 3.2, that
ı.u/ D 0 if and only if u is an Aubin–Talenti bubble (3.1).
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Now, the question becomes the following:
If ı.u/ is small, is the u close to an Aubin–Talenti bubble?

The answer to this question is negative as one can see from the following example: we
set

u.x/ WD U1;�Re1.x/CU1;Re1.x/; for R� 1:

In this case, we say that u is the sum of two weakly-interacting Aubin–Talenti bubbles.
Then it is intuitive that u will approximately solve (4.1) in any reasonable sense. But,
of course, u is not close to a single Aubin–Talenti bubble (in particular ı.u/! 0, as
R!1). Actually, this is the only possibility as shown in [111], indeed the author
shows the following:

�.u/! 0; as ı.u/! 0;

provided u 2 PW 1;2.Rn/ is such that�
� �

1

2

�
Sn �

Z
Rn
jruj2 dx �

�
� �

1

2

�
Sn;

and where

�.u/ WD inf
�i ;xi

ru � �X
iD1

rU�i ;xi


L2.Rn/

denote the distance between u and the sum of �.� 1/ Aubin–Talenti bubbles.
The quantitative version of the result in [111] has been the object of several studies;

in particular we have the following estimates, according to the number of bubbles �
and to the dimension:

�.u/ .

8̂̂̂̂
ˆ̂<̂
ˆ̂̂̂̂:

ı.u/ if � D 1; n � 3;

ı.u/ if � > 1; 3 � n � 5;

ı.u/
qˇ̌

log ı.u/
ˇ̌

if � > 1; n D 6;

ı.u/
nC2
2.n�2/ if � > 1; n � 7:

The first estimate can be found in [33], the second one in [58], and the third and the
last one in [52] and we refer to the original papers for the complete statements and for
comments.

4.3. Further quantitative studies

Finally, we mention that, motivated by important applications in the calculus of vari-
ations and evolution PDEs, the study of the quantitative stability of functional and
geometric inequalities has been a growing interest in the recent years. We refer to the
survey papers [57, 61, 72] for a general discussion and presentation of the results and
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we refer to [30, 31, 59, 62–64, 66, 70, 74] for the study of the stability for isoperimetric
inequalities and to [35, 38–40, 51, 81, 86–88] (see also the survey [32]) for the study of
the stability of constant mean curvature hypersurfaces (i.e., the critical points of the
classical isoperimetric inequality (1.7) and these results are motivated by the celebrated
Alexandrov soap bubbles theorem in [1,2]); moreover, we refer to [60,65,116,117] for
the study of the stability of the Brunn–Minkowski inequality, to [23,54,95,103] for
the stability of the Gagliardo–Nirenberg inequality, and to [10,22,25,27,55,67,73,76]
(besides the already cited papers) for further stability results related to the Sobolev
inequality (in the fractional case or for p D 1).
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manuscript.

Funding. – This survey is based on a short online talk that the author presented during
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