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Abstract

We study online learning problems in which a decision maker has to take a se-
quence of decisions subject to m long-term constraints. The goal of the decision
maker is to maximize their total reward, while at the same time achieving small
cumulative constraints violation across the T rounds. We present the first best-
of-both-world type algorithm for this general class of problems, with no-regret
guarantees both in the case in which rewards and constraints are selected accord-
ing to an unknown stochastic model, and in the case in which they are selected
at each round by an adversary. Our algorithm is the first to provide guarantees
in the adversarial setting with respect to the optimal fixed strategy that satisfies
the long-term constraints. In particular, it guarantees a ρ/(1 + ρ) fraction of the
optimal reward and sublinear regret, where ρ is a feasibility parameter related to
the existence of strictly feasible solutions. Our framework employs traditional re-
gret minimizers as black-box components. Therefore, by instantiating it with an
appropriate choice of regret minimizers it can handle the full-feedback as well as
the bandit-feedback setting. Moreover, it allows the decision maker to seamlessly
handle scenarios with non-convex rewards and constraints. We show how our
framework can be applied in the context of budget-management mechanisms for
repeated auctions in order to guarantee long-term constraints that are not packing
(e.g., ROI constraints).

1 Introduction

We study online learning problems where a decision maker takes decisions over T rounds. At each
round t, the decision xt ∈ X is chosen before observing a reward function ft together with a set
of m time-varying constraint functions gt. The decision maker is allowed to make decisions that
are not feasible, provided that the overall sequence of decisions obeys the long-term constraints
∑T

t=1 gt(xt) ≤ 0, up to a small cumulative violation across the T rounds. The problem becomes
that of finding a sequence of decisions xt which guarantees a reward close to that of the best fixed de-
cision in hindsight while satisfying long-term constraints. This type of framework was first proposed
by Mannor et al. [38], and it has numerous applications ranging from wireless communication [38]
and multi-objective online classification [14], to safe online learning [4].

Mannor et al. [38] show that guaranteeing sublinear regret and sublinear cumulative constraints vio-
lation is impossible even when ft and gt are simple linear functions. Therefore, previous works ei-
ther focus on the case in which constraints are generated i.i.d. according to some unknown stochastic
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Algorithm Constr.
Non-convex Bound — constant ρ Bound — arbitrary ρ
ft and gt Reward Violation Reward Violation

Yu et al. [46] STOC ✗ OPT− Õ(T 1/2) Õ(T 1/2) — —

Ours
STOC ✓ OPT− Õ(T 1/2) Õ(T 1/2) OPT− Õ(T 3/4) Õ(T 3/4)

ADV ✓
ρ

1+ρ
OPT− Õ

(

T 1/2
)

Õ(T 1/2) — —

Table 1: Comparison between the performance of our algorithm and previous work using the same
baseline as ours. Bounds for settings that were not previously tractable are highlighted in gray. OPT
is the reward of the baseline.

model, without providing any guarantees for the adversarial case, or provide results for adversarially-
generated constraints under some strong assumptions on the structure of the problem or using a
weaker baseline (a detailed discussion of related works can be found in Section 2). A few examples
in the latter case are [42, 44, 22, 17]. In the former setting (i.e., stochastic constraints), Wei et al.
[43] consider a weaker baseline that is feasible for each constraint gt, going against the basic idea
of long-term constraints. A notable exception is the work by Yu et al. [46], who employ the same

baseline as ours, and provide an upper bound of Õ(T 1/2) for both regret and constraints violation
(see Table 1). We also mention that there are some works studying the problem in which constraints
are static (see, e.g., [33, 37, 45, 47]), or focus on specific types of constraints, such as knapsack
constraints [8, 32]. Our framework differs from those works as we deal with arbitrary and time-
varying constraints. Moreover, it also extends the online convex optimization framework introduced
by Zinkevich [48] by allowing for general non-convex loss functions ft, arbitrary feasibility sets X ,
and arbitrary time-varying long-term constraints.

1.1 Original contributions

Given the negative result by Mannor et al. [38], a natural question is what kind of guarantees we
can reach in the adversarial setting, when adopting the standard baseline of the best fixed decision
in hindsight satisfying (in expectation) the long-term constraints. We provide the first positive result
going in this direction, by designing a no-α-regret algorithm that guarantees a sublinear cumulative
constraints violation. Moreover, we make a step forward in the line of work initiated by Bubeck
and Slivkins [15], by showing that our algorithm is also the first best-of-both-worlds algorithm for
problems with arbitrary long-term constraints. This allows our algorithm to guarantee good worst-
case performance (adversarial case), while being able to exploit well-behaved problem instances
(stochastic case). The only assumption which we require is the existence of a decision that is strictly
feasible with respect to the sequence of constraints. We denote by ρ the “margin” by which this
decision is strictly feasible (see Section 3 for a definition). At the same time, we show that even
without this assumption, we can recover sublinear regret and violation with stochastic constraints.

Previous work usually assumes that ρ is a given constant. In that case, our algorithm matches the
guarantees by Yu et al. [46] when constraints are generated i.i.d. according to an unknown distribu-
tion, and has no-α-regret with α = ρ/(1 + ρ) in the adversarial case (see Table 1). Our algorithm
only requires a lower bound on the real value of the feasibility parameter ρ. In the stochastic case,
the lower bound may even be unknown, and the algorithm can efficiently estimate it from data.
Moreover, we argue that if ρ is allowed to depend on T and take arbitrarily small values, then there

are certain values (ρ ≤ T−1/4), for which any regret bound depending on 1/ρ would be useless
(i.e., not sublinear in T , see Section 4). This setting is usually overlooked by previous work, which
assumes ρ to be a given constant. We show that, in the case of an arbitrary feasibility parameter ρ, in

the stochastic setting our algorithm guarantees an upper bound of Õ(T 3/4) for regret and cumulative
constraints violation.

Our framework employs traditional regret minimizers as black-box components. Therefore, by in-
stantiating it with an appropriate choice of regret minimizers it can handle full-feedback as well
as bandit-feedback settings. In the former case, after playing xt, the decision maker gets to ob-
serve ft and gt, while in the latter case only the realized values ft(xt) and gt(xt) are observed.
Moreover, this allows the decision maker to seamlessly handle scenarios with non-convex reward
and constraints, by employing a suitable regret minimizer for non-convex losses (see, e.g., [41]).
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Our algorithm is based on a two-stage approach in which primal and dual players interact through
Lagrangian games. In the first (play) phase, the primal player tries to balance out the maximiza-
tion of their rewards with constraints violation. In the second (recovery) phase, the primal player
only makes “safe decisions” to avoid violating constraints too much. It is possible to prove that,
in the case of stochastic rewards and constraints, the algorithm never enters phase two. This prop-
erty is particularly relevant for budget-pacing mechanisms in repeated auctions, since it is related
to how budget is allocated. Our framework can also be instantiated to perform budget allocation
subject to constraints that were previously not tractable by traditional mechanisms, such as ROI
constraints [11, 23].

2 Related works

The online convex optimization (OCO) framework was first proposed in the machine learning liter-
ature by Zinkevich [48], and since then it has significantly expanded becoming widely influential
in the learning community (see, e.g., [28, 31, 40]). In what follows, we highlight the most relevant
works with respect to ours from the literature related to online convex optimization problems with
constraints. The analysis and the results are quite different depending on the nature of the constraints,
which may be static, i.e., time-invariant, or stochastic/adversarial, i.e., time-variant.

Static constraints. Zinkevich [48] first addressed online convex optimization problems with static
constraints by developing a projection-based online gradient descent (OGD) algorithm. This method

guarantees a regret upper bound of O(
√
T ) for an arbitrary sequence of convex objective functions

with bounded subgradients. Hazan et al. [30] showed that this is a tight bound up to constant factors.
When the set defined by the static constraints is complex, the conventional projection-based online
algorithms can be difficult to implement due to the potentially high computational cost of carrying
out the projection operation. To overcome this difficulty, Mahdavi et al. [37] propose an efficient

algorithm which is an adaptation of OGD achieving a cumulative regret of order O(
√
T ) and a

cumulative constraints violation of O(T 3/4). These bounds are generalized by Jenatton et al. [33]

who propose an algorithm that achieves a cumulative regret of O(Tmax{β,1−β}) and a cumulative

violation of O(T 1−β/2), where β ∈ (0, 1) is a user-defined parameter. Other works, such as, e.g,
[47, 45], propose primal-dual algorithms and achieve better bounds by making further assumptions.

In particular, Yu and Neely [45] achieve bounds on the cumulative regret of O(
√
T ) and on the

cumulative violation of O(1) by assuming that the Slater’s condition holds (i.e., the existence of a
strictly feasible solution). Then, Yuan and Lamperski [47] achieve a cumulative regret of O(logT )
and a constraint violation of O(

√
T ) under the assumption that the objective functions are strongly

convex. In all the the papers cited above, the regret is computed with respect to the best fixed action
in hindsight,that does not violate the constraints at each round t. This metric is called static regret.

Stochastic constraints. Yu et al. [46] consider an online convex optimization framework with
stochastic constraints, where the objective functions are chosen by an adversary, and the constraint
functions are independent and identically distributed (i.i.d.) over time. Yu et al. [46] provide a

primal-dual proximal gradient algorithm achieving O(
√
T ) cumulative regret and constraint viola-

tion by assuming Slater’s condition. Moreover, Wei et al. [43] provide bounds of the same order by
assuming a less stringent version of the Slater’s condition. As a performance metric, the latter work
use static regret.

Adversarial constraints. Various works in the literature address the online learning setting with
adversarial reward and constraint functions. This problem was first studied by Mannor et al. [38]
in a two-player game setting. The regret is computed with respect to the best strategy from the set
of fixed strategies that satisfy the constraints on average. Mannor et al. [38] show that in general
it is impossible to compete against the best decision in such a set. In particular, they construct
a two-player game where there exists a policy for the adversary such that, among the policies of
the player that violate sublinearly the constraints, there is no policy that can achieve the no-regret
property in terms of maximizing the player’s reward. Sun et al. [42] study a similar problem related
to contextual bandits and show that also in their setting the decision maker is unable to compete
again this baseline by adapting the result from Mannor et al. [38] to their setting. To circumvent
this issue and provide some guarantees, they rely on a weaker baseline to compute the regret. In
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particular, they assume that the decision set is rich enough that, in hindsight, there exist a fixed
action that satisfies the constraints at each round: they are using the static regret as a performance
metric. Then, by employing static regret as a baseline, Sun et al. [42] show that the approaches of
Mahdavi et al. [37] and Jenatton et al. [33] can be extended to the online learning framework with
adversarial sequential constraints. Therefore, they provide an algorithm which is a generalization of
that from Mahdavi et al. [37] achieving sublinear cumulative regret and constraint violations.

Liakopoulos et al. [35] define a new notion of regret, to overcome the impossibility result from
Mannor et al. [38]. They introduce a refined regret metric which compares the agent’s incurred
losses to those of a K-benchmark, which is the best strategy in the hindsight such that, for each
time window of length K , the long-term constraints over that window are satisfied. They provide
parametric results that are useful to balance the trade-off between regret minimization and long-
term residual constraint violation. Moreover, instead of the Slater’s condition they consider a less
stringent assumption related to the definition of their regret metric.

A recent line of works such as [22, 21] and [17] provide some results related to the regret against
dynamic policies. As expected, comparing against a dynamic baseline require very strong assump-
tions. Chen et al. [22] compute a bound on the cumulative dynamic regret which is sublinear in

the time horizon T only if the drift of the baseline sequence (i.e.,
∑T

t=1 ||x∗
t+1 − x∗

t ||) and that of

the constraints (i.e.,
∑T

t=1 maxx ||[gt+1(x) − gt(x)]
+||) are o(T 2/3). Cao and Liu [17] consider

a bandit feedback setting and, in order to provide sublinear regret and constraint violations, they
assume that all the loss functions have uniformly bounded difference (i.e., for each t and x,x′ ∈ X ,
|ft(x) − ft(x

′)| ≤ M for some positive constant M ), and that the drift of the baseline sequence
is sublinear. In other words, the underlying dynamic optimization problems vary slowly over time.
Both Chen et al. [22] and Cao and Liu [17] need to assume the Slater’s condition. Yi et al. [44] pro-
vide similar results in a distributed online convex optimization setting with adversarial constraints.
They analyze both the case in which the Slater’s condition holds, and the case without this assump-
tion.

Others relevant related works, are those studying online learning problems in which the decision
maker has to satisfy supply/budget constraints. In this setting, the decision maker wants to maxi-
mize their expected reward without violating a set of m resource constraints. The process stops at
time horizon T , or when the total consumption of some resource exceeds its budget. Badanidiyuru
et al. [8] first introduce and solve the Bandits with Knapsacks (BwK) framework, in which thay con-
sider bandit feedback, stochastic objective and constraint functions. Other optimal algorithms for
Stochastic BwK were proposed by Agrawal and Devanur [2, 3] and by Immorlica et al. [32]. The
Adversarial Bandits with Knapsacks setting was first studied by Immorlica et al. [32]. The authors
shows that an appropriate baseline is the best fixed distribution over arms. Achieving no-regret is
no longer possible under this baseline and, therefore, they provide no-α-regret guarantees for their
algorithm.

We remark that in this paper we are able to handle more general constraints than Immorlica et al. [32],
which can deal only with budget constraints. Moreover, we can compete with a baseline stronger
than the static regret used by Sun et al. [42], without needing the strong assumptions required, for
instance, by Cao and Liu [17].

3 Preliminaries

The decision maker has a non-empty set of available strategies X (this set may be non-convex,
integral, and even non-compact). In each round t ∈ [T ],2 the decision maker first chooses xt ∈ X ,
and the environment selects a reward function ft : X → [0, 1] and a constraint function gt : X →
[−1, 1]m conditioned on the past history of play up to time t − 1 (i.e., the environment chooses ft
and gt without knowledge of xt). Notice that both ft and gt need not be convex. The latter specifies
a set of m constraints of the form gt(x) ≤ 0, with gt,i(x) ≤ 0 denoting the i-th constraint.3 In the
following, we denote as F , respectively G, the set of all the possible ft, respectively gt, functions
(e.g., F and G may contain all the Lipschitz-continuous functions defined over X ). At each round
t ∈ [T ], the decision maker can condition their decision on prior feedbacks and on the sequence of

2In this work, we denote by [x] the set {1, . . . , x} of the first x natural numbers.
3Focusing on the case gt(x) ≤ 0 is w.l.o.g. since any set of constraints can be represented in such a form.
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prior decisions x1, . . . ,xt−1, but no information about future rewards and constraint functions is
available.

3.1 Strong duality through strategy mixtures

Next, we define the optimization problem (Problem LPf,g) which is used to define the baselines
against which we compare the performances of the decision maker. Such a problem involves proba-
bilistic mixtures of strategies in X , which are crucial in order to recover strong duality.4

First, we introduce the set of probability measures on the Borel sets of X . We refer to such a set
as the set of strategy mixtures, denoted as Ξ. We endow X with the Lebesgue σ-algebra, and we
assume that all the functions in F and G are measurable with respect to every probability measure
ξ ∈ Ξ. This ensures that the various expectations taken are well-defined, since the functions are
assumed to be bounded above, and they are therefore integrable. In the following, for the ease of
presentation and with a slight abuse of notation, whenever we write a ξ ∈ Ξ in place of an x ∈ X ,
we mean that we are taking the expectation with respect to the probability measure ξ. For instance,
given f ∈ F and g ∈ G, we have that f(ξ) = Ex∼ξf(x) and g(ξ) = Ex∼ξg(x).

Then, given two functions f ∈ F and g ∈ G, we define the following optimization problem, which
chooses the strategy mixture ξ ∈ Ξ that maximizes the expected reward encoded by f , while guar-
anteeing that the constraints encoded by g are satisfied in expectation.

OPTf,g :=

{

sup
ξ∈Ξ

f(ξ) s.t.

g(ξ) ≤ 0.
(LPf,g)

We denote by dg ∈ [−1, 1] the largest possible value for which there exists a strategy mixture ξ ∈ Ξ
satisfying the constraints g(ξ) ≤ 0 by a margin of at least dg. Formally,

dg := sup
ξ∈Ξ

min
i∈[m]

−gi(ξ). (1)

In order to ensure that OPTf,g is always well defined, we assume that it is always the case that
dg ≥ 0. Notice that, if dg > 0, then Problem LPf,g satisfies Slater’s condition.

In the following, we prove some auxiliary results relating to Problem LPf,g that will be useful in the
rest of the paper. First, we introduce a Lagrangian relaxation of the problem.

Definition 3.1 (Lagrangian Function). Given two arbitrary functions f ∈ F and g ∈ G, the La-
grangian function Lf,g : Ξ× R

m
≥0 → R of Problem LPf,g is defined as

Lf,g(ξ,λ) := f(ξ)− 〈λ, g(ξ)〉.

If Problem LPf,g satisfies Slater’s condition, then Theorem 1 of Chapter 8.3 in [36] readily gives us
that strong duality holds even if f and g are arbitrary non-convex functions. Formally:

Corollary 3.2. Given f ∈ F and g ∈ G such that dg > 0, it holds

sup
ξ∈Ξ

inf
λ∈R

m
≥0

Lf,g(ξ,λ) = inf
λ∈R

m
≥0

sup
ξ∈Ξ
Lf,g(ξ,λ) = OPTf,g.

Next, we show that, if dg > 0, then strong duality holds even when we restrict the admissible dual

vectors λ ∈ R
m
≥0 to the set Ddg , where, for any q ∈ R>0, we let Dq :=

{

λ ∈ R
m
≥0 : ‖λ‖1 ≤ 1/q

}

(omitted proofs can be found in Appendix A).

Theorem 3.3. Given f ∈ F and g ∈ G such that dg > 0, it holds

sup
ξ∈Ξ

inf
λ∈Ddg

Lf,g(ξ,λ) = inf
λ∈Ddg

sup
ξ∈Ξ
Lf,g(ξ,λ) = OPTf,g.

4The optimal fixed strategy mixture provides an arguably stronger baseline than the optimal fixed strategy.
In stochastic settings, this baseline is related to the best dynamic policy. In particular, if we consider the case
in which the observed functions are defined as the average of functions ft and gt across the T rounds, then the
optimal mixture provides the same utility as the best dynamic policy (see [7] for a similar result).
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3.2 Stochastic vs. adversarial: baselines and feasibility

We consider several settings, differing in how functions ft and gt are selected, either stochastically
or adversarially. We say that functions ft (respectively gt) are selected stochastically, when they are
independently drawn according to a given probability measure µF over F (respectively µG over G).
Instead, we say that functions ft (respectively gt) are selected adversarially if each ft (respectively
gt) is chosen by an adversary based on the sequence of prior decisions, namely x1, . . . ,xt−1.

Consistently with previous work (see, e.g., [38]), we compare the performance of the decision maker
(in terms of reward cumulated over the T rounds) against the baseline T OPTf̄,ḡ (as defined by

Problem LPf̄,ḡ), where f̄ and ḡ are suitably-defined functions. In particular:

• When functions ft, respectively gt, are selected stochastically, then we define function f̄ ,
respectively ḡ, so that f̄(x) := Ef∼µF

[f(x)], respectively ḡ(x) := Eg∼µG
[g(x)].

• When functions ft, respectively gt, are selected adversarially, then we define function f̄ ,

respectively ḡ, so that f̄(x) := 1
T

∑T
t=1 ft(x), respectively ḡ(x) := 1

T

∑T
t=1 gt(x).

Intuitively, in the stochastic case, the baseline is instantiated with an expectation of functions taken
with respect to the probability measure µF (respectively µG). Instead, in the adversarial case, the
baseline uses the average of functions ft (respectively gt) observed over the T rounds.

Let us remark that, when the set X is compact convex and functions ft and gt are convex, then
Problem LPf̄,ḡ defining our baselines can be equivalently re-written by using strategies x ∈ X
rather than strategy mixtures ξ ∈ Ξ, since there always exists an optimal solution to Problem LPf̄,ḡ
that places all the probability mass on a single strategy.

Our goal is to design online algorithms for the decision maker that output a sequence of decisions
x1, . . . ,xT such that both the cumulative regret with respect to the performance of the baseline,

defined as RT := T OPTf̄,ḡ −
∑T

t=1 ft(xt), and the cumulative constraints violation, defined as

V T := maxi∈[m]

∑T
t=1 gt,i(xt), grow sublinearly in the number of rounds T .

In conclusion, we introduce a problem-specific parameter that is strictly related to the feasibility of
Problem LPf̄,ḡ. We call it the feasibility parameter ρ ∈ R, which is formally defined as follows:

• When functions gt are selected stochastically, ρ := supξ∈Ξmini∈[m]−ḡi(ξ).
• When functions gt are selected adversarially, ρ := supξ∈Ξ mint∈[T ] mini∈[m]−gt,i(ξ).

Intuitively, in the stochastic case, ρ is equal to dḡ , while in the adversarial case it is computed
similarly, but considering the worst case with respect to the functions gt observed at each round t.
Notice that, when ρ > 0, Slater’s condition is satisfied for Problem LPf̄,ḡ .

In the following, we denote by ξ∗ ∈ Ξ a strategy mixture that is optimal for Problem LPf̄,ḡ. More-
over, we always assume that functions ft and gt are such that Problem LPf̄,ḡ is feasible, and we let

ξ◦ ∈ Ξ be the feasible strategy mixture that is optimal for the problem defining ρ.5

3.3 Regret minimizers

A regret minimizer (RM) for a setW is an abstract model for a decision maker that repeatedly inter-
acts with a black-box environment. At each t, a RM performs two operations: (i) NEXTELEMENT(),
which outputs an element wt ∈ W ; and (ii) OBSERVEUTILITY(ut), which updates the internal state
of the RM using the feedback received from the environment. This is defined in terms of a utility
function ut : W → [a, b] having range [a, b] ⊆ R, with ut possibly depending adversarially on the
sequence of outputs w1, . . . ,wt−1. The objective of the RM is to output a sequence w1, . . . ,wT

of points in W so that its cumulative regret, defined as supw∈W

∑T
t=1(ut(w) − ut(wt)), grows

asymptotically sublinearly in T . See [20] for a review of the various RMs available in the literature.

5Notice that ξ∗ and ξ◦ may not be well defined in all the cases in which the problem that defines them does
not admit a maximum. Nevertheless, in such cases, we assume that ξ∗ (or ξ◦) is a strategy mixture arbitrarily
“close” to the supremum, so that all of our results continue to hold up to negligible additive approximations that
are dominated by other approximation factors, and we can safely ignore them for the ease of exposition.
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For the ease of presentation, we introduce the concept of regret minimizer constructor, which is a
procedure, say INIT(W , [a, b], η), that builds a RM on the basis of the three parameters given as
input. In particular, the procedure returns a RM instantiated for the set W , working with utility
functions having range [a, b], and such that its cumulative regret is guaranteed to grow sublinearly
in the time horizon T with probability at least 1− η.

4 A unifying meta-algorithm

In this section, we present our meta-algorithm. Its core idea is to instantiate suitable pairs of RMs,
where one is working in the domain X of primal variables and the other in a suitable subset of the
domain R

m
+ of dual variables. At each round t ∈ [T ], the algorithm makes the RMs “play” against

each other in a Lagrangian game, where the utility functions observed by them are related to the
Lagrangian function Lft,gt(x,λ) of Problem LPft,gt .

6

Algorithm 1 provides the pseudo-code of the meta-algorithm, which takes as input: the total number
of rounds T , a failure probability δ ∈ (0, 1) such that the guarantees provided by the algorithm hold
with probability at least 1− δ, and a lower bound ρ̂ ≥ 0 on the value of the feasibility parameter ρ.

Algorithm description. The algorithm works in two phases. In the first one, called play phase,
the algorithm builds a primal RM, calledRP

I , working in the primal domainX and a dual RM, called
RD

I , operating on the subset Dρ̃ of the dual domain R
m
+ , where ρ̃ is set in Line 1. The algorithm

makes the two RMs playing against each other (see the call LAGRANGIANGAME(RP
I ,RD

I , 1)) until
either the cumulative violation V t incurred by the algorithm exceeds a given threshold (see Line 4,
where Mρ̃ is defined in Equation (2)) or round T is reached. Then, in the second phase, called
recovery phase, the algorithm constructs a new pair of primal, dual RMs, with the latter working
on the (m − 1)-dimensional simplex ∆m. The recovery phase uses the remaining rounds to make
these new RMs play against each other, with the primal RM observing modified utility functions
that do not account for functions ft (see the call LAGRANGIANGAME(RP

II,RD
II, 0)). Intuitively,

this is needed in order to ensure that the algorithm plays strategies xt that satisfy the constraints,
thus balancing out the cumulative constraint violation accumulated in the first phase. The pseudo-
code describing one “play” between two RMs, called RP and RD, is defined by the sub-procedure
LAGRANGIANGAME(RP,RD, v) in Algorithm 2. The additional parameter v ∈ {0, 1} is used to
control the feedback fed into the primal RM RP; specifically, if v = 1, then RP observes a utility
function that also accounts for ft (play phase), otherwise, if v = 0, the observed utility function
only accounts for the term depending on gt (recovery phase).

Algorithm 1 META-ALGORITHM(T, δ, ρ̂)

1: ρ̃← max
{

ρ̂/2, T−1/4
}

, η ← δ/3, t← 1
⊲ Phase I: Play

2: RP
I ← INIT

P
(

X ,
[

− 1/ρ̃, 1 + 1/ρ̃
]

, η
)

3: RD
I ← INIT

D
(

Dρ̃,
[

− 1/ρ̃, 1/ρ̃
]

, 0
)

4: while V t ≤ (T − t)ρ̃+Mρ̃ − 1 ∧ t ≤ T do
5: xt ← LAGRANGIANGAME(RP

I ,RD
I , 1)

6: t← t+ 1
7: T1 ← t− 1

⊲ Phase II: Recovery
8: RP

II ← INIT
P (X , [−1, 1], η)

9: RD
II ← INIT

D (∆m, [−1, 1], 0)
10: while t ≤ T do
11: xt ← LAGRANGIANGAME(RP

II,RD
II, 0)

12: t← t+ 1

Algorithm 2 LAGRANGIANGAME(RP,RD, v)

1: xt ←RP.NEXTELEMENT()
2: λt ←RD.NEXTELEMENT()

3:
Play xt and get ft and gt ⊲ Full f.
Play xt and get ft(xt) and gt(xt) ⊲ Bandit f.
⊲ Primal RM update

4:
Let uPt : x 7→ vft(x)−〈λt, gt(x)〉 ⊲ Full f.
uPt (xt)← vft(xt)− 〈λt, gt(xt)〉 ⊲ Bandit f.

5:
RP.OBSERVEUTILITY(uPt ) ⊲ Full f.
RP.OBSERVEUTILITY(uPt (xt)) ⊲ Bandit f.
⊲ Dual RM update

6: Let uDt : λ 7→ −〈λ, gt(x)〉
7: RD.OBSERVEUTILITY(uDt )

Regret minimizer constructors. Algorithm 1 also needs access to two suitably-defined regret
minimizer constructors, namely INIT

P(W , [a, b], η) and INIT
D(W , [a, b], η), where the former is

6The idea of having pairs of primal, dual RMs playing a Lagrangian game was originally introduced by Im-
morlica et al. [32], restricted to the case of knapsack constraints.
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used to build RMs working in the primal domain and the latter for those operating on the dual
one. Their actual implementation depends on the specific problem at hand. In the following, we let
E
P
t,η be the regret upper bound (on t ∈ [T ] rounds) for primal RMs RP dealing with utility func-

tions having range [0, 1], as returned by the call INIT
P(X , [0, 1], η). Notice that, when the range is

[a, b], the same RM can be adopted by first normalizing utility values, so that the resulting regret
upper bound is (b − a)EPt,η. As for dual RMs RD, we let EDt be the regret upper bound (on round

t ∈ [T ]) provided by the RM defined for the set ∆m, while E
D
t /ρ̃ is the upper bound for the dual

RM instantiated on the setDρ̃. Notice that, since dual RMs always have full feedback, we can safely
assume that the regret bounds EDt hold deterministically. We also assume that RMs provide bounds
that increase with the number of rounds, i.e., such that EPt,η ≤ E

P
t′,η and E

D
t ≤ E

D
t′ for all t ≤ t′.

How to construct RMs. INIT
D can be implemented by using online mirror descent (OMD) with

domain ∆m (or D1) and a negative entropy regularizer. Since the utility function uDt is linear in λ,

we get a regret bound for the primal RM of EDT = O(
√

T log(m)) (see, e.g., [13, 39]). The design

of INIT
P depends on the structure of X and functions ft and gt. For instance, in convex settings

with full feedback we can employ OMD [29], while with bandit feedback we can use [16]. Finally,

for non-convex functions we can employ, e.g., the RMs in [41]. All these RMs guarantee Õ(
√
T )

regret.

How to get away with no knowledge of ρ. In Section 8, we show that a lower bound ρ̂ is not
necessary when functions gt are selected stochastically. Indeed, it is sufficient to add a preliminary
phase to Algorithm 1, which is used to infer a suitable lower bound on ρ from experience. In order

to do this, only
√
T rounds are needed, so that the bounds of Algorithm 1 are not compromised.

When functions gt are chosen adversarially, it is easy to see that it is impossible to compute a lower
bound on the feasibility parameter ρ by only using the first rounds. For instance, think of a setting
in which ρ is very large when only considering the first rounds, while it becomes small during later
rounds.

Remark 4.1 (Dependence on the lower bound ρ̂). Algorithm 1 can take as input any ρ̂ ≥ 0. However,
since our regret bounds include a factor 1/ρ̃, by choosing the trivial lower bound ρ̂ = 0 we incur

in a regret of Õ(
√
T/ρ̃) = Õ(T 3/4). In order to obtain optimal bounds, we would like to have

ρ̃ = Ω(ρ).

Remark 4.2 (Dependence on the feasibility parameter ρ). We choose to include the dependence on
the feasibility parameter ρ in the order of convergence of the algorithm. As customary, the goal is
devising bounds in the form poly(instance)·h(T ), where the first term is a polynomial function of the
parameters defining the problem instance, and h(T ) = o(T ). Therefore, we cannot include a factor
1/ρ in the regret bounds if ρ can be arbitrarily small. Even from a practical standpoint, when ρ is
too small a 1/ρ regret bound is too large to be significant. For those reasons, we set ρ̃ in Algorithm 1

to be the maximum between the feasibility parameter lower bound ρ̂ and T−1/4. The value T−1/4

has been chosen so as to minimize the maximum between the cumulative regret and the cumulative
constraint violation when the lower bound on the feasibility parameter ρ̂ is too small.

5 Analysis with stochastic constraints and adversarial rewards

We start by analyzing the performance of our meta-algorithm (Algorithm 1) when the reward and
constraint functions are selected stochastically and adversarially, respectively.

Given t ∈ [T ] and η ∈ (0, 1), we let Et,η :=
√

8t log(18mt2/η) be the value bounding differences
between expectations and empirical means of constraint functions, obtained by applying the Azuma-
Hoeffding inequality, and holding with probability at least 1 − η. Given γ ∈ (0, 1), we also let

Mγ :=
2

γ

√
T +

(

2 +
3

γ

)

Et,η +

(

1 +
2

γ

)

E
P
t,η +

1

γ
E
D
t , (2)

which is a recurring term related to the maximum violation that Algorithm 1 accepts in play phase.

First, we introduce a useful eventE that encompasses all the cases in which Algorithm 1 successfully
terminates. Then, Lemma 5.2 shows that such an event holds with probability at least 1 − δ. In
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particular, E holds when the regret bounds of RP
I and RP

II hold, and, additionally, the differences
between expectations and empirical means of constraint functions are bounded as desired.

Definition 5.1. We denote with E the event in which Algorithm 1 satisfies the following conditions
(recall that η = δ/3): (i) the regret incurred by RP

I after T1 rounds is upper bounded by E
P
T1,η

; (ii)

the regret cumulated by RP
II after the remaining T − T1 rounds is upper bounded by E

P
T−T1,η

; and

(iii) for every pair of rounds t, t′ ∈ [T ] : t ≤ t′ and resource i ∈ [m] it holds:

•
∣

∣

∣

∑t′

τ=t gτ,i(xτ )−
∑t′

τ=t ḡi(xτ )
∣

∣

∣
≤ Et′−t,η ,

•
∣

∣

∣

∑t′

τ=t λτ gτ,i(xτ )−
∑t′

τ=t λτ ḡi(xτ )
∣

∣

∣
≤ Et′−t,η maxτ∈[T ]:t≤τ≤t′ ||λτ ||1,

•
∣

∣

∣

∑t′

τ=t gτ,i(ξ)−
∑t′

τ=t ḡi(ξ)
∣

∣

∣
≤ Et′−t,η for ξ ∈ {ξ∗, ξ◦},

•
∣

∣

∣

∑t′

τ=t λτgτ,i(ξ)−
∑t′

τ=t λτ ḡi(ξ)
∣

∣

∣
≤ Et′−t,η maxτ∈[T ]:t≤τ≤t′ ||λτ ||1 for ξ ∈ {ξ∗, ξ◦}.

Lemma 5.2. After running Algorithm 1, the event E holds with probability at least 1− δ.

Next, we lower bound the cumulative reward obtained by Algorithm 1 during the play phase. Intu-
itively, we show that, if the cumulative constraints violation is large, then the decisions xt in the first
T1 rounds provide a per-round reward much higher than that achievable by ξ∗. This allows us to
employ the following recovery phase to decrease constraints violation cumulated in the play phase,
while also ensuring that the cumulative regret stays low at the end of the algorithm. Formally:

Lemma 5.3. If event E holds, then after round T1 of Algorithm 1 the following inequality holds:
∑T1

t=1 ft(xt) ≥
∑T1

t=1 ft(ξ
∗) + (T − T1)− 1

ρ̃ET1,η −
(

1 + 2
ρ̃

)

E
P
T1,η
− 1

ρ̃E
D
T1
.

In the recovery phase, the only goal of Algorithm 1 is to decrease constraints violation. In the
following Lemma 5.4, we show that, at each round of the recovery phase, the algorithm is “close”
to satisfying (in expectation) all the constraints by at least ρ. Formally:

Lemma 5.4. If event E holds, then after Algorithm 1 halts, the following holds for every i ∈ [m]:
∑T

t=T1+1 gt,i(xt) ≤ −(T − T1)ρ+ 2EPT−T1,η
+ E

D
T−T1

+ ET−T1,η.

Now, we are ready to present the two main results of this section. First, we provide a bound on the
cumulative regret and constraints violation when the lower bound ρ̂ is sufficiently large.

Condition 5.5. It holds that ρ̂ ≥ 2T−1/4.

Notice that, under Condition 5.5, ρ̃ = ρ̂/2. This gives us the following result:

Theorem 5.6. Suppose that functions ft and gt are selected adversarially and stochastically, re-
spectively. If Condition 5.5 is satisfied, then, with probability at least 1 − δ, Algorithm 1 provides

RT ≤ 1
ρ̃ET,η +

(

1 + 2
ρ̃

)

E
P
T,η + 1

ρ̃E
D
T and V T ≤Mρ̃ + 2EPT,η + E

D
T + ET,η .

Finally, we also prove that even if Condition 5.5 is not satisfied, i.e., the lower bound ρ̂ is not
sufficiently large, the following holds:

Theorem 5.7. Suppose that functions ft and gt are selected adversarially and stochastically, re-
spectively. Algorithm 1 guarantees that the following bounds hold with probability at least 1 − δ:
RT ≤ T 1/4

ET,η +
(

1 + 2T 1/4
)

E
P
T,η + T 1/4

E
D
T and VT ≤ T 3/4 +MT−1/4 + 2EPT,η + E

D
T + ET,η .

Remark 5.8. Notice that, by using primal and dual RMs whose regret bounds are of the order of

Õ(
√
T ), Theorem 5.6 allows us to recover Õ(

√
T/ρ̂) regret and Õ(

√
T/ρ̂) constraints violation for

the case in which Condition 5.5 holds. Theorem 5.7 still provides Õ(T 3/4) regret and constraints
violation when the condition is not met, which is necessary the case when ρ = 0.

6 Analysis with stochastic constraints and stochastic rewards

In this section, we focus on the case in which both reward and constraint functions are selected
stochastically. In this setting, we are able to show that Algorithm 1 never enters the recovery phase.
As we argue in Section 9, this is an important property for budget-management applications, since
it is related to the round in which the budget is fully depleted.
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In order to prove our result, we extend the event E to capture also the Azuma-Hoeffding bounds for
the reward functions, which are stochastic in this setting.7 The core idea that we exploit to prove our
result is that we can think of the two RMs as if they are playing a stochastic repeated zero-sum game,
which is the repeated Lagrangian game whose functions are sampled according to the probability
measures µF and µG . By Theorem 3.3, strong duality holds, and the game has an equilibrium.
Hence, it is possible to show that the per-round utility of the primal RM is close to the value of the
game, which is OPTf̄,ḡ . At the same time, it is possible to show that, if the cumulative constraints
violation becomes large during the play phase (and, thus, T1 < T ), then the per-round utility of the
primal RM is below OPTf̄,ḡ, reaching a contradiction that proves the following theorem.

Theorem 6.1. Suppose that functions ft and gt are selected stochastically. With probability at least
1− δ, Algorithm 1 never enters the recovery phase, namely T1 = T .

Notice that regret bounds analogous to the one in Theorems 5.6 and 5.7 also hold in the case in
which both reward and constraint functions are selected stochastically.

7 Analysis with adversarial constraints

In this section, we study settings in which the constraint functions gt are selected adversarially. As
shown by Mannor et al. [38], it is impossible to obtain sublinear cumulative regret and constraints
violation when using our baseline, i.e., the best fixed strategy mixture ξ∗ satisfying (in expectation)
the long-tern constraints. However, we show that it is possible to achieve a ρ/(1 + ρ) fraction
of the cumulative reward obtained by always playing ξ∗, while guaranteeing sublinear constraints
violation. The dependence of the approximation factor on the feasibility parameter ρ is similar to
the dependence on the per-round budget in problems with budget constraints (see the related works
in Section 2 for more details). Moreover, as we discuss later in Section 9, when restricted to the case
of budget constraints and adversarial reward/cost functions, our approximation factor matches the
state-of-the-art bounds provided by Castiglioni et al. [18].

As a first step to prove our result, we provide a lower bound on the cumulative reward of the primal
RM during the play phase. We show that it achieves at least a ρ/(1+ρ) fraction of the value obtained
by the optimal solution in the first T1 rounds. Moreover, the algorithm provides an additional utility
compensating for the last rounds in which the algorithm only focuses in satisfying the constraints.
Finally, we show that, in the recovery phase, the constraints are satisfied by at least ρ at each round,
up to a term related to the regret ofRP

II andRD
II, proving the following theorem.

Theorem 7.1. Suppose that functions ft and gt are selected adversarially. If Condition 5.5 is
satisfied, then, with probability at least 1 − 2

3δ, Algorithm 1 guarantees that the following holds:
∑T

t=1 ft(xt) ≥ ρ
1+ρ

∑T
t=1 OPTf̄,ḡ −

(

1 + 2
ρ̃

)

E
P
T,η − 1

ρ̃E
D
T and V T ≤Mρ̃ + 2EPT,η + E

D
T .

A similar result can be also derived for the case of stochastic rewards and adversarial constraints.

Corollary 7.2. Suppose functions ft and gt are selected stochastically and adversarially, respec-
tively. If Condition 5.5 is satisfied, then, with probability at least 1 − δ, Algorithm 1 provides
∑T

t=1 ft(xt) ≥ ρ
1+ρ

∑T
t=1 OPTf̄,ḡ −

(

1 + 2
ρ̃

)

E
P
T,η − 1

ρ̃E
D
T − 2ET,η and V T ≤Mρ̃ +2EPT,η +E

D

T +

ET,η .

Remark 7.3. By using primal and dual RMs whose regret bounds are of the order of Õ(
√
T ),

Theorem 7.1 and Corollary 7.2 allows us to recover
∑T

t=1 ft(xt) ≥ ρ
1+ρ

∑T
t=1 OPTf̄,ḡ− Õ(

√
T/ρ̂),

and Õ(
√
T/ρ̂) constraints violation for the case in which Condition 5.5 holds.

8 How to get away with no knowledge about the feasibility parameter

We show how to extend Algorithm 1 in order to deal with settings in which a lower bound on the
feasibility parameter ρ is not known. Indeed, we propose an algorithm (Algorithm 3) that directly
runs Algorithm 1, by first devoting a given number T0 < T of rounds to inferring a suitable lower
bound ρ̂ on the feasibility parameter ρ. Ideally, we would like to have ρ̂ = Ω(ρ), so that, we recover

7Accounting for the martingale difference sequences ft(xt)− f̄(xt) and ft(ξ
∗)− f̄(ξ∗).
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bounds of the order Õ(
√
T/ρ). In particular, we show that we can run Algorithm 3 with T0 = T 1/2

in order to recover an approximation of ρ that has an additive approximation error of the order T 1/4.

This is sufficient to get ρ̂ = Ω(ρ), since a good approximation of ρ is only needed when ρ ≥ T 1/4.8

Let us remark that our approach only works when constraints functions gt are selected stochastically.
When these are chosen adversarially, it is easy to see that it is impossible to compute a lower bound
on the feasibility parameter ρ by only using the first rounds. For instance, think of a setting in which
ρ is very large by only considering the first rounds, while it becomes small during later rounds.

Algorithm 3 META-ALGORITHM(T, T0, δ)

1: RP ← INIT
P
(

X ,
[

− 1, 1
]

, δ
)

2: RD ← INIT
D (∆m, [−1, 1], 0)

3: t← 1
4: while t ≤ T0: do
5: xt ← LAGRANGIANGAME(RP,RD, 0)
6: t← t+ 1

7: ρ̂← − 1
T0

(

maxi∈[m]

∑T0

t=1 gt,i(xt) + ET0,δ

)

8: Run Algorithm 1 with T − T0, δ, and ρ̂ as inputs

In order to exploit the guarantees of Algorithm 1 presented in the previous sections, it is enough to
show that, after the first T0 rounds of Algorithm 3, ρ̂ ≤ ρ holds with high probability.

Lemma 8.1. By setting T0 =
√
T , after T0 rounds of Algorithm 3 we have that ρ̂ ≤ ρ with proba-

bility at least 1− δ.

To recover a good estimate of ρ, we need the value of ρ to be sufficiently large. Formally, we
consider the following condition.9

Condition 8.2. It holds that ρ ≥ 2
T0

(

2ET0,δ + 2EPT0,δ
+ E

D
T0

)

.

Remark 8.3. Notice that, by using primal and dual RMs whose regret bounds are of the order

Õ(
√
T ), and setting T0 =

√
T Condition 8.2 is satisfied when ρ = ω(T−1/4).

Next, we show that ρ̂ = Ω(ρ), which allows us to exploit the guarantees proved for Algorithm 1 in
order to provide analogous ones for Algorithm 3. Formally:

Lemma 8.4. By setting T0 =
√
T , and assuming that Condition 8.2 is satisfied, after T0 rounds of

Algorithm 3 we have that ρ̂ ≥ ρ/2 with probability at least 1− 2δ.

By applying the results of the previous sections on the guarantees of Algorithm 1, and by using

primal and dual RMs whose regret bounds are of the order Õ(
√
T ), we get Õ(

√
T/ρ) and Õ(

√
T/ρ)

regret and violation bounds, respectively, when the functions gt are selected stochastically.

9 Applications to repeated auctions settings

Internet advertising platforms usually operationalize large auction markets by using proxy bidders
that place bids in repeated auctions on the advertisers’ behalf. A proxy-bidder selects bids accord-
ing to a budget-pacing mechanism, which manages the usage of the advertisers’ budget over time
[1, 23, 9]. In this section, we discuss the application of our framework to budget-management in
auctions, arguing that it can deal with more general constraints on ad slots allocation with respect
to what is currently achievable with multiplicative pacing algorithms, which manage only knapsack
constraints.

We consider the problem faced by a bidder who takes part in a sequence of repeated auctions. We
focus on the case of second-price and first-price auctions, since they are the de facto standard in

8Notice that Algorithm 3 is not an explore and exploit algorithm. Indeed, it uses the exploration rounds only
to have a rough estimate of ρ.

9Notice that even if ρ does not satisfy the condition, ρ̂ is a lower bound on ρ. This is sufficient to guarantee
that the results in Theorem 5.7 and Theorem 6.1 hold.
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large Internet advertising platforms. At each round t ∈ [T ], the bidder observes their valuation vt
from a finite set of nv possible valuations V ⊂ [0, 1]. Such valuation models targeting preferences
of the advertiser. Then, the bidder chooses a bid bt ∈ B, where B ⊂ [0, 1] is a finite set of nb
possible bids such that 0 ∈ B (i.e., the bidder is allowed to skip items without incurring in any
cost). The utility of the bidder depends on the largest among competing bids, denoted by βt. In
particular, the utility is computed as ft(bt) = (vt − ct(bt))1{bt ≥ βt}, where the cost ct is such
that ct(bt) = β1{bt ≥ βt} in second-price auctions, and ct(bt) = bt1{bt ≥ βt} for first-price ones.
Finally, the bidder has a target per-round budget of ρ > 0, which yields an overall budget B := ρT
that limits the total spending over the T rounds. In the case of budget-constrained bidding, a strictly
feasible solution can be easily achieved by always bidding 0. Using the target per-round budget
ρ = B/T we can write the budget constraint as

∑

t∈[T ] gt(bt) ≤ 0, with gt(b) = ct(b)− ρ for any

b ∈ B. Notice that, in this setting, we have the same feasibility parameter ρ for both the stochastic
and the adversarial case.

As a benchmark to evaluate the algorithm, we consider the best feasible static policy π : V → B.
The set of static policies can be represented by X := Bnv , where a vector b ∈ Bnv encodes
the policy’s bids for each possible valuation. To apply our framework to this problem, it is suf-
ficient to design a primal regret minimizer constructor (recall that, in order to design dual RMs,
we can employ OMD). This can be implemented by instantiating a regret minimizer EXP3.P [5]
for each possible valuation in V . Given a failure probability ν ∈ (0, 1), each RM guarantees a

regret bound O(
√

Tnb log(nb/ν)) with probability at least 1 − ν. Thus, given a desired failure
probability η ∈ (0, 1), by setting ν = η/nv we get that, with probability at least 1 − η, the
bounds of all the RMs hold. Hence, by a union bound, we get that the regret of a primal RM is

E
P
T,η = O(nv

√

Tnb log(nbnv/η)).

Guaranteed budget completion in the stochastic case. The crux of budget-pacing mechanisms
is ensuring that the advertisers’ budget is not depleted too early (thereby missing potentially valu-
able future advertising opportunities), while being fully depleted within the planned duration of the
campaign. Theorem 6.1 shows that, when inputs are generated according to some stochastic model,
Algorithm 1 never enters the recovery phase. This is crucial in the context of budget-pacing mecha-
nisms, because whenever the algorithm enters the recovery phase it will converge to always bid 0 in
order to mitigate constraints violation. Therefore, the bidder could miss out on potentially valuable
items. Moreover, if the platform wanted to guarantee that the bidder does not spend more than the

budget B, it would be enough to set a virtual budget of B− Õ(T 1/2) to compensate for the potential
constraints violation. Finally, we argue that, in large-scale markets, an individual bidder has almost
no impact on prices, and, thus, stochastic behavior of costs is a reasonable assumption.

Adversarial case. Theorem 6.1 of [18] shows how to construct an algorithm that provides a ρ
fraction of the optimal utility for problems with budget constraints and adversarial inputs. The ratio
ρ/(1+ρ) obtained in Theorem 7.1 matches such result. The latter assumes that rewards and costs are
in [0, 1], and, thus, gt ∈ [−ρ, 1−ρ] (as they only model budget constraints). However, in our case we
have gt ∈ [−1, 1]. By normalizing the former range to match with ours, we get gt ∈ [−ρ/(1−ρ), 1].
Therefore, the feasibility parameter would be ρ′ = ρ/(1 − ρ). By rewriting our guarantees as a
function of ρ, we get ρ′/(1 + ρ′) = ρ, which is the same guarantee of [18].

Handling ROI constraints. Traditional budget-pacing mechanisms (see, e.g., [11, 12]) are based
on primal-dual algorithms that are near optimal in settings with knapsack constraints only, and
they cannot be generalized to deal with other types of long-term constraints. However, there are
many real-world situations in which guaranteeing other types of constraints is crucial for practical
applications (see, e.g., [27, 26]).

One example is the case of return on investment (ROI) constraints [6, 27, 34]. 10 The recent work
by Golrezaei et al. [26] presents a threshold-based algorithms for repeated second-price auctions
under budget and ROI constraints. Our framework allows advertisers to reach a target ROI while
keeping budget expenditures under control also in the setting of repeated first-price auctions, which

10This is a frequent advertising objective in large Internet advertising platform. See, e.g.,
https://tinyurl.com/c86rezhd and https://tinyurl.com/mr49vz8a.
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is a frequent setting in practice.11 In particular, given a target ROI ω ≥ 0 and the largest among
competing bids βt, we define the ROI constraints as

gt(bt) =

(

ω − vt
bt

)

1{bt ≥ βt} ≤ 0.

Then, it is enough to instantiate the framework with the same setup of Section 9, that is, EXP3.P [5]
for each of the possible valuations in V , and OMD equipped with negative-entropy regularizer for
the dual RM. Therefore, we immediately get that the cumulative violations of the budget and ROI

constraints are upper bounded by Õ(T 1/2). This holds both in the fully stochastic and in the fully
adversarial setting under the assumption of having a strictly feasible solution, which is reasonable
since it is enough to have a sufficiently small bid in the set of available bids B. We observe that
always bidding such a small bid is sufficient to satisfy the ROI constraints but will penalize the
cumulative rewards obtained by the advertiser.

Future research direction: fairness constraints. Consider the setting in which each item appear-
ing at time t is characterized by one or more of nc categories according to the vector et ∈ [0, 1]nc .
A bidder may have distributional preferences over such categories, such as ensuring that at least a
certain fraction of impressions is allocated to each category. This is the case, for example, of adver-
tisers who need to perform online outreach to a population of users while achieving a distribution
over different demographics close to that of the real underlying population. For example, Gelauff
et al. [25] provide an interesting field study about running advertising campaigns for Participatory
Budgeting elections. In Participatory Budgeting elections, community members are asked to vote
between various public projects in order to allocate a total budget. The election organizer may use
online advertising to try to promote the initiative, and in doing so the goal is to reach a “demographic
mix” comparable to that of the local population. Surprisingly, Gelauff et al. [25] show that adver-
tisers currently have to resort to complex segmentation strategies through subcampaigns in order to
achieve that goal.

Two recent works propose to achieve such distributional preferences within budget-pacing mecha-
nisms by embedding them into a concave regularization term in the advertiser’s objective [10, 19].
Such frameworks specifically consider the case of repeated second-price auctions, and can directly
handle only packing constraints. Encoding distributional preferences via a regularization term in
the objective implies that they cannot provide any formal guarantee w.r.t. how close the realized
distribution of impressions is to the target, despite showing promising performance in practice.

Differently from previous work, our framework can explicitly handle distributional constraints
within second- and first-price auction frameworks. Let vector ê ∈ [0, 1]nc be such that êj is the
fraction of impressions that we want to be allocated to users of category j. Then, for each category
j ∈ [nc], we could enforce the following type of constraints

gt,j(bt) := êj − et,j1{bt ≥ βt} ≤ 0.

Assuming the existence of a strictly feasible bidding strategy, our framework guarantees that, for
each category j,

êj −
1

T

T
∑

t=1

et,j1{bt ≥ βt} ≤ Õ(T−1/2),

which guarantees that, in the limit, the difference between the average distribution of impressions
and the target thresholds is vanishing.

The main question which still needs to be answered in order to apply our framework in the case
of fairness constraints is whether we can motivate the existence of a strictly feasible solution. One
reasonable requirement is to constrain the target vector ê to be a point in the full-dimensional simplex
with dimension nc. On top of that, the advertiser would need a way to “buy what’s necessary” in
order to match the distributional constraints. This desideratum could be achieved, for example, by
introducing buyout options for advertisers, in the spirit of Gallien and Gupta [24] (i.e., when the
advertiser needs impression from a certain category, they always have the option of bidding the
buyout value to be sure to win the relevant items). Therefore, assuming the population of users is

11For example, in 2019 Google announced a shift to first-price auctions for its AdManager exchange. See
https://tinyurl.com/chv5nxys.
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large enough, an advertiser could achieve a strictly feasible solution by bidding according to the
fixed strategy mixture recommending to bid the buyout option for each category j with a probability
greater than or equal to êj .

The model we described is clearly a simplification of real budget-pacing systems. Moreover, the
practical implications of introducing buyout options should be further investigated, in order to un-
derstand if they constitute a viable solution both for the platform and advertisers. Finally, we leave
as interesting future research directions the problem of studying the general setting (with arbitrary
sets V and B), and that of providing an empirical evaluation of the above techniques on real-world
data.
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A Omitted proofs

A.1 Proof omitted from Section 3.1

Theorem 3.3. Given f ∈ F and g ∈ G such that dg > 0, it holds

sup
ξ∈Ξ

inf
λ∈Ddg

Lf,g(ξ,λ) = inf
λ∈Ddg

sup
ξ∈Ξ
Lf,g(ξ,λ) = OPTf,g.

Proof. As a first step, we prove that infλ∈Ddg
supξ∈Ξ L(ξ,λ) = infλ∈Rm

+
supξ∈Ξ L(ξ,λ). Notice

that for each λ ∈ R
m
+ such that ‖λ‖1 > 1/dg, it holds

sup
ξ∈Ξ
L(ξ,λ) ≥ L(ξ◦,λ) ≥ −〈λ∗, g(ξ◦)〉 ≥ dg‖λ∗‖1 > 1,

where, with an abuse of notation, ξ◦ ∈ Ξ denotes a strictly feasible strategy mixture for Prob-
lem LPf,g. That is a strategy mixture ξ ∈ Ξ which is optimal for the problem defining dg in
Equation (1), and, thus, it satisfies all the constraints by at least dg (i.e., it holds gi(ξ

◦) ≤ −dg for

all i ∈ [m]).12 Thus, it holds that

inf
λ∈R

m
+ \Ddg

sup
ξ∈Ξ
L(ξ,λ) > 1.

Moreover, since

inf
λ∈Ddg

sup
ξ∈Ξ
L(ξ,λ) ≤ sup

ξ∈Ξ
L(ξ,0) ≤ 1,

we can conclude that

inf
λ∈R

m
+

sup
ξ∈Ξ
L(ξ,λ) = min

{

inf
λ∈Ddg

sup
ξ∈Ξ
L(ξ,λ); inf

λ∈R
m
+ \Ddg

sup
ξ∈Ξ
L(ξ,λ)

}

= inf
λ∈Ddg

sup
ξ∈Ξ
L(ξ,λ). (3)

Then,

OPTf,g = sup
ξ∈Ξ

inf
λ∈R

m
+

L(ξ,λ)

≤ sup
ξ∈Ξ

inf
λ∈Ddg

L(ξ,λ)

≤ inf
λ∈Ddg

sup
ξ∈Ξ
L(ξ,λ)

= inf
λ∈R

m
+

sup
ξ∈Ξ
L(ξ,λ)

= OPTf,g,

where the first inequality holds since in the right-hand side the inf is taken over the more restric-
tive set Ddg , the second one by the max–min inequality, while the second-to-last equality holds by
Equation (3). This concludes the proof.

A.2 Proofs omitted from Section 5

Lemma 5.2. After running Algorithm 1, the event E holds with probability at least 1− δ.

Proof. Given a desired failure probability δ ∈ (0, 1), recall that η = δ/3 and set ε = η/18mT 2.
Consider the following inequalities in which the differences between expectations and empirical

12Notice that ξ◦ may not be well defined when the problem in Equation 1 does not admit a maximum. In
such cases, we can take a ξ◦ that is arbitrarily “close” to a supremum, so that the result still holds.
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means of constraint functions are bounded:
∣

∣

∣

∣

∣

∣

t′
∑

τ=t

gτ,i(xτ )−
t′
∑

τ=t

ḡi(xτ )

∣

∣

∣

∣

∣

∣

> 2

√

2(t′ − t) ln
1

ε
, (4)

∣

∣

∣

∣

∣

∣

t′
∑

τ=t

gτ,i(ξ
◦)−

t′
∑

τ=t

ḡi(ξ
◦)

∣

∣

∣

∣

∣

∣

> 2

√

2(t′ − t) ln
1

ε
, (5)

∣

∣

∣

∣

∣

∣

t′
∑

τ=t

gτ,i(ξ
∗)−

t′
∑

τ=t

ḡi(ξ
∗)

∣

∣

∣

∣

∣

∣

> 2

√

2(t′ − t) ln
1

ε
, (6)

∣

∣

∣

∣

∣

∣

t′
∑

τ=t

λτgτ,i(xτ )−
t′
∑

τ=t

λτ ḡi(xτ )

∣

∣

∣

∣

∣

∣

> 2 max
τ∈[T ]:t≤τ≤t′

||λτ ||1
√

2(t′ − t) ln
1

ε
, (7)

∣

∣

∣

∣

∣

∣

t′
∑

τ=t

λτ gτ,i(ξ
∗)−

t′
∑

τ=t

λτ ḡi(ξ
∗)

∣

∣

∣

∣

∣

∣

> 2 max
τ∈[T ]:t≤τ≤t′

||λτ ||1
√

2(t′ − t) ln
1

ε
, (8)

∣

∣

∣

∣

∣

∣

t′
∑

τ=t

λτ gτ,i(ξ
◦)−

t′
∑

τ=t

λτ ḡi(ξ
◦)

∣

∣

∣

∣

∣

∣

≤ 2 max
τ∈[T ]:t≤τ≤t′

||λτ ||1
√

2(t′ − t) ln
1

ε
. (9)

By applying Azuma-Hoeffding inequality to each martingale difference sequence, we get that
each inequality holds with probability at most 2ε. We denote by Eη the event in which Equa-
tions (4), (5), (6), and (7) are satisfied for all t, t′ ∈ [T ] with t < t′, and for all i ∈ [m]. By a
union bound that takes into account the six events above, the m constraints, and all the possible time
intervals from t to t′, which are at most T 2, we get:

P(Eη) ≥ 1− 6mT 2(2ε) = 1− 12mT 2ε = 1− 2

3
η ≥ 1− η.

Therefore, event Eη holds with probability at least 1− η. Moreover, let us recall that:

Et′−t,η =

√

8(t′ − t) ln
18mT 2

η
= 2

√

2(t′ − t) ln
1

ε
.

Now, consider event E in which Algorithms 1 satisfies the following conditions: (i) the regret in-
curred by RP

I after T1 rounds is upper bounded by E
P
T1,η

; (ii) the regret cumulated by RP
II after the

remaining T − T1 rounds is upper bounded by E
P
T−T1,η

; and (iii) event Eη holds. Recall that each
one of the conditions (i), (ii) and (iii) holds with probability at least 1− η; hence, by a union bound
we get:

P(E) ≥ 1− 3η = 1− δ.

This concludes the proof.

Lemma 5.3. If event E holds, then after round T1 of Algorithm 1 the following inequality holds:
∑T1

t=1 ft(xt) ≥
∑T1

t=1 ft(ξ
∗) + (T − T1)− 1

ρ̃ET1,η −
(

1 + 2
ρ̃

)

E
P
T1,η
− 1

ρ̃E
D
T1
.

Proof. By the no-regret property of the primal regret minimizer, we have that:

T1
∑

t=1

(

ft(xt)− 〈λt, gt(xt)〉
)

≥
T1
∑

t=1

(

ft(ξ
∗)− 〈λt, gt(ξ

∗)〉
)

−
(

1 +
2

ρ̃

)

E
P
T1,η. (10)

Let i⋆ ∈ argmaxi∈[m]

∑T1

t=1 gt,i(xt) be one of the “most violated” constraints. We prove that:

T1
∑

t=1

〈λt, gt(xt)〉 ≥ (T − T1)−
1

ρ̃
E
D
T1
. (11)

To do that, we consider the following two cases.
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Case T1 = T . We get:

T1
∑

t=1

〈λt, gt(xt)〉 ≥
T1
∑

t=1

〈0, gt(xt)〉 −
1

ρ̃
E
D
T1

= (T − T1)−
1

ρ̃
E
D
T1
.

Case T1 < T . By the condition in Line 4 of Algorithm 1, we have that
∑T1

t=1 gt,i⋆(xt) ≥ (T −
T1)ρ̃. Thus, we have that:

T1
∑

t=1

〈λt, gt(xt)〉 ≥
T1
∑

t=1

1

ρ̃
gt,i⋆(xt)−

1

ρ̃
E
D
T1
≥ (T − T1)−

1

ρ̃
E
D
T1
,

where the first inequality follows from the no-regret property of the dual regret minimizer and the

second one from the fact that
∑T1

t=1 gt,i⋆(xt) ≥ (T − T1)ρ̃ when T1 < T .

Now, by using Equation (11), we can provide a lower bound on the cumulative reward obtained by
Algorithm 1 during the play phase. We have that:

T1
∑

t=1

ft(xt) ≥
T1
∑

t=1

(

ft(ξ
∗)− 〈λt, gt(ξ

∗)〉+ 〈λt, gt(xt)〉
)

−
(

1 +
2

ρ̃

)

E
P
T1,η,

≥
T1
∑

t=1

(

ft(ξ
∗)− 〈λt, gt(ξ

∗)〉
)

+ (T − T1)−
(

1 +
2

ρ̃

)

E
P
T1,η −

1

ρ̃
E
D
T1
,

≥
T1
∑

t=1

(

ft(ξ
∗)− 〈λt, ḡ(ξ

∗)〉
)

+ (T − T1)−
(

1 +
2

ρ̃

)

E
P
T1,η −

1

ρ̃
E
D
T1
− 1

ρ̃
ET1,η,

≥
T1
∑

t=1

ft(ξ
∗) + (T − T1)−

(

1 +
2

ρ̃

)

E
P
T1,η −

1

ρ̃
E
D
T1
− 1

ρ̃
ET1,η,

where the first inequality holds by Equation (10), the second one by Equation (11), the third one
follows from the fact that the event E holds, while the last one from the fact that ḡ(ξ∗) ≤ 0 by
definition.

Lemma 5.4. If event E holds, then after Algorithm 1 halts, the following holds for every i ∈ [m]:
∑T

t=T1+1 gt,i(xt) ≤ −(T − T1)ρ+ 2EPT−T1,η
+ E

D
T−T1

+ ET−T1,η.

Proof. Let i⋆ ∈ argmaxi∈[m]

∑T
t=T1+1 gt,i(xt) be one of the “most violated” constraints. Then,

(T − T1)ρ ≤ −
T
∑

t=T1+1

〈λt, ḡ(ξ
◦)〉

≤ −
T
∑

t=T1+1

〈λtgt(ξ
◦)〉+ ET−T1,η

≤ −
T
∑

t=T1+1

〈λtgt(xt)〉+ 2EPT−T1,η + ET−T1,η

≤ −
T
∑

t=T1+1

gt,i⋆(xt) + E
D
T−T1

+ 2EPT−T1,η + ET−T1,η,

where the first inequality comes from the definition of ρ, the second one from the fact that event E
holds, the third one from the no-regret property of the primal regret minimizer, and the last one from
the no-regret property of the dual regret minimizer. Hence,

T
∑

t=T1+1

gt,i⋆(xt) ≤ −(T − T1)ρ− E
D
T−T1

+ 2EPT−T1,η + ET−T1,η. (12)

It follows from the definition of i⋆ that, if Equation (12) holds for i⋆, then, it holds for every i ∈ [m].
This concludes the proof.
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Theorem 5.6. Suppose that functions ft and gt are selected adversarially and stochastically, re-
spectively. If Condition 5.5 is satisfied, then, with probability at least 1 − δ, Algorithm 1 provides

RT ≤ 1
ρ̃ET,η +

(

1 + 2
ρ̃

)

E
P
T,η + 1

ρ̃E
D
T and V T ≤Mρ̃ + 2EPT,η + E

D
T + ET,η .

Proof. By Lemma 5.2, event E holds with probability at least 1 − δ. In the rest of the proof, we
assume the event E holds, providing a bound that holds with probability at least 1− δ.

We first provide an upper bound on the cumulative regret. By Lemma 5.3, we have:

T1
∑

t=1

ft(xt) ≥
T1
∑

t=1

ft(ξ
∗) + (T − T1)−

1

ρ̃
ET1,η −

(

1 +
2

ρ̃

)

E
P
T1,η −

1

ρ̃
E
D
T1
. (13)

Hence, it holds:
T
∑

t=1

ft(xt) ≥
T1
∑

t=1

ft(xt)

≥
T1
∑

t=1

ft(ξ
∗) + (T − T1)−

1

ρ̃
ET1,η −

(

1 +
2

ρ̃

)

E
P
T1,η −

1

ρ̃
E
D
T1

≥
T
∑

t=1

ft(ξ
∗)− 1

ρ̃
ET1,η −

(

1 +
2

ρ̃

)

E
P
T1,η −

1

ρ̃
E
D
T1

≥
T
∑

t=1

ft(ξ
∗)− 1

ρ̃
ET,η −

(

1 +
2

ρ̃

)

E
P
T,η −

1

ρ̃
E
D
T ,

where the second inequality holds by Equation (13) and the third one by
∑T

t=T1+1 ft(ξ
∗) ≤ T −T1,

which follows from the fact that the range of ft is [0, 1].

By recalling that ξ∗ ∈ Ξ is defined as an optimal solution to Problem LPf̄,ḡ and RT = T OPTf̄,ḡ −
∑T

t=1 ft(xt), the following bound on the cumulative regret holds:

RT =
T
∑

t=1

ft(ξ
∗)−

T
∑

t=1

ft(xt) ≤
1

ρ̃
ET,η +

(

1 +
2

ρ̃

)

E
P
T,η +

1

ρ̃
E
D
T .

Next, we provide an upper bound on the cumulative constraints violation.

By Lemma 5.4, for every i ∈ [m], we have that:

T
∑

t=T1+1

gt,i(xt) ≤ −(T − T1)ρ+ 2EPT−T1,η + E
D
T−T1

+ ET−T1,η. (14)

Hence, for every i ∈ [m], it holds

T
∑

t=1

gt,i(xt) =

T1
∑

t=1

gt,i(xt) +

T
∑

t=T1+1

gt,i(xt)

≤ (T − T1)ρ̃+Mρ̃ − (T − T1)ρ+ 2EPT−T1,η + E
D
T−T1

+ ET−T1,η

≤Mρ̃ + 2EPT−T1,η + E
D
T−T1

+ ET−T1,η

≤Mρ̃ + 2EPT,η + E
D
T + ET,η .

The first inequality follows from Equation (14) and by the condition in Line 4 of Algorithm 1, which

ensures
∑T1

t=1 gt,i(xt) ≤ (T−T1)ρ̃+Mρ̃ for every i ∈ [m]. Moreover, the second inequality follows

from ρ̃ ≤ ρ, since Condition 5.5 holds. Let i⋆ ∈ argmaxi∈[m]

∑T
t=1 gt,i(xt) be one of the most

violated constraints. By recalling that V T = maxi∈[m]

∑T
t=1 gt,i(xt), the following bound on the

cumulative constraints violation holds:

V T =

T
∑

t=1

gt,i⋆(xt) ≤Mρ̃ + 2EPT,η + E
D
T + ET,η.

This concludes the proof.
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Theorem 5.7. Suppose that functions ft and gt are selected adversarially and stochastically, re-
spectively. Algorithm 1 guarantees that the following bounds hold with probability at least 1 − δ:
RT ≤ T 1/4

ET,η +
(

1 + 2T 1/4
)

E
P
T,η + T 1/4

E
D
T and VT ≤ T 3/4 +MT−1/4 + 2EPT,η + E

D
T + ET,η .

Proof. If ρ̂ ≥ 2T−1/4, the claim follows by Theorem 5.6. Thus, we prove the statement for the case

ρ̃ = T−1/4. First, we provide an upper bound on the cumulative regret. By Lemma 5.2, we have
that event the E holds with probability at least 1 − δ. In the rest of the proof, we assume that the
event E holds, and provide a bound that holds with probability at least 1− δ. We have:

T
∑

t=1

ft(xt) ≥
T1
∑

t=1

ft(xt)

≥
T1
∑

t=1

ft(ξ
∗) + (T − T1)−

1

ρ̃
ET1,η −

(

1 +
2

ρ̃

)

E
P
T1,η −

1

ρ̃
E
D
T1

≥
T
∑

t=1

ft(ξ
∗)− 1

ρ̃
ET1,η −

(

1 +
2

ρ̃

)

E
P
T1,η −

1

ρ̃
E
D
T1

≥
T
∑

t=1

ft(ξ
∗)− 1

ρ̃
ET,η −

(

1 +
2

ρ̃

)

E
P
T,η −

1

ρ̃
E
D
T

≥
T
∑

t=1

ft(ξ
∗)− T 1/4

ET,η −
(

1 + 2T 1/4
)

E
P
T,η − T 1/4

E
D
T .

These steps are similar to those used to prove the regret bound in Theorem 5.6 (see the proof of
Theorem 5.6 for further details). By recalling that ξ∗ is an optimal solution to Problem LPf̄,ḡ and

RT = T OPTf̄,ḡ −
∑T

t=1 ft(xt), the following bound on the cumulative regret holds:

RT =
T
∑

t=1

ft(ξ
∗)−

T
∑

t=1

ft(xt) ≤ T 1/4
ET,η +

(

1 + 2T 1/4
)

E
P
T,η + T 1/4

E
D
T .

Next, we provide an upper bound on the cumulative constraints violation.

For every i ∈ [m], the following holds

T
∑

t=T1+1

gt,i(xt) ≤ −(T − T1)ρ+ 2EPT−T1,η + E
D
T−T1

+ ET−T1,η

≤ 2EPT−T1,η + E
D
T−T1

+ ET−T1,η, (15)

where the first inequality follows from Lemma 5.4, while the second one from ρ ≥ 0. Hence, for
every i ∈ [m], it holds

T
∑

t=1

gt,i(xt) =

T1
∑

t=1

gt,i(xt) +
T
∑

t=T1+1

gt,i(xt)

≤ (T − T1)ρ̃+Mρ̃ + 2EPT−T1,η + E
D
T−T1

+ ET−T1,η

≤ (T − T1)T
−1/4 +MT−1/4 + 2EPT−T1,η + E

D
T−T1

+ ET−T1,η

≤ T 3/4 +MT−1/4 + 2EPT−T1,η + E
D
T−T1

+ ET−T1,η

≤ T 3/4 +MT−1/4 + 2EPT,η + E
D
T + ET,η.

The first inequality follows from Equation (15) and from the condition in Line 4 of Algorithm 1,

which ensures that
∑T1

t=1 gt,i(xt) ≤ (T − T1)ρ̃ + Mρ̃ for every i ∈ [m]. Moreover, the second

inequality follows from ρ̃ = T−1/4. Thus, by letting i⋆ ∈ argmaxi∈[m]

∑T
t=1 gt,i(xt), and by

recalling that V T = maxi∈[m]

∑T
t=1 gt,i(xt), the following bound on the cumulative constraints
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violation holds:

V T =

T
∑

t=1

gt,i⋆(xt) ≤ T 3/4 +MT−1/4 + 2EPT,η + E
D
T + ET,η.

This concludes the proof.

A.3 Proof omitted from Section 6

First, we provide a preliminary result on the value of the Lagrangian game when primal and dual
players are constrained to specific sets of strategies.

Lemma A.1. Let f ∈ F and g ∈ G be such that dg > 0. Moreover, given any ǫ > 0, let

Ξǫ,g :=
{

ξ ∈ Ξ : maxi∈[m] gi(ξ) ≥ ǫ
}

. The following holds:

sup
ξ∈Ξǫ

inf
λ∈Ddg/2

Lf,g(ξ,λ) ≤ OPTf,g −
ǫ

dg
.

Proof. Let ξ ∈ Ξǫ,g and i⋆ ∈ argmaxi∈[m] gi(ξ). Then,

inf
λ∈Ddg/2

{

f(ξ)− 〈λ, g(ξ)〉
}

= f(ξ)− 2

dg
gi⋆(ξ)

= inf
λ∈Ddg

{

f(ξ)− 〈λ, g(ξ)〉
}

− 1

dg
gi⋆(ξ)

≤ sup
ξ∈Ξ

inf
λ∈Ddg

Lf,g(ξ,λ)−
1

dg
gi⋆(ξ)

≤ OPTf,g −
1

dg
gi⋆(ξ)

≤ OPTf,g −
ǫ

dg
,

where the second inequality follows from Theorem 3.3, while the last one holds by the definition of
Ξǫ,g and i⋆.

Next, we introduce a new event that extends E by considering also the (stochastic) sequence of
reward functions ft. Formally, the event is defined as follows.

Definition A.2. We denote with Ē the event in which Algorithm 1 satisfies the following conditions
(recall that η = δ/3): (i) event E holds; (ii) for every pair of rounds t, t′ ∈ [T ] : t ≤ t′ it holds:

• |
∑t′

τ=t fτ (xτ )−
∑t′

τ=t f̄(xτ )| ≤ Et′−t,η,

• |
∑t′

τ=t fτ (ξ
∗)−

∑t′

τ=t f̄(ξ
∗)| ≤ Et′−t,η.

Lemma A.3. After running Algorithm 1, the event Ē holds with probability at least 1− δ.

Proof. Given a desired failure probability δ ∈ (0, 1), recall that η = δ/3 and set ε = η/12mT 2.
Consider the following inequalities in which the differences between expectations and empirical
means of reward functions are bounded:

∣

∣

∣

∣

∣

∣

t′
∑

τ=t

fτ (xτ )−
t′
∑

τ=t

f̄(xτ )

∣

∣

∣

∣

∣

∣

> 2

√

2(t′ − t) ln
1

ε
, (16)

∣

∣

∣

∣

∣

∣

t′
∑

τ=t

fτ (ξ
∗)−

t′
∑

τ=t

f̄(ξ∗)

∣

∣

∣

∣

∣

∣

> 2

√

2(t′ − t) ln
1

ε
. (17)
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By applying the Azuma-Hoeffding inequality to each martingale difference sequence, we get that
each inequality holds with probability at most 2ε. We denote by Ēη the event in which Equa-
tions (16) and (17) hold for every t ≤ t′ ∈ [T ] : t < t′ and event Eη holds (see the proof of
Lemma 5.2 for the definition of event Eη). By a union bound, we have that:

P
(

Ēη

)

≥ 1− 2ε(4mT 2 + 2T 2) ≥ 1− η.

Therefore, event Ēη holds with probability at least 1− η. Moreover, let us recall that:

Et′−t,η =

√

8(t′ − t) ln
12mT 2

η
= 2

√

2(t′ − t) ln
1

ε
.

Now, consider the event Ē in which Algorithm 1 satisfies the following conditions: (i) the regret
incurred byRP

I after T1 rounds is upper bounded by E
P
T1,η

; (ii) the regret cumulated byRP
II after the

remaining T − T1 rounds is upper bounded by E
P
T−T1,η

; and (iii) event Ēη holds. Recall that each
one of the conditions (i), (ii) and (iii) holds with probability at least 1− η; hence, by a union bound
we get:

P
(

Ē
)

≥ 1− 3η = 1− δ.

This concludes the proof.

As a first step, we prove that the primal regret minimizer gets a per-round utility that is close to the
value OPTf̄,ḡ . Formally:

Lemma A.4. If the event Ē holds, then, for every round τ ∈ [T1] the following inequality holds:

τ
∑

t=1

Lft,gt(xt,λt) ≥ τ OPTLPf̄,ḡ −
(

1 +
2

ρ̃

)

E
P
τ,η −

(

1 +
1

ρ̃

)

Eτ,η.

Proof. Let ξ⋆ be an optimal solution to Problem LPf̄,ḡ , and let λ̄ = 1
τ

∑τ
t=1 λt. Then, it holds

τ
∑

t=1

Lft,gt(xt,λt) ≥
τ
∑

t=1

Lft,gt(ξ∗,λt)−
(

1 +
2

ρ̃

)

E
P
τ,η

≥
τ
∑

t=1

Lf̄,ḡ(ξ∗,λt)−
(

1 +
2

ρ̃

)

E
P
τ,η −

(

1 +
1

ρ̃

)

Eτ,η

=

τ
∑

t=1

Lf̄,ḡ(ξ∗, λ̄)−
(

1 +
2

ρ̃

)

E
P
τ,η −

(

1 +
1

ρ̃

)

Eτ,η

≥ τ inf
λ∈Dρ̃

Lf̄,ḡ(ξ∗,λ)−
(

1 +
2

ρ̃

)

E
P
τ,η −

(

1 +
1

ρ̃

)

Eτ,η

= τ sup
ξ∈Ξ

inf
λ∈Dρ̃

Lf̄,ḡ(ξ,λ)−
(

1 +
2

ρ̃

)

E
P
τ,η −

(

1 +
1

ρ̃

)

Eτ,η

= τOPTLPf̄,ḡ −
(

1 +
2

ρ̃

)

E
P
τ,η −

(

1 +
1

ρ̃

)

Eτ,η,

where the first inequality follows from the no-regret property of the primal regret minimizer, the
second one from the definition of the event Ē, and the third one from the definition of ξ∗. Moreover,
the first equality follows from the fact that ḡ is independent from t. This concludes the proof.

Now, we show that the dual regret minimizer gets a per-round utility that is close to the value OPTf̄,ḡ .
Moreover, the attained utility increases by an additive factor proportional to the primal violation.
This can be proved only in the setting with stochastic reward functions. Indeed, in this setting the
primal and dual regret minimizers are playing a stochastic repeated zero-sum game that converges
to an equilibrium. Notice that this is not true when the reward functions are adversarial.
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Lemma A.5. If event Ē holds and Condition 5.5 is satisfied, then for each τ ∈ [T1] and each
i ∈ [m]

τ
∑

t=1

Lft,gt(ξt,λt) ≤ τOPTLPf̄,ḡ +
1

ρ̃
E
D
τ +

(

1 +
2

ρ̃

)

Eτ,η −
τ
∑

t=1

gt,i(xt).

Proof. In the following, let λ∗ ∈ argminλ∈Dρ̃

∑τ
t=1 Lf̄,ḡ(ξt,λ), ǫ :=

maxi∈[m]

∑τ
t=1 gt,i(xt)−Eτ,η

τ ,

and ξ̄ := 1
τ

∑τ
t=1 ξt, where ξt ∈ Ξ denotes the strategy mixture that plays deterministically xt.

Moreover, let us define the set Ξǫ,ḡ := {ξ ∈ Ξ : maxi∈[m] ḡi(ξ) ≥ ǫ}.
As a first step, we prove that ξ̄ ∈ Ξǫ,ḡ . In particular, since the event Ē holds, we have that

max
i∈[m]

ḡi(ξ̄) ≥
∑τ

t=1 maxi∈[m] gi(ξ̄)− Eτ,η

τ
= ǫ

For every τ ∈ [T1], we have:

τ
∑

t=1

Lft,gt(xt,λt) ≤
τ
∑

t=1

Lft,gt(xt,λ
∗) +

1

ρ̃
E
D
τ (18a)

≤
τ
∑

t=1

Lf̄,ḡ(xt,λ
∗) +

1

ρ̃
E
D
τ +

(

1 +
1

ρ̃

)

Eτ,η (18b)

≤ inf
λ∈Dρ̃

τ
∑

t=1

Lf̄,ḡ(xt,λ) +
1

ρ̃
E
D
τ +

(

1 +
1

ρ̃

)

Eτ,η (18c)

= τ inf
λ∈Dρ̃

Lf̄,ḡ(ξ̄,λ) +
1

ρ̃
E
D
τ +

(

1 +
1

ρ̃

)

Eτ,η (18d)

= τ inf
λ∈Dρ/2

Lf̄,ḡ(ξ̄,λ) +
1

ρ̃
E
D
τ +

(

1 +
1

ρ̃

)

Eτ,η (18e)

≤ τ sup
ξ∈Ξǫ,ḡ

inf
λ∈Dρ/2

Lf̄,ḡ(ξ,λ) +
1

ρ̃
E
D
τ +

(

1 +
1

ρ̃

)

Eτ,η (18f)

≤ τ sup
ξ∈Ξ

inf
λ∈Dρ

(

Lf̄,ḡ(ξ,λ)−
ǫ

ρ

)

+
1

ρ̃
E
D
τ +

(

1 +
1

ρ̃

)

Eτ,η (18g)

= τ

(

OPTf̄,ḡ −
ǫ

ρ

)

+
1

ρ̃
E
D
τ +

(

1 +
1

ρ̃

)

Eτ,η (18h)

= τOPTf̄,ḡ − τ
maxi′∈[m]

∑τ
t=1 gt,i′(xt)− Eτ,η

τρ
+

1

ρ̃
E
D
τ +

(

1 +
1

ρ̃

)

Eτ,η (18i)

≤ τOPTf̄,ḡ +
1

ρ̃
E
D
τ +

(

1 +
2

ρ̃

)

Eτ,η − max
i′∈[m]

∑τ
t=1 gt,i′(2xt)

ρ
(18j)

≤ τOPTf̄,ḡ +
1

ρ̃
E
D
τ +

(

1 +
2

ρ̃

)

Eτ,η − max
i′∈[m]

τ
∑

t=1

gt,i′(xt) (18k)

≤ τOPTf̄,ḡ +
1

ρ̃
E
D
τ +

(

1 +
2

ρ̃

)

Eτ,η −
τ
∑

t=1

gt,i(xt) ∀i ∈ [m], (18l)

where Equation (18a) is given by the no-regret property of the dual regret minimizer, and Equa-
tion (18b) by the definition of the event Ē, which holds by assumption. Moreover, Equation (18d) fol-
lows from the fact that f̄ and ḡ are independent from t, Equation (18e) follows from ρ̃ = ρ̂/2 ≤ ρ/2,
and Equation (18f) from ξ̄ ∈ Ξǫ,ḡ . Finally, Equation (18g) follows from Lemma A.1, Equation (18i)
by definition of ǫ, and Equation (18j) by ρ̃ ≤ ρ.

Theorem 6.1. Suppose that functions ft and gt are selected stochastically. With probability at least
1− δ, Algorithm 1 never enters the recovery phase, namely T1 = T .

Proof. We prove the statement of the theorem by considering two cases.
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Case “Condition 5.5 holds”. By Lemma 5.2, event E holds with probability at least 1 − δ. In
the rest of the proof, we assume that the event E holds, and we provide a bound that holds with
probability at least 1− δ. For every τ ∈ [T1], we have:

τ
∑

t=1

gt(xt) ≤ τOPTf̄,ḡ −
τ
∑

t=1

Lft,gt(xt,λt) +
1

ρ̃
E
D
τ +

(

1 +
2

ρ̃

)

Eτ,η

≤
(

1 +
2

ρ̃

)

E
P
τ,η +

(

1 +
1

ρ̃

)

Eτ,η +
1

ρ̃
E
D
τ +

(

1 +
2

ρ̃

)

Eτ,η

=

(

2 +
3

ρ̃

)

Eτ,η +

(

1 +
2

ρ̃

)

E
P
τ,η +

1

ρ̃
E
D
τ

≤ 2

ρ̃

√
T − 1 +

(

2 +
3

ρ̃

)

Eτ,η +

(

1 +
2

ρ̃

)

E
P
τ,η +

1

ρ̃
E
D
τ

= Mρ̃ − 1,

where the first inequality follows from Lemma A.4, the second one from Lemma A.5, the third one

from the fact that 2
ρ̃

√
T − 1 ≥ 0, being ρ̃ ≤ 1, and the last equation follows from the definition of

Mρ̃. This implies that the algorithm never enters the recovery phase when Condition 5.5 holds.

Case “Condition 5.5 does not hold”. By Lemma 5.2, event E holds with probability at least 1−δ.
In the rest of the proof, we assume that the event E holds, and we provide a bound that holds with
probability at least 1 − δ. Suppose by contradiction that T1 < T . This implies that a constraint

i ∈ [m] is violated by at least MT−1/4 − 1. Let i⋆ ∈ argmaxi∈[m]

∑T1

t=1 gt,i(xt) be one of the most

violated constraints during the play phase. Then, we have:

T1
∑

t=1

Lft,gt(xt,λt) =

T1
∑

t=1

(

f(xt)− 〈λt, gt(xt)〉
)

≤ T1 −
T1
∑

t=1

〈λt, gt(xt)〉

≤ T1 −
T1
∑

t=1

1

T−1/4
gt,i⋆(xt) + T 1/4

E
D
T1

≤ T1 − T 1/4(MT−1/4 − 1) + T 1/4
E
D
τ1

< −
(

1 +
2

T−1/4

)

E
P
τ,η −

1

T−1/4
Eτ,η,

where the second inequality follows from the no-regret property of the dual regret minimizer and

the fact that, when Condition 5.5 does not hold, ρ̃ = T−1/4. The last inequality follows from the
definition of MT−1/4 . Then, the result above allows us to reach the desired contradiction when
compared with the following one. In particular, for every τ ∈ [T1], we have:

τ
∑

t=1

Lft,gt(xt,λt) ≥
τ
∑

t=1

Lft,gt(ξ◦,λt)−
(

1 +
2

T−1/4

)

E
P
τ,η

≥
τ
∑

t=1

Lft,ḡ(ξ◦,λt)−
1

T−1/4
Eτ,η −

(

1 +
2

T−1/4

)

E
P
τ,η

≥ − 1

T−1/4
Eτ,η −

(

1 +
2

T−1/4

)

E
P
τ,η,

where the first inequality follows from the no-regret property of the primal regret minimizer, the
second one follows from the fact that event E holds, and the third one from the feasibility of ξ◦.
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A.4 Proofs omitted from Section 7

As a first step, we provide a lower bound for the cumulative reward achieved during the play phase.
In particular, we show that it achieves at least a ρ/(1 + ρ) fraction of the value obtained by an
optimal solution in the first T1 rounds.

Lemma A.6. If Condition 5.5 is satisfied, then, with probability at least 1 − η, at round T1 of
Algorithm 1 it holds that:

T1
∑

t=1

ft(xt) ≥
ρ

1 + ρ

T1
∑

t=1

ft(ξ
∗) + (T − T1)−

(

1 +
2

ρ̃

)

E
P

T1,η −
1

ρ̃
E
D

τ1 .

Proof. Let ξ̄ ∈ Ξ be a strategy mixture obtained by playing with probability 1/(1 + ρ) the mixture
ξ◦ and with the remaining probability ρ/(1+ρ) an optimal mixture ξ∗. Notice that the probabilities
are well defined, since ρ ≥ 0. Then, for every t ∈ [T ] and i ∈ [m], it holds:

1

1 + ρ
gt,i(ξ

◦) +
ρ

1 + ρ
gt,i(ξ

∗) ≤ − ρ

1 + ρ
+

ρ

1 + ρ
= 0

where the inequality follows from the fact that gt,i(ξ
◦) ≤ −ρ and gt,i(ξ

∗) ≤ 1. Therefore, for every

t ∈ [T ] and i ∈ [m], it holds that gt(ξ̄) ≤ 0. Assume that the regret bounds of the regret minimizers
hold. Notice that this happens with probability at least 1− η. Then, by the no-regret property of the
primal regret minimizer, we have that

T1
∑

t=1

Lft,gt(xt,λt) ≥
T1
∑

t=1

Lft,gt(ξ̄,λt)−
(

1 +
2

ρ̃

)

E
P
T1,η. (19)

Let i⋆ ∈ argmaxi∈[m]

∑T1

t=1 gt,i(xt) be one of the most violated constraints during the play phase.

Next, we prove that

T1
∑

t=1

〈λt, gt(xt)〉 ≥ (T − T1)−
1

ρ̃
E
D
T1
.

We consider two cases. If T1 = T , then

T1
∑

t=1

〈λt, gt(xt)〉 ≥
T1
∑

t=1

〈0, gt(ξ̄)〉 −
1

ρ̃
E
D
T1

= −1

ρ̃
E
D
τ2 = (T − T1)−

1

ρ̃
E
D
T1
.

Otherwise, we have that
∑T1

t=1 gt,i⋆(xt) ≥ ρ̃(T − T1) and

T1
∑

t=1

〈λt, gt(xt)〉 ≥
(

T1
∑

t=1

1

ρ̃
gt,i⋆(xt)

)

− 1

ρ̃
E
D
T1
≥ (T − T1)−

1

ρ̃
E
D
T1
. (20)

Thus,

T1
∑

t=1

ft(xt) ≥
T1
∑

t=1

(

ft(ξ̄)− 〈λt, gt(ξ̄)〉+ 〈λt, gt(xt)〉
)

−
(

1 +
2

ρ̃

)

E
P
T1,η

≥
T1
∑

t=1

(

ft(ξ̄)− 〈λt, gt(ξ̄)〉
)

+ (T − T1)−
(

1 +
2

ρ̃

)

E
P
T1,η −

1

ρ̃
E
D
τ2

≥
T1
∑

t=1

ft(ξ̄) + (T − T1)−
(

1 +
2

ρ̃

)

E
P
T1,η −

1

ρ̃
E
D
τ2

≥
T1
∑

t=1

(

1

1 + ρ
ft(ξ

◦) +
ρ

1 + ρ
ft(ξ

∗)

)

+ (T − T1)−
(

1 +
2

ρ̃

)

E
P
T1,η −

1

ρ̃
E
D
τ2

≥ ρ

1 + ρ

T1
∑

t=1

ft(ξ
∗) + (T − T1)−

(

1 +
2

ρ̃

)

E
P
T1,η −

1

ρ̃
E
D
T1
,
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where the first inequality follows from Equation (19), the second one from Equation 20, the third
one from the fact that for each t ∈ [T ] it holds gt(ξ̄) ≤ 0, while the fourth inequality follows from
the definition of ξ̄. This concludes the proof.

Notice that, for a small T1, we have a large lower bound on the cumulative reward. Intuitively, this
means that when the play phase is short, the primal regret minimizer accumulated so much regret in
the play phase that the recovery phase can be addressed without worrying about the reward.

As a second step, we provide an upper bound on the cumulative constraints violation during the
recovery phase. In particular, we show that the constraints are satisfied by at least ρ at each round
up to a term related to the regret ofRP andRD.

Lemma A.7. With probability at least 1− η, when Algorithm 1 halts it holds that for each i ∈ [m]:

T
∑

t=T1+1

gt,i(xt) ≤ −(T − T1)ρ+ E
D

T−T1
+ 2EPT−T1,η.

Proof. Let i⋆ be one of the most violated constraints, i.e., i⋆ ∈ argmaxi∈[m]

∑T
t=T1+1 gt,i(xt).

Then, we have that:

(T − τ)ρ ≤ −
T
∑

t=T1+1

〈λt, gt(ξ
◦)〉

≤ −
T
∑

t=T1+1

〈λt, gt(xt)〉+ 2EPT−T1,η

≤ −
T
∑

t=T1+1

gt,i⋆(xt) + E
D
T−T1

+ 2EPT−T1,η,

where the first inequality follows from the definition of ξ◦ and the fact that it is always feasible of
at least ρ, the second one follows from the assumption that the primal regret minimizer satisfies the
regret bound, and the last inequality from the guarantee on the regret of the dual regret minimizer.
We conclude the proof by noticing that the regret bound of the primal regret minimizer holds with
probability at least 1− η.

Now, we can provide our bounds for adversarial constraints.

Theorem 7.1. Suppose that functions ft and gt are selected adversarially. If Condition 5.5 is
satisfied, then, with probability at least 1 − 2

3δ, Algorithm 1 guarantees that the following holds:
∑T

t=1 ft(xt) ≥ ρ
1+ρ

∑T
t=1 OPTf̄,ḡ −

(

1 + 2
ρ̃

)

E
P
T,η − 1

ρ̃E
D
T and V T ≤Mρ̃ + 2EPT,η + E

D
T .

Proof. In the following, we assume that both Lemma A.6 and Lemma A.7. By an union bound, this
holds with probability 1− 2η = 1− 2

3δ. Then, it holds

T
∑

t=1

ft(xt) ≥
T1
∑

t=1

ft(xt)

≥
T1
∑

t=1

ρ

1 + ρ
ft(ξ

⋆) + (T − T1)−
(

1 +
2

ρ̃

)

E
P
T1,η −

1

ρ̃
E
D
T1

≥ ρ

1 + ρ

T
∑

t=1

ft(ξ
⋆)−

(

1 +
2

ρ̃

)

E
P
T1,η −

1

ρ̃
E
D
T1

≥ ρ

1 + ρ

T
∑

t=1

ft(ξ
⋆)−

(

1 +
2

ρ̃

)

E
P
T,η −

1

ρ̃
E
D
T ,

where the second inequality comes from Lemma A.6. This proves the bound on the regret.
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By Lemma A.7, for each i ∈ [m],

T
∑

t=1

gt,i(xt) =

T1
∑

t=1

gt,i(xt) +

T
∑

t=T1+1

gt,i(xt)

≤ (T − T1)ρ̃+Mρ̃ − (T − T1)ρ+ E
D
T−T1

+ 2EPT−T1,η

≤Mρ̃ + E
D
T−T1

+ 2EPT−T1,η

≤Mρ̃ + E
D
T + 2EPT,η,

where the second inequality comes from ρ̃ ≤ ρ.

Corollary 7.2. Suppose functions ft and gt are selected stochastically and adversarially, respec-
tively. If Condition 5.5 is satisfied, then, with probability at least 1 − δ, Algorithm 1 provides
∑T

t=1 ft(xt) ≥ ρ
1+ρ

∑T
t=1 OPTf̄,ḡ −

(

1 + 2
ρ̃

)

E
P
T,η − 1

ρ̃E
D
T − 2ET,η and V T ≤Mρ̃ +2EPT,η +E

D

T +

ET,η .

Proof. It is easy to see that Theorem 7.1 can be extended to consider the definition of ξ⋆ for

stochastic rewards. formally, it holds
∑T

t=1 ft(xt) ≥ ρ
1+ρ

∑T
t=1 ft(ξ

⋆) −
(

1 + 2
ρ̃

)

E
P
T,η − 1

ρ̃E
D
T .

Consider the two martingale difference sequences
∑T

t=1 ft(xt) − f̄(xt) and
∑

t ft(ξ
⋆) − f̄(ξ⋆).

We can apply Azuma-Hoeffding inequality to prove that, with probability at least 1 − η, it holds
∑

t |ft(xt)− f̄(xt)| ≤ ET,η and
∑

t |ft(ξ⋆)− f̄(ξ⋆)| ≤ ET,η . Then,

T
∑

t=1

f̄(xt) ≥
T
∑

t=1

ft(xt)− ET,η

≥ ρ

1 + ρ

T
∑

t=1

ft(ξ
⋆)−

(

1 +
2

ρ̃

)

E
P
T,η −

1

ρ̃
E
D
T − ET,η

≥ ρ

1 + ρ

T
∑

t=1

f̄(ξ⋆)−
(

1 +
2

ρ̃

)

E
P
T,η −

1

ρ̃
E
D
T − 2ET,η,

proving the statement.

A.5 Proofs omitted from Section 8

Lemma 8.1. By setting T0 =
√
T , after T0 rounds of Algorithm 3 we have that ρ̂ ≤ ρ with proba-

bility at least 1− δ.

Proof. By Azuma-Hoeffding inequality, we have that with probability at least 1−δ, for each i ∈ [m]

it holds
∣

∣

∑T0

t=1 gt,i(xt)− ḡi(xt)
∣

∣. Hence,

−max
i∈[m]

T0
∑

t=1

gt(xt) ≤ −max
i∈[m]

T0
∑

t=1

ḡ(xt) + ET0,δ ≤ T0ḡ(ξ
◦) + ET0,δ = T0ρ+ ET0,δ,

where the second and third inequality follow from the definition of ξ◦. Then,

ρ̂ = − 1

T0
max
i∈[m]

T0
∑

t=1

gt,i(xt) + ET0,δ

)

≤ 1

T0
(T0ρ+ ET0,δ − ET0,δ)

= ρ.

This concludes the proof.
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Lemma 8.4. By setting T0 =
√
T , and assuming that Condition 8.2 is satisfied, after T0 rounds of

Algorithm 3 we have that ρ̂ ≥ ρ/2 with probability at least 1− 2δ.

Proof. First, notice that with probability 1 − δ, the primal regret minimizer has regret bounded by

E
P
T0,δ

. Moreover, by the Azuma-Hoeffding inequality, it holds

∣

∣

∣

∑T0

t=1 λtgt(ξ
◦)− λtḡ(ξ

◦)
∣

∣

∣
≤ ET0,δ

with probability 1 − δ. Consider the case in which both the conditions hold. This happens with
probability at least 1− 2δ by a union bound.

Then,

−max
i∈[m]

T0
∑

t=1

gt(xt) ≥ −
T0
∑

t=1

〈λt, gt(xt)〉 − E
D
T0

≥ −
T0
∑

t=1

〈λt, gt(ξ
◦)〉 − E

D
T0
− 2EPT0,δ

≥ −
T0
∑

t=1

〈λt, ḡ(ξ
◦)〉 − E

D
T0
− 2EPT0,δ − ET0,δ

≥ T0ρ− E
D
T0
− 2EPT0,δ − ET0,δ.

Hence,

ρ̂ = − 1

T0
max
i∈[m]

T0
∑

t=1

gt,i(xt) + ET0,δ

)

≥ 1

T0

(

T0ρ− E
D
T0
− 2EPT0,δ − ET0,δ − ET0,δ

)

≥ ρ/2 +
1

T0

(

T0ρ/2− E
D
T0
− 2EPT0,δ − 2ET0,δ

)

≥ ρ/2,

where the last inequality comes from Condition 8.2. This concludes the proof.
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