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Abstract—Radio environment map (REM) reconstruction based
on large-scale channel measurements is a promising technology
for future mobility services involving vehicle-to-everything (V2X)
communications. REMs provide contextual information which can
be exploited to reduce V2X communication latency and control
signaling, for instance, through a fast access to channel state in-
formation. However, the accuracy of radio mapping techniques is
limited by the availability of measurements, which require for col-
lection significant signaling overhead. Moreover, mobility scenarios
impose strict latency constraints that render fast channel acquisi-
tion a challenging problem. This paper presents a low-complexity
deep-learning-based approach based on long-short term memory
(LSTM) cells for REM reconstruction on roads, addressed as a
data-filling problem. To improve model generalization, the network
is trained on a virtually infinite dataset generated according to a
3GPP-compliant freeway scenario, considering different correla-
tion properties and missing point configurations. The results show
that the proposed approach provides a performance closer to the
theoretical lower bound than the classical Ordinary Kriging spatial
interpolation method, without increasing the complexity order.
Experiments performed in realistic scenarios using a 3D city model
confirm the generalization capability of the proposed solution.

Index Terms—Deep learning, radio environment maps (REMs),
RNN, vehicle-to-everything (V2X), vehicular communications.

I. INTRODUCTION

S PATIAL channel interpolation techniques have recently
gained interest in beyond 5G (B5G) or 6G vehicle-to-

everything (V2X) applications due to their ability to reconstruct
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the radio environment map (REM) of a given base station (BS)
from a subset of available measurements [1]. Although REMs
were originally proposed as a solution for cognitive radio sys-
tems [2], they are currently considered as a key enabler for radio
environmental awareness [3]. Vehicular services often involve
groups of vehicles communicating in close proximity, such as the
vehicles travelling in a platoon or those performing cooperative
collision avoidance [4]. In such applications, the contextual
information provided by REMs can offer several advantages, for
instance, reducing the control signaling necessary for channel
estimation, as shown in a platooning use case in [5].

Many techniques for spatial interpolation can be found in
the literature, such as nearest neighbor [6], inverse distance
weighting [6], [7], natural neighbor [8], thin plate splines [8],
Gaussian process regression [9], [10], [11] and Kriging [1], [6],
[7], [8], [12], [13], [14], [15]. Specifically, Kriging is a method
that was originally used in geostatistics, but it has been applied
since then in many fields, and it is currently widely used for REM
reconstruction. Prior art has proved the superior performance
of Kriging under different evaluations metrics versus various
methods such as nearest neighbor and inverse distance weighting
techniques (see [6], [15]), natural neighbor (see [1]) and, more
recently, over 1D interpolation techniques based on piecewise
cubic Hermite interpolating polynomials [5].

A number of solutions based on channel parameter learning
have been recently proposed for REM reconstruction [16], [17],
[18], [19], [20], [21]. In [16], neural networks are used to esti-
mate the path-loss, while Kriging estimates the shadowing value.
Reference [17] discusses the complexity related to deep learning
(DL) methods and models REM reconstruction as a shadowing
adjustment problem by considering the REM as an image. An
advanced solution for multi-domain reconstruction including
space, time or frequency can be found in [18]. Authors in [21]
proposed a DL method for estimating the propagation path-loss
from a transmitter. The method learns from a physical simula-
tion dataset, and generates path-loss estimations that are very
close to the simulations. Finally, the survey works in [19], [20]
provide a wide overview of REM reconstruction methods, with
examples covering both classical and more advanced DL-based
solutions.

In this work, we target the estimation of the large-scale
channel losses between a target BS and a set of connected
vehicles passing by its coverage area. Prior work has solved this
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problem using Kriging interpolation [5]. However, the Krig-
ing method heavily relies on semivariogram modeling, which
strongly depends on the particular geometry of the problem
under consideration, as pointed out in [5]. Moreover, the number
of available measurements for interpolations is low and the
correlation between samples plays then a fundamental role. Note
that, as derived in [1], a solution based on Kriging needs at
least three available samples to start the reconstruction process,
besides a prior knowledge of the correlation level. Given the
considered vehicular scenario, which imposes strict latency
constraints, our aim is the design of a low complexity DL-based
estimation method with a reduced number of parameters. More-
over, the model should by easily adapted and retrained to meet
the requirements of a particular deployment, while featuring
good generalization capabilities as well. To this end, we pursue
the reconstruction of a set of unknown large-scale channel
values through a recurrent neural network (RNN) architecture.
RNNs have been extensively studied in the context of speech
and language processing [22], and Long-Short Term Memory
(LSTM) architectures, which are built and optimized on the
basis of RNNs, have shown to be powerful methods to deal
with time-series processing tasks aimed at the discovery of
temporal relationships. Our proposal exploits the particularities
of a typical freeway geometry and considers data generated
from a path-loss model. We also impose this estimator to be
completely blind and adaptive, i.e., it should predict the unknown
field values without knowledge on the specific correlation level
between the field values. The hypothesis is that the RNN archi-
tecture, by exploiting the existing spatial relationships within
a number of incomplete field observations, will learn the un-
derlying large-scale channel model to reconstruct the missing
information.

Specifically, the key contributions of this paper are:
� A low-complexity LSTM-based method for REM recon-

struction, together with a simple yet effective training
procedure that allows for a blind estimation of the received
signal power under deployments with different correlation
properties.

� A benchmarking with a theoretical lower bound on the
estimation performance. In contrast to many DL-based pro-
posals where either the nature or the dimensionality of the
problem to solve makes unfeasible to obtain a theoretical
lower bound, the proposed architecture is designed and
evaluated with awareness of the lowest achievable error.

� A comparison with the well-known Kriging algorithm for
spatial interpolation, establishing a reference performance
representative of classical state-of-the-art approaches.

� An analysis of the performance over realistic 3D urban
and freeway scenarios, assessing the method generalization
capabilities.

The remainder of the paper is structured as follows.
Section II introduces the system model considered in this work.
Section III discusses the proposed LSTM-based REM recon-
struction scheme. A lower bound analysis is presented in Sec-
tion IV. Finally, numerical results are shown in Section V, and
some conclusions and future research directions are drawn in
Section VI.

Fig. 1. Scenario under consideration.

II. SYSTEM MODEL

A. Scenario

We focus on a Third Generation Partnership Project (3GPP)-
compliant vehicular scenario to simulate V2X communications
in a straight segment of a freeway [23]. BSs are deployed along
the freeway, at a distance R from the road border and with an
inter-site distance equal to 1732 m [23] (see Fig. 1). Without
loss of generality, the BS of interest is located at the origin of
the cartesian spatial reference system. Throughout the paper, we
will refer to vehicle positions or antenna positions indistinctly.
As an usual assumption, the vehicle antennas are located in the
middle of the roof, assuming, for simplicity, that their position
matches the middle point of the vehicle in both directions.

B. Radio Environment Map Reconstruction Problem

Let us consider a uniform spatial sampling of the received
signal power along a target area of the reference road scenario
depicted in Fig. 1. We consider the average power, i.e., the
power that is obtained by averaging over time the fast fading and
that includes only shadowing and static multipath components.
The received power value at a vehicle located at position xi is
denoted by V (xi), where xi pertains to the set S containing
all the considered road locations, i.e., S = {xi, i = 1, . . . , N}.
In the problem at hand, only P out of the N power values are
available, so the set S can be divided into the union of two sets
containing the positions with known and unknown field values,
i.e., S = K ∪ U , with cardinalities |K| = P and |U| = N − P ,
respectively.

Available field values, i.e., received power due to large-scale
channel effects in this work, can be acquired either through
a conventional channel acquisition stage, or through queries
to a previously stored database containing the REM of the
area. The aim of the method here proposed is to achieve REM
reconstruction for the unknown positions in U given the power
readings atK. We assume the positions are perfectly known, i.e.,
we disregard any Global Positioning System error.

The position-dependent field value V (xi), which includes
large-scale channel losses in logarithmic units (dBm), results
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from the sum of two contributions:

V (xi) = Pr(xi) + Sσ(xi), (1)

where Pr(xi) is the average received power and Sσ(xi) is the
shadow fading following a zero mean normal distribution with
σ2 variance, i.e., log-normal in the linear scale [24]. In the model
we assume that the shadow fading is spatially correlated between
positions xi and xj , with correlation equal to:

Rij = E [Sσ(xi)Sσ(xj)] = σ2ρij , (2)

being ρij the correlation coefficient modelled as [25]

ρij = exp

(
−‖xi − xj‖2

Lc

)
. (3)

Note that Lc is the decorrelation distance in meters, defined as
the distance satisfying ρij = 1/e ≈ 0.37 [23].

The average received power at location xi from a single-
antenna BS is considered to follow the simplified path-loss
model [24]:

Pr(xi) = Pt +KdB + 10α log10

(
d0

di

)
[dBm], (4)

where Pt is the transmitted power at the BS, KdB is the constant
path-gain factor in dB units at a reference distance d0, α is the
path-loss exponent, and di is the distance between the vehicle
location xi and the BS location. Note that, in this contribution,
the small-scale fading effect is assumed to be averaged out by
the receiver (see [26] for a discussion about this aspect). Hence,
from now on, REM reconstruction will refer to the estimation
of the large-scale fading channel effects (only path-loss and
shadowing values).

III. LSTM-BASED REM RECONSTRUCTION

A. LSTM-Based Estimation

Supervised DL-based REM reconstruction has been largely
investigated [19], where neural networks are used to fill incom-
plete field observations by learning an appropriate mapping be-
tween the incomplete input and the actual complete map. Under
the vehicular scenario considered in this work, the estimation
task boils down to a time-series data-filling problem, where each
time step actually corresponds to a spatial position. This prob-
lem can be efficiently handled by an RNN-based architecture
by automatically learning the spatial relationships between the
target power parameters.

We propose a neural network architecture that consists of an
LSTM cell with M units acting as encoder, which takes as input
a sequence of N field values, v ∈ R+N×1

0 , organized such that
each of the elements of v corresponds to a given time step. The
input vector v is constructed from the power loss readings at
the known road locations, including a 0 value at those positions
with an unavailable observation, i.e.:

vi =

{
0, if xi ∈ U ,
Pt − V (xi), if xi ∈ K.

(5)

Note that we select the input to contain channel loss values
instead of actual power measurements, to make the network

Fig. 2. Model architectures. (a) Unidirectional LSTM. (b) Bidirectional
LSTM.

independent from the BS transmitted power, which should be
a known parameter within a realistic deployment framework.
Also, as channel losses are always positive, unknown values
can be safely encoded with zero values for not being feasible
readings.

The output hidden states at each time step in the LSTM cell are
flattened into a single vector representation m ∈ RMN×1. The
decoder is formed by a dense fully-connected layer with rectified
linear unit (ReLU) activation that maps m into the filled output
sequencey ∈ R+N×1

0 . A straightforward extension of the model
is given by its bidirectional version, where the LSTM is applied
twice by feeding a reversed version of the input (backward
layer). In such case, the hidden states from both the forward and
backward LSTMs are concatenated, so thatm ∈ R2MN×1. Both
unidirectional and bidirectional models are graphically depicted
in Fig. 2.

B. System Parameters

The parameters of a 3GPP-compliant freeway scenario are
considered, where each lane has a width w = 4 m and the BSs
are located R = 35 m away from the road border [23]. The
carrier frequency is set to 5.9 GHz, as specified for vehicle-to-
infrastructure communications in [23]. The original REM com-
prises the average received power values at N vehicle positions,
obtained according to (1) and (4) particularized with the 3GPP
parameters in [23]. More specifically, the constant path-gain
factor is KdB = −128.1 dB for d0 = 1 km, path-loss exponent
takes the value α = 3.76, and the shadowing contribution is
drawn from a zero mean normal distribution with σ = 8 dB
standard deviation. Since the focus is on the propagation pa-
rameters, the transmitted power is set to Pt = 0 dBm in the
simulations for simplicity. Note that, in practice, the component
leading to a higher degree of uncertainty in the received field
value is given by the shadowing effect, more specifically, by the
specific decorrelation distance of the considered scenario. This
will motivate a training procedure where the network is tested
on examples having different correlation parameters.

C. Training Procedure

The training of the network is performed by using an infinite
synthetic dataset that generates power observations according to
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the model described in Section II-B. To enhance the robustness
of the method and improve generalization, a set of K increasing
decorrelation distances is considered:

L(k)
c = Lmin + k

Lmax − Lmin

K − 1
, k = 0, . . . ,K − 1 (6)

where Lmin = 25 m and Lmax = 50 m, based on reported
values for typical realistic scenarios [23]. In order to limit the
complexity of the network, estimation is carried out along a road
section of length lr = 2Lmax. Considering an average passenger
vehicle length of approximately 5 m, this separation between
samples leads to input sequences of N = 20 estimation points.
When dealing with non-uniformly spaced real measurements,
samples are discretized in accordance with the chosen grid. This
discretization process does not have a significant impact in the
performance of the method, as the maximum discretization error
(2.5 m) is small in comparison to Lmin. To account for distance
effects, the sections are simulated by generating random offsets
along the approximate BS coverage area on the road (inter-site
distance).

For the purpose of creating input sequences with missing data
at some locations, we consider different missing-data levels,
with a number of available readings going from P = 3 (that
is, only 3 known points, which is the minimum value to carry
out interpolation with algorithms such as Ordinary Kriging) to
P = N − 1 (only 1 missing point). The model is trained for
500 epochs by feeding mini-batches of 128 sequences with 2000
steps per epoch, using the Adam optimizer [27] with an initial
learning rate of 0.01. The model is optimized by minimizing
the mean squared error (MSE) between the complete target
sequence and the neural network output.

D. Evaluation Procedure

Note that, for each P , there are CP =
(
N
P

)
possible combina-

tions with P known values, leading to CP possibilities for the
associated sets K and U . The MSE for a particular set of missing
samples U is computed as:

MSE =
1

N − P

∑
xi∈U

(
V̂ (xi)− V (xi)

)2 [
dB2

]
. (7)

To make the performance evaluation independent from the
specific configuration of missing values given a fixed P , we
compute the average MSE over a large number of realizations
comprising the CP possible set combinations for U , and denote
it by MSEP . Moreover, to summarize the overall performance
over the considered range P = 3, 4, . . . , 19, the global average
MSE, indicated as MSE, is also computed.

E. Model Selection

The specific combination of known samples could be either
given by the practical situation, or set by a certain protocol. For
instance, in some applications it may be useful to consider that
the first P vehicles approaching the BS acquire their channel
values, and the prediction is performed for the following con-
secutiveN − P positions. To train the models, we consider both

TABLE I
UNIDIRECTIONAL LSTM (TRAINED ON RANDOM)

TABLE II
BIDIRECTIONAL LSTM (TRAINED ON RANDOM)

options, either random combinations or combinations of consec-
utive samples. For evaluation, we test all the resulting models
with the two types of combinations (random and consecutive).

Both unidirectional and bidirectional LSTM architectures are
investigated, varying the number of neurons in the main layer
(M ). The model is selected so as to minimize the target metric
MSE; in case of two models with a similar MSE, the model with
the lowest number of parameters and, thus, lowest complexity,
is selected.

Table I shows the MSE values obtained with unidirectional
LSTM networks with M ∈ {4, 8, 16, 32} neurons, trained with
random combinations of missing samples. The second row
contains the results of the performance evaluation over random
combinations (ev. random), whereas the third row contains the
results after restricting to only consecutive combinations (ev.
consec.). The resulting number of parameters of each model
is included in the first row. It can be observed that the eval-
uation over random samples provides lower MSE values than
the consecutive combinations case, which is consistent with
the training assumption. The model with M = 16 has been
recorded as the best option, since its performance with random
combinations nearly matches the one of the M = 32 model,
while outperforming the latter for the consecutive samples case.

Table II shows analogous evaluation results considering bidi-
rectional LSTM models trained over random combinations of
missing data. It can be observed that the bidirectional models
cannot reduce the reconstruction error MSE compared to the
unidirectional ones (see Table I), despite requiring to double
the number of parameters of the network. Therefore, the initial
unidirectional LSTM model with M = 16 remains the best
option to reconstruct random combinations of missing data.

A similar analysis for the unidirectional and bidirectional
models trained with only combinations of missing data in con-
secutive positions is shown in Table III. From the results in the
second row, it can be observed that the models trained with
consecutive combinations are not useful to reconstruct random
combinations (reconstruction error MSE is above a thousand).
Regarding the estimation performance over consecutive posi-
tions (third row), the bidirectional LSTM shows more competi-
tive results. In this case, the bidirectional model with M = 16 is
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TABLE III
UNI/BIDIRECTIONAL LSTM (TRAINED ON CONSECUTIVE)

selected as the best option, since doubling the parameters only
improves the second decimal of the MSE.

The complexity order of the proposed (unidirectional) LSTM
scheme has two dominating terms: the complexity of the encoder
(one LSTM cell with M units [28]) and the complexity of
the decoder (a fully connected layer). The overall complexity
order is given by O(NM 2 +MN 2), where the dominant term
depends on the relative magnitude between N and M . The
computational complexity order of Ordinary Kriging is O(N 3)
[29], due to the inversion of a semivariance matrix to compute
the weights. If new points get measured and weights need to be
updated, online solutions based on inverse matrix theory allow to
get the new weights with a computational complexity ofO(N 2).
Once the weights are available, the evaluation of the REM in a
new location with unknown REM value has a complexity order
O(N), leading to a complexity order O(N 2) to reconstruct a
complete sequence. Since the selected value of M in the LSTM
is quite low (M = 16), as the number of samples to reconstruct
grows, the complexity order is dominated by O(MN 2). Thus,
our proposal leads to a DL-based REM reconstruction scheme
suited for vehicular scenarios and of similar complexity to other
methods such as Kriging.

IV. LOWER BOUND ANALYSIS

According to the model in Section II, the large-scale channel
dynamics over a set of N positions can be modeled as a multi-
variate Gaussian distribution with probability density function
(PDF):

fy(y1, . . ., yN )=
1√

(2π)N |Σ| exp
(−(y−µ)TΣ−1(y−µ)

2

)
,

(8)

where y ∼ N (µ,Σ) is a random vector modeling the aver-
age received power readings at the considered locations, µ ∈
RN×1 is the vector collecting the corresponding mean values
(i.e., averaging over space in the considered environment) and
Σ ∈ RN×N the covariance matrix, so that yi ∈ N (μi, σ

2
ii) and

Cov(yi, yj) = Cij . Operator | · | indicates the determinant. The
power space profile described by the average values in μ can be
easily derived from the path-loss model (4) and the BS distances
to the N positions in x. Similarly, the elements of Σ directly
match the correlation values in (2).

Considering that in the problem to solve there are observations
available for P out of the N random variables, the best estimate
for the unknown components in the Bayesian sense, are those
minimizing the Bayesian MSE, according to the minimum MSE
(MMSE) criterion.

The posterior PDF takes the form of another multivariate
Gaussian random variable with fewer components [30], with
mean µ̄ ∈ RN−P and covariance Σ̄ ∈ R(N−P )×(N−P ). The
MMSE estimate is known to be the mean of such pdf [30].

The random vector y ∈ RN×1 can be partitioned into two
mutually exclusive subsets containing variables modeling field
values at road locations with unavailable readings, yU ∈
R(N−P )×1, and those corresponding to road locations with
known values, yK ∈ RP×1, where yU is dependent on yK:

y = [yU yK]T, µ = [µU µK]
T, (9)

Σ =

[
ΣUU ΣU.K.

ΣKU ΣKK

]
. (10)

Based on the partitions above, the posterior distribution of
the unknown components given the known observations z,
p(yU |yK = z), is a multivariate normal distribution with a mean
vector µ̄ and a new covariance matrix Σ̄ obtained as [30]:

µ̄ = µU +ΣU.K.Σ
−1
KU (z− µK) (11)

Σ̄ = ΣUU −ΣU.K.Σ
−1
KKΣKU . (12)

As a result, the values in µ̄ provide the MMSE estimate minimiz-
ing the global average MSE in (7). The resulting MSE provides,
for each case, a meaningful performance lower bound of the
problem at hand equal to

MSELB =
1

N − P
Tr(Σ̄), (13)

where Tr(·) denotes the trace of a matrix.
Note that, in general, there are CP possible ways of splitting

y and each combination leads to a different MSELB. Therefore,
for a given N and P we evaluate the average MSE as:

MSELB =
1
CP

∑
c

MSE(c)
LB , (14)

where MSE(c)
LB denotes the lower bound of the error for a partic-

ular combination c.

V. NUMERICAL RESULTS

A. 3GPP Freeway Scenario

First, the proposed channel reconstruction method has been
evaluated on a synthetically generated dataset of similar char-
acteristics to those already used for training and testing the
network, but containing different elements. To evaluate the
trade-off between the reduction of signaling when estimating the
N channel values versus the quality of the estimation (evaluated
using the MSE), a sweep of the number of known samples
has been made between P = 3 and P = 19. Data have also
been generated for different values of decorrelation distances
Lc ∈ [25, 50]. For all the combinations of parameters, the theo-
retical lower bound on the MSE is also calculated. Finally, the
performance of the Ordinary Kriging interpolation algorithm
has been included in the evaluation, in order to have the bench-
mark of a widely known non-DL-based REM reconstruction
algorithm. Fig. 3 shows the resulting MSE after averaging 1000
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Fig. 3. Average MSE comparison considering all the possible combinations
of missing values for each P .

Fig. 4. Average MSE comparison considering only the combinations where
the first P values are known (consecutive combinations).

realizations of the shadowing random vector for each of the
CP possible random combinations of known values. We can
clearly see that the proposed unidirectional LSTM withM = 16
outperforms the Kriging algorithm in terms of MSE, getting very
close to, and sometimes reaching, the theoretical lower bound
of the problem. For instance, the performance of the network for
Lc = 50 m overlaps with the lower bound for P ≥ 15.

Fig. 4 shows the MSE results versus the value of P , con-
sidering only the combination with the first P consecutive
known values for each case. Each MSE value is the result of
averaging 1000 realizations of the shadowing random vector.
The results with the proposed bidirectional LSTM model with
M = 16 trained with consecutive samples are shown to be very
close to the theoretical lower bound of the problem, mainly for
P ≥ 13. The Ordinary Kriging method presents a substantial
performance loss when a set of consecutive known samples are

Fig. 5. Simulated trajectory in (a) freeway and (b) urban scenarios in Milan,
Italy. The trajectory is colored according to the value of received power. Red
markers indicate 5G BS locations. (a) Freeway. (b) Urban.

considered instead of samples in random positions. The latter
result is consistent with the conclusion extracted in [5] about
the combinations of samples minimizing the MSE, where the
optimal combinations contained the first and last samples in
most cases.

B. Milan Urban and Freeway Scenarios

In order to assess the generalization capabilities of the pro-
posed neural network over unseen or unknown settings, the
model was tested over propagation data coming from simula-
tions in two distinct realistic scenarios in Milan (Italy), as shown
in Fig. 5. In the urban scenario, four 5G BSs are deployed, while
in the freeway two BSs are located along a 2 km section road.
Vehicles move at a constant speed of 50 km/h and 80 km/h in
the two scenarios, respectively.

Wireless InSite 3D prediction software [31] is used to simu-
late signal propagation from the BSs to the vehicles, enabling
realistic 3D ray-tracing simulations thanks to its integration with
the OpenStreetMap database. The software models the physical
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Fig. 6. MSE comparison considering data from two realistic freeway and urban
scenarios in Milan.

characteristics of irregular terrain and urban building features
(such as permittivity, conductivity, roughness, and thickness) by
accounting for electromagnetic properties through the Uniform
Theory of Diffraction (UTD). It supports ray-based solvers and
handles up to fifty paths.

Both the UE and BSs transmission-reception points (TRPs)
are equipped with one isotropic antenna. This is done in order
to avoid any alteration of the received power due to array gains.
Regarding the values of V (xi), for each vehicle position we
consider the highest received power out of all the BSs. Note that,
the received power generated by the 3D simulation tool is also
affected by small-scale effects such as the Doppler effect. In this
case, the Doppler effect is motivated by the vehicle’s movement
with respect to the transmitter. Recall that in this work small-
scale effects are assumed to be averaged out by the receiver.
Channel loss samples have been taken along the paths shown
in Fig. 5, considering a sample every 0.5 m. From the set of
available values, the data set is composed of random realizations
of groups of samples spaced 5 m apart and covering 100 m spans,
as required by the problem.

The performance results obtained on the data generated in the
two realistic Milan scenarios described above are presented in
Fig. 6, where the average MSE values considering all the possi-
ble combinations of missing values for each P are represented.
It can be observed that the LSTM model is able to perform
the power field reconstruction even with data not following the
3GPP model considered for training. In the freeway scenario, the
Kriging algorithm prediction performs better for P < 7, while
the proposed LSTM is more competitive for higher P values.
When considering the realistic urban scenario data (bottom panel
of Fig. 6), the neural network is in all cases more competitive than
the Kriging algorithm. The MSE values obtained in the freeway
scenario are substantially lower than those in the urban scenario.
The main difference between the freeway and urban environ-
ments data is that the latter present higher variability, with more
often power drops which increase the shadowing variance and

reduce the shadowing correlation distance. When comparing the
results in Fig. 6 with the lower bounds represented in Fig. 3, it
can be further observed that, for the freeway scenario, the MSE
values resemble the theoretical lower bound calculated for the
3GPP scenario with Lc = 50 m, whereas, for the urban case,
the values approach more the ones of the 3GPP scenario with
Lc = 25 m. These results are consistent, since the shadowing
correlation distance in urban scenarios is generally lower than
in freeways.

In order to exploit the potential of ML-based approaches,
we also present refined results for the two panels shown in
Fig. 6, which we denote as ‘LSTM (refined)’. These new results
correspond to a fine-tuned version of the proposed LSTM model
that has been adapted to a small fraction of the data (20%)
observed in the two discussed scenarios. By departing from the
model trained on 3GPP-compliant synthetic data, we are able to
employ a transfer learning approach to update its weights using
a small set of real data. The refined LSTM version produces a
significant performance improvement, as shown in the updated
Fig. 6.

VI. CONCLUSION

This work considered the problem of estimating a set of
unknown large-scale channel values for the communication
between a base station and vehicles travelling along a freeway.
A low-complexity deep-learning-based estimation method is
proposed, which considers a Long-Short Term Memory (LSTM)
architecture with a reduced number of parameters, to guarantee
a low-complexity radio map reconstruction.

The neural network has been trained with samples generated
from a simplified path-loss model with random shadowing, using
the parameters of 3GPP-compliant freeway scenario. For all the
variations of parameters, the mean squared error (MSE) of the
reconstructed values has been compared to its theoretical lower
bound and to the classical Kriging algorithm for spatial inter-
polation. It can be observed that the LSTM model outperforms
the Kriging method, and it is very close to the theoretical lower
bound, reaching it in some cases.

Furthermore, the proposed model is able to generalize and
perform the estimation with channel data generated in more
realistic environments, specifically, considering the geometry
and buildings of both urban and freeway settings in the city of
Milan. Further work includes extensions of our proposal capable
of performing two-dimensional REM reconstruction.
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