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This paper describes a fully experimental hybrid
system in which a 4 × 4 memristive crossbar spiking
neural network (SNN) was assembled using custom
high-resistance state memristors with analogue CMOS
neurons fabricated in 180 nm CMOS technology. The
custom memristors used NMOS selector transistors,
made available on a second 180 nm CMOS chip. One
drawback is that memristors operate with currents
in the micro-amperes range, while analogue CMOS
neurons may need to operate with currents in the
pico-amperes range. One possible solution was to
use a compact circuit to scale the memristor-domain
currents down to the analogue CMOS neuron domain
currents by at least 5–6 orders of magnitude. Here,
we proposed using an on-chip compact current
splitter circuit based on MOS ladders to aggressively
attenuate the currents by over 5 orders of magnitude.
This circuit was added before each neuron. This paper
describes the proper experimental operation of an
SNN circuit using a 4 × 4 1T1R synaptic crossbar
together with four post-synaptic CMOS circuits, each
with a 5-decade current attenuator and an integrate-
and-fire neuron. It also demonstrates one-shot winner-
takes-all training and stochastic binary spike-timing-
dependent-plasticity learning using this small system.

2022 The Authors. Published by the Royal Society under the terms of the
Creative Commons Attribution License http://creativecommons.org/licenses/
by/4.0/, which permits unrestricted use, provided the original author and
source are credited.
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This article is part of the theme issue ‘Advanced neurotechnologies: translating innovation
for health and well-being’.

1. Introduction
In recent years, neuromorphic engineering has attracted great interest in both academia and
industry because of its potential for providing energy-efficient artificial cognitive sensory and
processing systems that imitate brain functions. Neuromorphic computing and engineering is
highly multidisciplinary. It encompasses high-level computational neuroscience for unravelling
the computing and learning principles used in biological brains, novel hardware-friendly
parallel architectures capable of mapping brain computing principles on fast, efficient hardware
platforms, novel circuits that imitate event-driven brain computations, and new nanoscale
devices that can be used directly as synaptic or neuron primitives. One key difference between
classic computers and neuromorphic computing hardware is the latter’s circumvention of the
Von Neumann bottleneck [1]. In classic computers, processing elements and memory storage are
physically separated and a great amount of energy is consumed in massive data transfers between
processors and the different hierarchical levels of memory. In neuromorphic hardware, however,
it is possible to co-locate knowledge (stored dynamically as synaptic weights) and information
processing (typically performed jointly by synapses and neurons), thus reducing such continuous
massive data transfers. One way of co-locating memory and processing is to use memristor
devices, which can be fabricated monolithically on top of CMOS neurons [2]. In this regard,
many researchers have proposed building hybrid CMOS–memristor neuromorphic computing
systems. However, one issue that arises when trying to interconnect memristor-based synapses
with compact CMOS neurons is the big difference between their operating currents. Memristor
devices typically have an ON-resistance in the range of 2–20 kΩ , so synaptic currents flowing
through each of them could be of hundreds of micro-amps. On the other hand, compact CMOS
neurons integrate synaptic current pulses on small capacitors in the range of tens to hundreds
of femto-farads, thus presupposing current pulses in the range of few nano-amps, pico-amps or
even less.

This problem is not normally highlighted in the literature. Researchers have often performed
electrical measurements and characterizations on isolated memristor devices or crossbars
and then extrapolated their extracted models to numerically simulated full systems [3–5],
circumventing the physical problem of current scaling. In other studies, memristor crossbar
currents are sensed by on-chip analogue-to-digital converters [6,7], or driven off-chip and
integrated by analogue integrators with operational amplifiers and large off-chip capacitors [8].
Other reported solutions downscale the memristor current in each synaptic circuit, resulting in
costly area overheads [9], or use the memristor crossbar as a digital memory, reading it out with
sense amplifiers and using the read digital words to activate correctly scaled, dedicated, digitally
controlled current injectors [10].

Here we propose a solution based on current splitting using compact MOS ladder circuits
[11], inserted between the memristor crossbar and the analogue CMOS neurons, with one splitter
circuit per neuron. We also built a 1T1R memristor crossbar by combining isolated custom-
made special high-on-resistance memristors, available on custom chips, with NMOS selector
transistors fabricated in CMOS technology. This method was used to assemble a full analogue
memristor + CMOS multi-chip system. We demonstrate this system’s functionality with examples
of its use in winner-takes-all (WTA) one-shot training and stochastic binary (SB) spike timing-
dependent plasticity (STDP) learning [12,13]. In summary, the contributions/innovations in the
present paper are the following:

— Ladder circuit: the use of one ladder circuit per neuron allows for an efficient, low power
and low area means of interfacing memristor synapses and CMOS neurons (§§2–3).
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— Modified neuron circuit: we present a modification of a previously reported neuron
circuit that allows to tune its threshold voltage, depending on the application
(§4).

— New memristor stack: in this paper we use a new memristor stack (with Ti/C/Au top
electrode) aimed at reducing the set/reset voltage to below 3V (§5), while providing an
OFF resistance in the mega-ohm range.

— Hybrid Memristor-CMOS multi-chip architecture: we present a new practical low-cost
set-up for interfacing custom-lab made memristors with 1T MOS transistors made with
mainstream CMOS technologies (§6).

2. The problem of big differences in current domains
Most currently available memristor devices have low resistance states (LRS) in the range of
1–10 kilo-ohms from about RON � 2 kΩ to about 20 kΩ , and high-resistance-states (ROFF) typically
above 100 kΩ but with higher degrees of variability [14]. When these memristors are used in
a crossbar configuration for performing computational inference (for example, a vector–matrix
multiplication) each active memristor is subject to a relatively small amplitude read pulse in
the range of VRead � 100 mV − 300 mV, to avoid alteration of the stored resistance state. This
read pulse is typically applied for a time TP in the range of hundreds of nano-seconds or a few
micro-seconds. As a result, the charge packet delivered by an individual LRS memristor when
stimulated by one single read pulse could be in the order of

δqmemr = ION × TP � 50 µA × 100 n s = 5 pC

with ION = Vamp/RON � 100 mV/2 kΩ = 50 µA.
(2.1)

The post-synaptic neurons on the other side of the memristive crossbar integrate all the charge
packets produced by dynamically arriving spiking input patterns. When implemented on-chip,
these neurons should have minimum area. To properly recognize complex features, they also need
to integrate spikes coming from a large number of synapses. These neurons typically comprise
a compact integration capacitor Cmemb, which integrates the charge packets δq coming from
the different synapses. The integration is typically leaky, so incoming synaptic charge packets
have to coincide within a time window and allow the integrated capacitor voltage to reach a
given threshold voltage Vth fast enough to counteract the leakage. When the neuron reaches this
threshold, its capacitor voltage is reset to the resting level Vrest. As a rule of thumb, a neuron in a
large-scale neural network can on average be expected to fire after receiving between a hundred
and a thousand incoming spikes. This means that the increment or decrement induced in the
integrating capacitor’s voltage by a single ‘average’ synaptic spike should be about �Vspk �
(Vth − Vrest)/nspk with nspk typically in the range of 102 to 103. In analogue CMOS neurons
Vth − Vrest is typically in the range of 1 V [15], so �Vspk would be a round 1 mV to 10 mV. For
compact CMOS neurons, capacitance Cmemb should be kept around 100 fF or less. Therefore, one
individual synaptic charge packet δqneur feeding the membrane capacitance should, on average,
satisfy

δqneur � Cmemb × �Vspk = 100 fF × 1 mV = 0.1 fC. (2.2)

This charge packet is about a five orders of magnitude smaller charge packet than in equation
(2.1). Even for smaller scale proof-of-concept systems with nspk in the order of 10–100 and
�Vspk � 100 mV, we would still need to scale the charge packets down by about 3 orders of
magnitude. One possibility is to use very fast read pulses with TP in the range of 100 ps or
less. This would require the use of fast deep-submicrometre technologies and fast crossbar
driver circuits. Alternatively, one may think of using a 103−105 larger capacitor, but this implies
multiplying by the same factor its area, making it prohibitive (for example, in our neuron design
as explained later, Cmemb’s area is 20% of the neuron area; increasing it 103 times would increase
the neuron area by about 200 times). If very fast pulses are not feasible, the only alternative
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is to provide some kind of mechanism for scaling or mapping from the memristor-domain
current/charge-packet levels to the neuron-domain current/charge-packet levels.

One solution is to use ADC converters to collect the memristor crossbar currents [6,16,17].
The information is then switched to the digital domain, where the rest of the computation
can be performed. Alternatively, other researchers have proposed techniques to scale from the
memristor-domain to the neuron-domain current levels inside each synaptic circuit [9]. This,
however, results in a high overall chip area penalty. In this study, we decided to use a compact
ladder-based circuit at each neuron input, capable of scaling down the memristor-domain current
by several orders of magnitude. This also results in a highly energy-efficient technique, due to
circuit simplicity, as will be highlighted later in the experimental results (table 5). For now, let us
define the energy consumption by one LRS memristor as ELRS = VDD × δqmemr, where VDD is the
power supply voltage.

3. Compact ladder-based circuit for current downscaling
MOS-based ladder circuits have been known since 1992 [11] and have proven capable of
downscaling currents from hundreds of micro-amps to a few femto-amps [18]. Figure 1 illustrates
the MOS ladder-based current-splitting technique for a generic branch-to-branch scaling factor
N. The transistors have a size ratio of either W/L = N − 1, W/L = N/N(N − 1), or W/L = 1.
Normally, ladder circuits are used with N = 2, thus providing binary-weighted currents which
are very convenient in, for example, digital to analogue converters. Here, however, we needed
to downscale the current aggressively with a reduced number of transistors. We therefore used
current ladders with N = 10, while minimizing transistor dimensions.

Figure 2 shows the specific circuit used in this study. It used a ladder branch-to-branch scaling
factor N = 10, with transistor sizes as shown in table 1, downscaling currents by about 5 orders
of magnitude from the memristor-domain to the neuron-domain. The area consumed by this
atteanuator circuit is 68 × 36 µm2 = 2448 µm2. Depending on the scale of the neural network, the
average number of synapses connecting to a neuron, the pulse width stimulating the memristors,
the value of the memrsistor ON (LRS) resistance, and the desired average number of incoming
spikes that should trigger a post-synaptic neuron output spike, one may need a different down-
scaling factor for the current attenuator. In our fabricated prototype, we connected branch I4 in
figure 2 to provide the current for the neuron Ineur. However, any other branch could have been
selected, from I4 to I0, to feed current Ineur giving the possibility of scaling down by 5 to one
orders of magnitude, respectively.

4. CMOS neuron circuit
Figure 3 shows the neuron circuit employed in the study. The schematic is separated into six
conceptual blocks, A to F. This neuron is a leaky integrate-and-fire neuron, with positive feedback
to sharpen spikes, a frequency adaptation mechanism, and a refractory period mechanism. It is
based on the CMOS neuron reported by Qiao et al. [19] in which we simplified some parts, but
added block E so that the neuron threshold voltage can be freely adjusted. Block A feeds the input
spikes, block B provides constant leakage, block C provides the frequency adaptation mechanism,
block D controls the positive feedback spike-sharpening mechanism, block F provides the
refractory mechanism and block E is a comparator that activates blocks C, D and F. Transistor
M1 in block A mirrors the output current pulses coming from the current–attenuator Ineur into
the neuron circuit, where they are integrated by membrane capacitor Cmemb. Transistor M2 tends
to isolate the neuron from the incoming synaptic circuit during spike generation to minimize
crosstalk. Concurrently, transistor M3 in block B introduces a comparatively small but continuous
leakage current Ileak, which slowly discharges the membrane capacitor. Capacitor Cmemb’s top
terminal (which is the neuron’s output terminal Output) is also connected to the negative input
in the comparator (block E). When the Output voltage exceeds the reference voltage Vth_V of
the comparator’s positive input, the comparator’s output voltage at node Vn starts falling. As a
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Figure 1. Circuit schematic for generic current splitting ratio N.
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Figure 2. Compact ladder-based MOS current splitter circuit used to downscale the memristor-domain current Imem (in the
range of 10–100µA) by five orders of magnitude to neuron-domain current levels. Input mirror Mh–Mi provides an extra 25
factor attenuation.

Table 1. PMOS ladder transistor sizes.

Mc Md Me Mg Mh Mi

W (µm) 1.1 9 1 1 25 1
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

L (µm) 1 1 1 1 4 4
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

result, transistor M12 activates block D and injects a positive feedback current Ifead into Cmemb,
leading to the generation of a sharper spike at Output. Simultaneously, transistor M5 activates
block C, causing a charging current to be injected into recovery capacitor Crec. Block C is in
charge of the spike-frequency adaptation mechanism, which serves to progressively lower the
neuron’s firing rate in response to a continuous input stimulation [20]. This way, block C adds
an additional leakage current to membrane capacitor Cmemb when the neuron’s spiking output
activity increases. Block F implements the refractory mechanism. Transistor M21 is activated on
the rising edge of a spike (falling edge at node Vn) and charges refractory capacitor Cref. This
leads to the discharge of Cmemb through M13, in order to hold Output close to rst_V. After a spike,
capacitor Cref is discharged with a small current controlled by voltage refractory_I via transistors
M22-M24. The refractory period lasts until Vref falls below transistor M13’s threshold voltage.

The three capacitances of the neuron circuit in figure 3 were designed with Cmemb = 150 fF,
Cref = 100 fF and Crec = 100 fF. The total area consumed by the neuron is 57.7 × 15.5 µm2 =
863 µm2, including all three capacitors. This CMOS technology allows placing capacitors over the
transistors, while their density is about 1 µm2/fF. Consequently, the area of the three capacitors is
about 350 µm2 and could be fit above the rest of the neuron circuitry.
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Figure 3. Circuit level schematic of the neuron circuit. (Online version in colour.)
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Figure 4. Microphotographs of (a) thememristor die, (b) the top and bottom interconnects, and (c) thememristor active area.
(d) The RRAM device structure. (Online version in colour.)

5. RRAM devices
In this paper, we report for the first time experimental results using a new memristor device
aimed at reducing the set/reset voltages to below 3V, while presenting an OFF resistance of
about 1 MΩ or higher. Figure 4a–c shows SEM images of the RRAM cells used in this study.
The RRAM devices comprised stacks are made up of a Pt bottom electrode (BE), a HfO2 active
layer and a Ti/C/Au top electrode (TE). The fabrication procedure was as follows. First, a SiO2
layer was deposited by chemical vapour deposition on a heavily p-doped silicon wafer serving
as substrate. The 20 nm thick Pt BE was then deposited using ultra-high vacuum (10−7 mbar)
e-beam evaporation and patterned using lithography and lift-off. All the lithographic steps were
performed using a Heidelberg MLA100 UV laser writer. A 70 nm thick SiO2 spacer layer was
then deposited to isolate the BE lines from the TE lines. Holes with diameters of 1.5 µm were then
made through the spacer layer by reactive ion etching. The holes were opened in correspondence
of the BEs with regular lattice spacing, to serve as cell active regions in the array. The 3 nm thick
HfO2 film was then deposited, again by e-beam evaporation, followed by the TE stack, without
breaking the vacuum between the different layers. A 15 nm thick Ti cap layer was deposited on
HfO2, followed by a 30 nm C layer to increase the series resistance and thus reduce the possible
overshoot effects at forming and set transitions. A thick Ti/Au layer was finally deposited as an
electrical contact. The oxide/TE stack was patterned using lithography and lift-off.

The RRAM device structure can be seen in figure 4d. Possible short circuits between the TE
and BE layers are prevented by the SiO2 spacer layer. The Ti cap layer has been reported to act
as an oxygen scavenger, leading to the formation of a TiOx oxygen-exchange layer at the Ti-HfO2
interface [21]. This mechanism leads to an increase in the local concentration of oxygen vacancies
in HfOx, which in turn enhances the leakage current in the pristine state and reduces the devices’
forming voltage [22].
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Figure 5. I–V characteristics of the RRAM device. (a) Forming characteristics. The device is initialized by the forming operation
with a relatively small compliance current of 1µA (1-2). Thefirst reset operation (3) showsa relatively large reset current of about
150µA, due to the parasitic currents during the high voltage forming. Extending the reset operation to large negative voltages
(4) allows to reach a deep reset state with relatively large resistance (5). (b) set/reset characteristics. The following set/reset
curves show a relatively tight distribution of set voltages and controllable resistance via the compliance current. (Online version
in colour.)

The RRAM devices were first characterized using an Agilent 4156C Precise Semiconductor
Parameter Analyzer. Figure 5 shows the multiple-cycle DC characteristics indicating repeatable
set and reset transitions when positive and negative voltages, respectively, were applied to the
TE. Also shown is the first cycle, with the forming transition taking place at around 3 V. This is
relatively high compared with the typical set voltage of about 1.5 V. A curve was collected for each
increment in compliance current IC from 10 µA to 100 µA. As IC increased, the LRS conductance
increased almost linearly with it, while the high resistance state (HRS) conductance remained
almost constant.

The pulsed operation of the RRAM devices was studied using a TTi-TGA12102 Arbitrary
Waveform Generator and a LeCroy WaveRunner 640Zi oscilloscope. The compliance current
was applied by an external transistor. Figure 6a shows the oscilloscope traces for the applied
voltage and the measured current. Positive and negative triangular pulses with pulse-widths of
20 ms were applied for set and reset transitions, respectively. From the measured current and
voltage, we obtained the pulsed I-V curves displayed in figure 6b. Each curve represents the
averaged current between 100 characteristics. The results indicate a nonlinear characteristic where
the resistance window increases with IC. Figure 6c shows the cumulative distributions of the
measured LRS conductance G at increasing IC, indicating a standard deviation of about 12 µS.
Figure 6d shows the measured HRS and LRS conductance values as a function of IC, supporting
the increase in the resistance window at increasing compliance current. Conductance increased
with a slope of approximately one, indicating a linear relationship with IC, except for the relatively
low G, where the LRS collapsed with the HRS level.

For our set-up and experiments described in the rest of this paper, we wanted to have a large
resistance window, maximizing the OFF resistance (HRS). We therefore used high compliance
current levels and used the memristors as binary memories with maximally separated LRS and
HRS.

6. System architecture
In this paper, we showcase a small 4 × 4 1T1R synaptic memristor crossbar with CMOS analogue
neurons performing learning and inference. Our system illustrates how to use a set of separate
CMOS chips together with custom made memristive devices to build a hybrid CMOS–memristor
system operated with an auxiliary custom PCB and controlled by an FPGA. The interesting
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novelty about this approach is that it shows a simple way for memristor researchers to assemble
1T1R arrays by combining custom memristor-only chips with standard CMOS ASICs. The
system’s overall architecture is shown in figure 7. The memristors were on a separate chip
(coloured green in figure 7). As can be seen in figure 4a, a total of 32 separate memristors were
on the chip. Owing to yield issues, however, not all 32 were functional. Here we used a total
of 16 memristors, each having a separate pin for its bottom plate while the top plates were
shared by the four memristors in the same row (figure 7). The 16 NMOS selectors were fabricated
on a separate CMOS chip (coloured blue in figure 7). These shared their gates row-wise and
their source terminals column-wise. Their drains were connected individually to each of the
memristors’ bottom plates. This way, a full 4 × 4 1T1R synaptic array could be assembled using
custom memristors.

The post-synaptic CMOS circuits (shown in orange in figure 7) were allocated on a separate
chip. They each included one current attenuator (§3) and one CMOS neuron circuit (§4). The
other elements in figure 7 were allocated on a custom PCB. This custom PCB had some external
digital control signals (‘Row Active Select’, ‘Column Active Select’ and ‘Inf’), set by an additional
FPGA control board running a state machine. The system in figure 7 could be configured in two
operation modes, ‘Inference’ mode or ‘Element-Wise’ mode, using a digital control signal Inf .

(a) Inference mode
When Inf = 1 the inference mode is activated and the synaptic crossbar will perform parallel
inference. In this mode, all 1T gates are connected to a gate inference voltage bias VGinf, each of the
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Figure 7. System level architecture of the memristor-based spiking neural network. (Online version in colour.)

four memristor row top plates is connected to one post-synaptic circuit, and each of the four 1T
source columns is connected to one pre-synaptic circuit (Prei in figure 7). The pre-synaptic circuits
are physically implemented on the custom PCB and are simple switches connecting the column
to either a VHIGH or VLOW voltage, depending on digital input Ini (either ‘0’ or ‘1’), as illustrated
in the inset in figure 7. In this ‘Inference Mode’, all post-synaptic rows are set to voltage VHIGH,
while active digital input Ini will set the corresponding column to VLOW. This way, the current
flowing from a post-synaptic circuit will be given by

Ij =
4∑

i=1

R−1
ij �VReadIni, (6.1)
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where Rij is the resistance of the 1T1R synapse at column i and row j, and �VRead = VHIGH −
VLOW. In this ‘Inference Mode’, post-synaptic currents Ij will be collected by the current
attenuator circuits and scaled down before being integrated in the neurons. The neuron outputs
Outj are monitored by the FPGA state machine.

(b) Element-wise mode
When Inf = 0, the ‘Element-wise Mode’ is activated. In this mode, only one column and only one
row at a time are set as ‘active’, so only one 1T1R element is selected to perform an individual
‘Forming’, ‘Write’, ‘Erase’ or ‘Read’ operation on them. The 2-bit digital control ‘Row Active
Select’ sets one of the rows as the active row, while the 2-bit digital control ‘Column Active Word’
sets one of the columns as the active column. The other, non-active, rows and columns are set
as ‘default’. For the active row, the gates of the 1T NMOS selector transistors are connected to
node ‘GA’ (Gate Active) while the other gates are connected to node ‘GD’ (Gate Default). The
memristor top plate node of the ‘active’ row is connected to node ‘RA’ (Row Active), while the
others are connected to node ‘RD’ (Row Default). Finally, the active column is connected to node
‘CA’ (Column Active), and the other columns are connected to node ‘CD’ (Column Default).

The operation to be performed at the individually selected 1T1R synapse is set by the 3-bit
digital control word ‘OP’. It may be a ‘Forming’, ‘Write’, ‘Erase’, ‘Stand-by’ or ‘Read’ operation.
The stand-by mode is ‘Read-Mode’, in which all terminals are connected to the ‘default’ value.
This is a safeguard measure to avoid undesirable glitches when switching active rows/columns
or operation modes. Stand-by mode should therefore be inserted when switching between
‘Forming’, ‘Write’, ‘Erase’ or ‘Read’ operations. Similarly, stand-by mode should also be used
when changing active columns/rows. It should also be noted that the ‘Forming’, ‘Write’, ‘Erase’
and ‘Read’ operations are to be performed during well-defined time durations, while ‘Stand-by’
can have an arbitrary duration.

For each of the six modes in figure 7, GA (Gate Active), GD (Gate Default), RA (Row Active),
RD (Row Default), CA (Column Active) and CD (Column Default) the corresponding active lines
should be connected to five different bias voltages, depending on the selected operation. This
results in a total of 30 different bias voltages, each of which can be adjusted individually on the
custom PCB. These 30 bias voltages are available at the 30 nodes in figure 7 which are labelled
with three capital letters XYZ , where ‘X’ is either ‘G’ (Gate), ‘R’ (Row), ‘C’ (Column), ‘Y’ is either
‘A’ (Active) or ‘D’ (Default), and ‘Z’ is either ‘F’ (Forming), ‘E’ (Erase), ‘W’ (Write), ‘R’ (Read) or
‘S’ (Stand-by).

Figure 8 indicates the gate, column and row voltages to be set for the active and default
columns and rows for the five different operation modes and the inference mode.

These voltage bias settings are summarized in table 2. During element-wise reading, the aim
is to accurately read the resistance of the selected 1T1R synapse. To do this, the current sensing-
circuit shown in inset (b) in figure 7 is connected to node RAR. By reading voltage VR, it is possible
to infer the resistance of the corresponding 1T1R synapse by using

Rij = Rsense
VHIGH − VLOW

VR − VRAR
= Rsense

0.1 V
VR − 1.6 V

. (6.2)

The sizing of the selector transistor is critical. On one hand, it is desirable it is not too large.
This way, when scaling up the system, higher synapse densities can be achieved. However, on
the other hand, its size ratio (W/L) should be large enough for allowing the maximum required
currents for the different operations. The most critical operation is resetting the memristor from
LRS to HRS, since the memristor has a low resistance while we need to apply to it a relatively
large voltage of about 3 V. We sized our selector transistor to have minimum length (L = 350 nm)
and a width of W = 13.4 µm. Under these conditions, we could erase safely all fabricated and
operational memristors while applying an erase voltage to the 1T1R compound of 4.15 V, as
shown in table 2.
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Figure 8. Illustration of the ‘active’ and ‘default’ voltage levels used for the different operating modes. (a) Forming, (b) erase,
(c) write, (d) stand-by, (e) read and (f ) in the parallel inference mode. (Online version in colour.)

Table 2. Active and default bias voltages used for the different operations.

element-wise mode

forming erase write read stand-by inference-mode

gate active 1 V 4.15 V 3.3 V 1.6 V 1.6 V 3.3 V
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

default 0 V 0 V 0 V 0 V
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

row active 4 V 0 V 3.3 V 1.6 V 1.6 V 1.6 V
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

default 2 V 2 V 3.3 V 1.6 V
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

column active 0 V 4.15 V 0 V 1.5 V 1.6 V 1.6 V / 1.5 V
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

default 4 V 0 V 3.3 V 1.6 V
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

7. Experimental results
Three separate chips were fabricated. One was a custom memristor chip containing 32 individual
memristors and the other two were ASIC chips fabricated in TSMC 180 nm CMOS technology, one
of which contained the NMOS transistor selectors and the other the CMOS current attenuators
and neurons for the post-synaptic circuits.

Figure 9 shows micrographs of the three chips. Details of the custom memristor chip can be
seen in figure 9a. This chip has a total of 32 independent, individual memristors, each connected
to an Au (gold) top electrode and a Pt (platinum) BE. Each electrode is 5 µm wide and the circular
active area of each memristor at the cross points on both electrodes has a diameter of 1.5 µm. The
chip has a total of 64 pins (32 TE pins and 32 BE pins). Not all of the 32 memristor devices were
fully functional. From the ones that were, 16 were selected to be connected to the CMOS chips.
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Figure 9. Micrographs of (a) the memristor chip (with progressive zoom-ins), (b) the selector transistor chip, and (c) the post-
synaptic circuit chip. (Online version in colour.)

Figure 9b shows a micrograph of the fabricated NMOS selector chip. Each NMOS transistor has
a size of W = 6.7 µm and L = 350 nm. The fabricated array has 8 × 8 selectors. Since we used only
16 memristors, a sub-array of 4 × 4 selectors was used in the set-up. Figure 9c shows a micrograph
of the post-synaptic chip. It includes a total of eight post-synaptic circuits, each including one
current attenuator, one CMOS neuron and one output buffer. Each post-synaptic circuit has an
area of 180 × 50 µm2, of which 2520 µm2 are occupied by the current-attenuator, 840 µm2 by the
neuron and 1272 µm2 by the buffer. In our set-up, four post-synaptic circuits were used.

Figure 10 shows the full experimental set-up, including one PCB holding the memristor chip,
another PCB holding the selector chip, another PCB holding the post-synaptic circuit chip, the
custom PCB with all the switches, multiplexers and potentiometers providing all the biases and
the FPGA-based controller PCB.

(a) Current-attenuator test
Figure 11 shows the on-chip dedicated circuit used to characterize the current attenuator. Since the
attenuator output currents can be very small (less than 1 pico ampere), currents cannot be driven
off-chip and measured by external instruments [18]. With the circuit in figure 11, it was possible to
measure the charging time of the integrating capacitor and estimate the charging current coming
from the attenuator output Ineur. The current attenuator input current Imem was set by changing
the off-chip resistance Rmem.

Imem = 100 mV
Rmem

. (7.1)
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post-synaptic chip

Figure 10. Experimental test set-up showing all PCBs and chips. (Online version in colour.)
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Figure 11. On-chip dedicated circuit used to characterize the current attenuator output current.

To measure the attenuated output current Ineur, capacitor Ctest was initially discharged to 0 V and
then charged by Ineur until the capacitor voltage reached Vth. By observing the digital output Vo

of the voltage comparator, it was possible to measure the time �t between capacitor reset and the
instant at which the capacitor voltage reached Vth

Ineur = CtestVth

�t
. (7.2)

Capacitor Ctest was designed with a capacitance of 1.5 pF and voltage Vth was set at 500 mV.
Figure 12 shows the characterization results for the measured values of current Ineur versus the

attenuator input current Imem. It can be seen that the attenuation factor for synaptic memristances
Rmem in the range of 1 kΩ to 10 kΩ was between 1.9 × 105 and 1.6 × 105. Table 3 summarizes the
values used for Rmem, the values measured for �t, and the inferred values for Imem, Ineur and the
attenuation factor.

(b) Neuron circuit test
Figure 13a shows the test configuration used to characterize the neuron cell circuit. In this
arrangement, an external 1 kΩ resistor was connected between the input node of the current-
attenuator and a 1.5 V reference voltage. For this resistance, it can be seen from table 3 that
the attenuator output current to the neuron Ineur was slightly below 1 pA. Three buffers were
used to isolate the three capacitor voltages in figure 13a (Output, Vref and Vrec) and thus allow
efficient, undisturbed off-chip observation. Figure 13b shows these three neuron voltages during
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Figure 12. Current-attenuator output current Ineur versus its input current Imem. (Online version in colour.)

Table 3. Input (Imem) and output (Ineur) currents of the attenuator along with the measured charging times (�t) at capacitor
Ctest and the resulting current attenuation factors for a set of different equivalent input memristor resistances Rmem.

no. Rmem (kΩ ) �t (ms) Imem Ineur attenuation (105)

1 1.02 1.47 97.7µA 50.86 pA 1.92
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

2 2 2.70 50.0µA 27.73 pA 1.80
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

3 4.13 5.41 24.2µA 13.83 pA 1.74
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

4 7.97 9.65 12.5µA 7.77 pA 1.61
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

5 16.1 20.23 6.21µA 3.70 pA 1.67
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

6 32 38.34 3.12µA 1.95 pA 1.59
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

7 64 72.75 1.56µA 1.03 pA 1.51
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

8 127.7 153.99 783.0 n A 487.03 fA 1.60
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

9 256.1 295 390.4 n A 254.23 fA 1.53
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

10 500 537.59 200 n A 139.51 fA 1.43
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

11 997 947.68 100.3 nA 79.14 fA 1.26
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

a time period of 150 ms. In this experiment, the neuron threshold voltage was set to 2.2 V and the
refractory period was set to about 7 ms.

(c) One shot WTA training
In a first system-level experimental set-up, we performed a one-shot WTA-driven training
demonstration. For this purpose, all 16 memristors in the crossbar were first initialized to their
ON state (LRS). The four 4-bit patterns p1, p2, p3, p4 shown in figure 14 were then used as input
patterns. For each pattern, simultaneous pulses were applied by the pre-synaptic neurons with
an active bit. The patterns were applied for long enough to allow at least one of the output
neurons to reach its threshold level. The neuron that first reached its threshold level was the
winning neuron, and the weights of the synapses connecting to it were updated. For a synapse
between the winning post-synaptic neuron and an active pre-synaptic neuron, no action was
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Figure 13. (a) Test configuration for the neuron circuit, (b) membrane potential (Output), refractory variable voltage (Vref ), and
recovery variable voltage (Vrec) of the neuron circuit. (Online version in colour.)

p1 p2 p3 p4

Figure 14. Input patterns to the SNN. (Online version in colour.)

taken. For a synapse between the winning post-synaptic neuron and an inactive pre-synaptic
neuron resistance was set to high (HRS) by performing an erase operation.

Figure 15 shows the experimentally measured membrane voltages of the post-synaptic
neurons when the input patterns in figure 14 were applied sequentially and the weights updated
in accordance with this WTA-driven training method. The left-most column corresponds to input
pattern p1, the second left-most column to p2, and so on. The top row (a–d) shows the measured
membrane voltages of the four post-synaptic neurons for each input pattern when all memristors
were initially set to LRS. The second row (e–h) shows the membrane voltages after implementing
weight changes when pattern p1 was applied and post-synaptic neuron 1 (blue) won the WTA
competition. Therefore, only connections to neuron 1 get updated. Note that when applying input
patterns 2 to 4 (see (f –h)), neuron 1 behaves differently than in (b–d), since its input weights have
changed. The third row (i–l) shows the voltages after the next input pattern p2 was applied and
post-synaptic neuron 3 (black) won. Now, neuron 3 changes its behaviour in (i,k,l) with respect to
(e,g,h). The fourth row (m–p) shows the voltages after the next pattern p3 was applied and post-
synaptic neuron 4 (green) won. Now neuron 4 changed its behaviour in (m,n,p) with respect to
(i,j,l). Finally, the fifth row (q–t), shows the voltages after the next input pattern p4 was applied
and post-synaptic neuron 2 (red) won, showing a different behaviour in (q–s) with respect to
(m–o). In this last row, it can clearly be seen that each output neuron responded very strongly to
only one of the input patterns.
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Figure 15. Neuronoutputs for each input pattern. (a–d) before anyweight update, (e–h) after presentingp1 and corresponding
weight updates, (i–l) after presenting p1 and p4 and corresponding weight updates, (m–p) after presenting p1, p4 and p3 and
corresponding weight updates, (q–t) after presenting all the input patterns and all corresponding weight updates. Blue circles,
neuron1; red circles, neuron2; black circles, neuron3; green circles, neuron4. (Online version in colour.)
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–POFF

Figure 16. Weight change probability for SB-STDP. If the sequence order between post-synaptic and pre-synaptic spikes is
positive and less than Np, the corresponding synapse is changed to ON with probability PON. Otherwise, all other synapses
connecting to this post-synaptic neuron are set to OFF with probability POFF. (Online version in colour.)

(d) Stochastic binary STDP
STDP [23] is a bioinspired learning rule for SNNs and allows, in principle, for continuous
on-line learning. SB-STDP is a variant of the original STDP learning rule in which synapses
only present an ON and an OFF state and the weight updates follow a stochastic
rule [12,13]. Therefore, SB-STDP is quite appropriate for binary RRAM synapse SNNs.
Originally, SB-STDP was proposed by simply substituting the original deterministic STDP
gradual update [23] by a non-gradual stochastic one [12]. However, later on, it was
shown that for correct operation on scaled-up systems some regularization techniques
were required [13]. In the example case, we are considering here, which is just a
small 4 × 4 crossbar, we only needed to consider one regularization technique, namely
homeostasis.

In SB-STDP, the synapses connected to a firing post-synaptic neuron are updated following
the process explained below with reference to figure 16. The most recent NP input spikes are
kept on a list. Input and output spikes are all indexed sequentially by a counter n. Whenever
an output neuron j spikes, all previous NP input spikes are retrieved. For each input neuron i,
only its most recent spike is considered, so a synapse ij between an active input neuron i on
the list and active output neuron j is updated only once for each output spike. If synapse ij is
already ON, it is left untouched. But if it is OFF, it is changed to fully ON with a probability
PON. Once all active connections obtained from the list have been updated probabilistically, the
total number of ON synapses is counted. In SB-STDP, to implement homeostasis, the sum of ON
synapses connecting to an output neuron j is kept constant. Let us call this constant M. If the
sum is greater than M, then one of the synapses which was not retrieved from the list and is ON
is chosen randomly and its weight is set to OFF. This process is repeated until the sum of ON
synapses is M.

To perform SB-STDP in our set-up, we used the four input patterns shown in figure 17b bottom,
where each input pattern is a horizontal 4-bit row. Each input pattern was applied by having its
corresponding active input neurons present a sequence of randomly spaced spikes. Initially, all
synaptic memristors were initialized to their ON state (LRS). As soon as an output neuron spiked,
the memristors connecting to it were updated following the SB-STDP rule described above. All
neurons were then reset, and a new input pattern was applied. Figure 17a shows samples of a
sequence of weight updates, starting with the initial set of weights (all ON, top left) and finishing
with the stabilized set of weights (bottom right). The number iterations until convergence varied
from about 15 up to 200, with an average of about 50. The ON weights fall approximately in the
2−6 kΩ range and are shown in grey scale, the minimum resistance in all 16 memristors over the
full learning sequence being white. Figure 17b shows the initial weights (top), the final weights
(centre) and the input patterns (bottom). Each row in figure 17b bottom corresponds to one
4-bit input pattern. It can be seen that the final weights correspond to the input patterns but
are shuffled row-wise. Consequently, the system successfully learned the input patterns.
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(a) (b)

initial

final

inputs

Figure 17. (a) Samples of the sequence of weight updates in SB-STDP, (b) initial and final weights, and the four (row-wise)
input patterns used for SB-STDP training.

8. Benchmarking for energy efficiency
In order to compare with other reported state-of-the-art neural processing chip systems, let
us first analyse which would be the optimum settings for a chip following our approach to
minimize energy consumption per synaptic computation. The largest currents in our system
are currents flowing through memristors which are at LRS. Therefore, the minimum energy per
operation would be given by finding the fastest pulses that can be applied to LRS memristors
while guaranteeing that the circuit providing current to them (transistor Mh in figure 2 and the
differential amplifier) can propagate the corresponding memristor-domain charge packet down
to the neuron-domain with sufficient integrity. By assuming an average LRS value of 10 kΩ , we
found (by simulations) this limit to be Tp � 100 ns, in which case the memristor-domain charge
packet was found to be 0.68 pC (about 30% below the ideal value), and the circuit needed a
total time of 360 ns to settle. Under these conditions, we analysed which would be the neuron-
domain charge packets if selecting for Ineur the different ladder branches in figure 2, from I0 to I4.
To find these charge packets we obtained the voltage increments �Vspk induced at the neuron
membrane capacitance Cmemb. From these voltage increments, we can compute the neuron-
domain charge packets as δqneur = Cmemb × �Vspk. The results are summarized in table 4. For
maximum speed pulses of 100 ns stimulating the memristors, one can observe voltage increments
at the neuron membrane voltage when selecting ladder branches I0 to I3. When selecting branch
I4, no change is appreciated. Depending on the selected ladder branch, the effective charge packet
attenuation ranges from 25.2 up to 1.7 × 104. Also, for practical charge packet sizes (those that
induce membrane voltage increments in the range of 1 mV–50 mV, as discussed in §2), one would
require attenuation factors in the range of hundreds to thousands for such fast 100 ns stimulation
pulses.

Regarding energy consumption in our system, there is energy due to stand-by power
and energy due to memristor currents and circuit transients during input spikes. The power
consumption of the neurons is negligible. A neuron firing at a high rate of 1 KHz consumes about
140 nW. The circuit component consuming most of the stand-by power is the differential amplifier
in figure 2, which consumes about 15 µW each. During a synaptic event, the dominant currents
are flowing through LRS memristors. The currents flowing through the ladder branches are little
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Table 4. Effective charge-packet attenuation for maximum speed and minimum energy.

attenuator branch �Vspk δqneur effective attenuation

I0 183 mV 27 fC 25.2
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

I1 19.5 mV 2.9 fC 234
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

I2 1.88 mV 0.28 fC 2.43 × 103
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

I3 268µV 0.04 fC 1.7 × 104
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

I4 — — —
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

fractions of these currents, and may affect also the ratio ELRS/ESOP. In our 4 × 4 crossbar system,
when setting all memristors to LRS and feeding all columns with TP = 100 ns width stimulation
pulses at a rate of one pulse every 360 ns, we obtain an average current consumption of 49.52 µA
at 3.3 V power supply. This corresponds to 16 (LRS) synaptic operations (SOP) every 360 ns. Thus,
the overall effective energy per (LRS) synaptic operation ESOP is given by1

ESOP = 1
16

× 49.52 µA × 3.3 V × 360 ns = 3.7 pJ. (8.1)

The breakdown of the 49.52 µA average current consumption is as follows: 29.49 µA (59.6%)
is consumed by the memristors (1.84 µA by each of the 16 LRS memristors), 17.6 µA (35.58%)
by the differential amplifiers driving them, 2.24 µA (4.5%) by the attenuator circuit, and 170 nA
(0.3%) by the neurons. Note that the energy dissipated by an individual LRS memristor generating
a δqmemr = 0.68 pC charge packet is ELRS = 3.3 V × 0.68 pC = 2.24 pJ, about 60% of the energy
in equation (8.1). The other 40% are contributed by the corresponding share of the rest of the
circuitry. For scaled-up systems, in which the common circuitry is shared by more memristors,
the resulting ESOP value should slowly approach the baseline of ELRS = 2.24 pJ (or even less if LRS
memristors are sparse). However, if scaling up aggressively, the combined differential amplifier
in figure 2 and transistor Mh may need to be redesigned for properly handling larger currents.

The energy figures mentioned above were obtained by simulations, as we could not measure
experimentally the detailed breakdown of the current consumption of all sub-circuits. However,
the current consumption that we could measure experimentally was below 10% difference with
respect to the simulated one. Additionally, our set-up allowed us to measure precisely the average
current consumed by one single LRS memristor because both of its terminals were accessible in
our hybrid multi-chip architecture. Figure 18 shows three current traces flowing through an LRS
memristor. The black trace corresponds to an experimental measurement, yielding an average
memristor current of 1.94 µA. The red trace corresponds to the simulation mentioned above, with
an average of 1.84 µA. The black and red traces are quite different, although the average is very
similar (5% difference). This is because in the experimental set-up, the top plate of the memristors
is connected to two chip pads, PCB traces, and the oscilloscope probe, thus adding a large parasitic
capacitance. This makes this node to move much slower than the bottom plate making the polarity
of the memristor change sign, as well as the current, as can be seen in the black trace in figure 18.
By adding in the simulation an extra 8 pF capacitor to the top plate node, the blue trace in figure 18
is obtained, which is almost identical to the experimental one, having an average of 1.79 µA.
Therefore, a full monolithic realization would follow the red trace. However, the presence of the
top plate very large parasitic capacitance in the experimental set-up is not affecting dramatically
the average current, nor the average power consumption.2

For a fully integrated on-chip system, additional communication circuitry would be required
to send spikes in and out, or to communicate spikes between on-chip computing crossbars. The

1The ESOP figure of merit is the inverse of another popular figure of merit used many times in neural processing systems,
which is the ‘number of synaptic operations per second and per watt’.
2This is so because the top plate node is a virtual ground node. In this case, a capacitor connected to it will always return
whatever charge it absorbs temporarily, and therefore should not alter the total charge packets travelling through this node.
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12 simulation average without pad parasitic: 1.84 mA
simulation average with pad parasitic: 1.79 mA
experimental measurement average: 1.94 mA
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Figure 18. Currents flowing throughone single LRSmemristor, stimulatedwith 100 ns pulses at a rate of one pulse every 360 ns.
(Online version in colour.)

Table 5. Comparison with some reported state-of-the-art neural processing chip systems.

TrueNorth [24] Loihi [25] LETI [10] Yao [6] This work

technology 28 nm 14 nm 130 nm 130 nm 180 nm
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

network type SNN SNN SNN CNN SNN
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

weight storage SRAM SRAM RRAM RRAM RRAM
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

ESOP 27 pJ 105 pJa 180 pJ 91 pJb 4 pJa,c
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
aEnergy consumption of communication circuits not included.
bMost of energy consumption is due to peripheral analogue-to-digital converters.
cAll memristors are assumed to be at minimum resistance (LRS), thus consuming maximum power.

energy consumption of such communication circuits is not considered in equation (8.1). Table 5
shows a comparison with some neural processing chips, spiking and non-spiking, using RRAM
or SRAM for weight storage, that have been reported recently.

9. Conclusion
In this paper, we have shown the successful experimental operation of a small SNN that used a
4 × 4 1T1R memristor crossbar as synapses together with CMOS analogue neurons. We also used
one compact MOS ladder-based current-splitter circuit per neuron to aggressively downscale
the memristor-domain micro-amp current levels to the required analogue CMOS neuron-domain
current levels. The fully experimental SNN was assembled using three separate chips. The first
chip provided individual novel Ti/C/Au top-plate memristors with low set/reset voltage while
presenting high OFF resistance. The second chip was fabricated in a standard 180 nm CMOS
technology and provided the NMOS selector transistors required for all 1T1R synapses. The
third chip, fabricated in the same 180 nm CMOS technology, provided the post-synaptic circuitry,
including the current attenuator circuits and the neuron circuits. These three chips interacted
with a custom PCB and an FPGA-PCB. The custom PCB provided all the analogue biases, which
were independently adjustable, and the pre-synaptic stimulation pulses, while the FPGA-PCB
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digitally controlled all the switches and multiplexers on the custom PCB. The system was used
to showcase two learning scenarios. One was based on one-shot WTA training, while the other
implemented SB-STDP. Successful operation was demonstrated in both scenarios. The set-up
is clearly very useful in that it facilitates experimentation with new custom-made memristors.
Energy measurements reveal this approach as highly promising for ultra-low power systems.
Although the hardware example cases shown are small-size from the computational point of view,
they are capable of performing computations, such as SB-STDP, which have been demonstrated
previously capable of solving much larger scale computing systems [13]. In order to substantially
boost the computing capability and size of the current spiking neural network, further effort is
required to fabricate multiple bit memristor devices monolithically on top of CMOS neurons [2].
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