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A B S T R A C T

Neurodegenerative diseases (NDs) result from the transformation and accumulation of misfolded proteins
within the nervous system. Several mathematical models have been proposed to investigate the biological
processes underlying NDs, focusing on the kinetics of polymerization and fragmentation at the microscale and
on the spread of neural damage at a macroscopic level. The aim of this work is to bridge the gap between
microscopic and macroscopic approaches proposing a toy partial differential model able to take into account
both the short-time dynamics of the misfolded proteins aggregating in plaques and the long-term evolution of
tissue damage. Using mixtures theory, we consider the brain as a biphasic material made of misfolded protein
aggregates and of healthy tissue. The resulting Cahn–Hilliard type equation for the misfolded proteins contains
a growth term depending on the local availability of precursor proteins, that follow a reaction–diffusion
equation. The misfolded proteins also possess a chemotactic mass flux driven by gradients of neural damage,
that is caused by local accumulation of misfolded protein and that evolves slowly according to an Allen-Cahn
equation. The diffuse interface approach is new for NDs and allows both to consider five different time-scales,
from phase separation to neural damage propagation, and to reduce the computational costs compared to
existing multi-scale models, allowing a time-step adaptivity. We present here numerical simulations in a simple
two-dimensional domain, considering both isotropic and anisotropic mobility coefficients of the misfolded
protein and the diffusion of the neural damage, finding that the spreading front of the neural damage follows
the direction of the largest eigenvalue of the mobility tensor. In both cases, we computed two biomarkers for
quantifying the aggregation in plaques and the evolution of neural damage, that are in qualitative agreement
with the characteristic Jack curves for many NDs.
. Introduction

Neurodegenerative diseases (NDs) such as Alzheimer’s disease (AD),
arkinson’s disease and amyotrophic lateral sclerosis, result from the
ransformation and accumulation of specific proteins within the ner-
ous system [1]. They result into a neuronal degeneration that could
ead to cognitive impairment, dementia, motor difficulties, psycholog-
cal and behavioural disorders. Typically NDs have common features,
ike the chronic and progressive nature, the destruction of neurons in
pecific areas of the brain, the damage of the synaptic connections
etwork, and the increase of prevalence with age. Most importantly,
hey all display a common biochemical origin, that is the accumulation
f misfolded protein aggregates [2].

There is experimental evidence that the proteins involved in NDs
cquire their pathogenicity by a prion-like mechanism. Indeed, the
athogenic proteins are released by a cell in the extracellular fluid.
hey later move into other cells, where they act as seeds and induce
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misfolding of healthy protein [3]. The most important seed-proteins are
amyloid-𝛽 (involved in senile plaques formation in AD), tau (involved
in tauopathies) and 𝛼-synuclein (in Lewy-diseases). In physiological
conditions the conformation of these proteins ensures the solubility and
thus the correct secretion. In NDs the protein is misfolded, it shows an
increase in the 𝛽-sheet structure getting into a pathologic aggregate-
fibrillar state. The misfolded protein, at the beginning, gives small
oligomers that increase in size till they form large aggregates. The
aggregates of all sizes are toxic for cells, and thus for neurons, and
they lead to neural damage [2]. On the other hand, the neural damage
activates the amyloid precursor proteins involved in the cells signalling
driven by synapse retraction, which in turn induce an increase in
the amyloid-𝛽 production [4]. Thus, amyloid-𝛽 synaptotoxicity drives
amyloid-𝛽 production in a positive feedback loop.

Several mathematical models have been proposed to investigate
the biological processes underlying NDs at different scale. At a mi-
croscopic level, Smoluchowski equations are often used to describe
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the self-association among monomers and polymers of different sizes
for describing the elongation of fibrils by end-to-end formation [5–8].
Further models include the role of prions [9], the growth kinetics of
amyloids [10–12], and the use of network-approaches to understanding
the behaviour of different brain regions [13,14]. At the macroscopic
level, the spreading of neural damages is typically modelled through
a nonlinear reaction–diffusion mechanism [15,16], that can be effec-
tively coupled with nucleation–aggregation–fragmentation models for
the dynamics in the brain connectome [17,18]. Multiscale approaches
have been proposed in [19,20], assuming that the damage diffuses in
the neuronal net through a neuron-to-neuron prion-like propagation
mechanism and that monomeric form of the amyloid spreads through
the brain tissue undergoing agglomeration.

The aim of this work is to bridge the gap between microscopic and
macroscopic approaches proposing a toy partial differential model able
to take into account both the short-time dynamics of the misfolded
proteins aggregating in plaques and the long-term evolution of neural
damage. In particular, we are focused on modelling the evolution of the
disease starting from a delimited brain region presenting an hoarding
of amyloid-𝛽 and amyloid precursor proteins. The article is organized
as follows. In Section 2, we introduce the mathematical model and in
Section 3 we perform its dimensional analysis. In Section 4, we describe
its numerical implementation and we discuss the numerical results in
few test cases. We also propose two biomarkers to be compared with
the ones used for describing the progressing of NDs. In Section 5 we
collect few concluding remarks.

2. The mathematical model

We consider the brain tissue as a binary, saturated, closed and
incompressible mixture composed by a protein phase of proliferating
plaques and a healthy phase representing the host tissue. Let 𝜙𝑝 and 𝜙𝑡
be the volume fraction of the plaques and the healthy tissue, respec-
tively. Assuming that both phases have the same mass density 𝛾, the
ollowing continuity equations hold:
𝜕𝜙𝑝

𝜕𝑡
+ ∇ ⋅ (𝜙𝑝𝐯𝑝) =

𝑆𝑝

𝛾
+ ∇ ⋅ 𝐤𝑝,

𝜕𝜙𝑡
𝜕𝑡

+ ∇ ⋅ (𝜙𝑡𝐯𝑡) =
𝑆𝑡
𝛾

+ ∇ ⋅ 𝐤𝑡,
(1)

where 𝐯𝑖, with 𝑖 = (𝑝, 𝑡), is the velocity of the 𝑖th phase, 𝑆𝑖 is the
volumetric source term and 𝐤𝑖 is the non-convective mass flux. The
mixture is saturated, i.e.

𝜙𝑝 + 𝜙𝑡 = 1, (2)

and it is not growing, i.e.

𝑆𝑝 + 𝑆𝑡 = 0; 𝐤𝑝 + 𝐤𝑡 = 𝟎. (3)

in order to locally satisfy the conservation of mass exchanged between
the phases. Accordingly, the continuity equation for the whole mixture
obtained summing up the two equations in (1) reads:

∇ ⋅ (𝜙𝑝𝐯𝑝 + 𝜙𝑙𝐯𝑡) = 0. (4)

Following [21,22], we use the principle of maximum dissipation to
obtain the constitutive laws for phase velocities. In particular, we aim
to find the stationary values of the Rayleghian R, defined as:

R = 𝑊 + 𝑑𝐸
𝑑𝑡

, (5)

where 𝑊 is the energy dissipation and 𝐸 is the Landau free energy of
the system. We assume that the main dissipation source is given by the
viscous interactions due to the relative motion between the phases, i.e.

𝑊 = 1
2 ∫𝛺

𝜙𝑝(𝐯𝑝 − 𝐯𝑡)𝑇𝐌(𝐯𝑝 − 𝐯𝑡)𝑑𝑉 , (6)

where 𝐌 = 𝑀0𝐓−1, is a tensor representing volumetric friction, that
is inversely proportional to the preferential directions tensor 𝐓, 𝑀 is
0

2

a friction parameter, and 𝛺 represents the whole brain. The tensor 𝐓
takes into account the local anisotropy of the brain micro-structure, and
it can be extracted from clinical neuroimaging data, such as diffusion
tensor imaging.

The Landau free energy 𝐸 reads:

= ∫𝛺

( 𝛾2𝜙
2
|∇𝜙𝑝|

2 + 𝛹 (𝜙𝑝)
)

𝑑𝑉 , (7)

here 𝛹 (𝜙𝑝) is a local interaction potential of the Lennard-Jones type,
hile the quadratic gradient terms is a short-range nonlocal potential
overned by the small parameter 𝛾𝜙. In particular, we assume that the
nteraction force given by 𝛹 ′(𝜙𝑝) has the following form:

′(𝜙𝑝) = 𝐹
𝜙2
𝑝(𝜙𝑝 − 𝜙𝑒)

1 − 𝜙𝑝
,

here 𝐹 is a characteristic interaction energy density. The previous
quation represents a phenomenological law introduced in [23], in
hich the plaques behave as an elastic fluid subjected to repulsion at
igh volume density of plaques, to attraction at low density and to
omeostasis for an equilibrium value 𝜙𝑒. Since 𝛹 (𝜙𝑝) is non-convex,
he gradient term in (7) acts as a regularizing effect that creates a
iffuse interface between region with higher and lower concentration
f plaques. Assuming that the mixture is highly viscous and that the
issue behaves as a perfect fluid [24], following [25] we derive a
ahn–Hilliard type equation for the plaque concentration:

𝜕𝜙𝑝

𝜕𝑡
= ∇ ⋅

(𝜙𝑝(1 − 𝜙𝑝)2

𝑀0
𝐓∇𝜇

)

+
𝑆𝑝

𝛾
+ ∇ ⋅ 𝐤𝑝,

𝜇 = 𝛹 ′(𝜙𝑝) − 𝛾2𝜙𝛥𝜙,
(8)

where we have to define the constitutive equations for the non-convectiv
mass flux 𝐤𝑝 and the source term 𝑆𝑝 from a biological viewpoint. In
particular, following [19], we hypothesize that the damage diffuses in
the neuronal net through a neuron-to-neuron prion-like propagation
mechanism and that monomeric form of the protein spreads through
the microscopic tortuousness of the brain tissue undergoing agglomer-
ation. Eventually this leads to the formation of long, insoluble fibrils,
accumulating in spherical deposits known as senile plaques that become
toxic for neurons, creating a spreading brain damage. Therefore, we
introduce a variable 𝑛 defining the neuronal damage in the brain, and
we assume that the non-convective mass flux is due to chemotactic
motion of plaques with respect to the gradient of the neuronal damage,
such as:

𝐤𝑝 = 𝑘𝑛𝜙𝑝𝐓∇𝑛, (9)

where 𝑘𝑛 is the chemotactic coefficient. Here, we base on the ex-
perimental evidence that misfolded proteins migrate towards regions
characterized by lower neural damage and react with non-misfolded
proteins [26].

Similarly, we assume that the volumetric source of plaques is pro-
portional to the local concentration 𝑝 of precursor proteins, such as
amyloid precursor proteins, such that:

𝑆𝑝 = 𝜈𝑝𝛾𝜙𝑝

(

𝑝
𝑝𝑠

− 𝛿
)

(1 − 𝜙𝑝), (10)

here 𝜈𝑝 is the plaque proliferation rate, 𝑝𝑠 is the physiological con-
entration of precursor proteins in the brain tissue and 𝛿 is a threshold
alue, which sets the lower value over which there is an over accumu-
ation of precursor proteins. The growth of plaques follows a logistic
aw, with saturation when the plaques occupy all the available volume
or 𝜙𝑝 = 1.

We assume that the precursor proteins undergo a reaction–diffusion
ynamics, being:
𝜕𝑝
𝜕𝑡

= 𝐷𝑝∇ ⋅ (𝐓∇𝑝) + 𝑆𝑛((1 − 𝑛)𝜒𝐶 + 𝑛)(𝑝𝑠 − 𝑝) − 𝛿𝑝𝜙𝑝𝑝. (11)

A reaction diffusion dynamics is justified by the experimental observa-
tion that large extra-cellular vesicles, that are vehicles for the precursor
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Fig. 1. Colourmap of the spatial distribution of 𝜙𝑝 during the early stage dynamics, shown at 𝑡 = 0, 3.6, 7.2, 11.5 setting 𝑘̂ = 2.5, 𝐷̂𝑛 = 1. We observe the initial phase separation
nto circular aggregates of plaques and the subsequent coarsening dynamics of the clusters.
t

𝐷

roteins, exploits the prion protein and its binding-unbinding kinetics
n its neuronal receptors to actively move on the neuron surface, across
he synapse and to reach distant target regions [27]. Here, we are
ssuming that there is a region 𝛺𝐶 in which initially there is a hoarding
f precursor proteins and where the plaques formation begins even in
he absence of neural damage, with 𝜒𝐶 its indicator function. Outside
f 𝛺𝐶 , damage propagation triggers the accumulation of precursor
roteins, which enhances the formation of plaques, thus modelling the
athogenic positive feedback loop between amyloid production and
ynapse damage reported in literature [4]. Hence, the source term
𝑛𝛽((1−𝑛)𝜒𝐶 +𝑛)(𝑝𝑠−𝑝) describes the growth rate of precursor proteins

n 𝛺𝐶 and in regions where the neural damage propagates, and 𝛿𝑝 is
he consumption rate of proteins by the plaques.

Moreover, assuming that 𝑛 propagates following the same pathway
f the electrical signal in the brain, we describe the neural damage
ynamics as follows:
𝜕𝑛
𝜕𝑡

= 𝜖𝐷𝑛∇ ⋅ (𝐃∇𝑛)−𝜖𝐾𝑛𝑛(𝑛 − 1)(𝑛 − 𝛼)+

𝜖𝐶𝑠𝜒𝐶𝑛
(𝐾(𝜙𝑝) − 𝛿𝑛)(1 − 𝑛).

(12)

Indeed, Eq. (12) is an Allen-Cahn bistable equation, often adopted to
model the signal propagation in presence of damage [28]. Here, the
neural damage is taken into account by the term 𝜖𝐶𝑠𝜒𝐶𝑛

(𝐾(𝜙𝑝)−𝛿𝑛)(1−
𝑛), where 𝐾(𝜙𝑝) is the fractional area occupied by the plaques in 𝛺𝐶

and defined as 𝐾(𝜙𝑝) =
∫𝛺𝐶

𝐼(𝜙𝑝>0.3)
∫𝛺𝐶

𝑑𝛺 , where ∫𝛺𝐶
𝐼(𝜙𝑝>0.3) is the volume

in which 𝜙𝑝 is bigger than the threshold value 0.3. Moreover, 𝜒𝐶𝑛
represents a Gaussian function supported over the circular damaged
area in order to represent the damage onset in the centre, 𝛿𝑛 is the
hreshold above which the plaques create neuronal damage and 𝐶𝑠 is
he neural damage proliferation rate. Moreover, we include a small
imensionless parameter 𝜖 accounting for the fact that the spreading
ynamics of the neural damage is much slower than the dynamics of
rotein misfolding and agglomeration. On the other hand, the two-
imensional propagation is described from the first two terms at the
ight hand side of Eq. (12), where 𝐷𝑛 is a diffusion coefficient, 𝐃 is the

tensor of the preferential directions of the expansion of damage and
𝐾𝑛 is a sink proliferation rate. We further remark that the term 𝛼 is
required to belong to the range (0, 12 ) in order to allow the existence of

travelling wave solution.
3

3. Dimensional analysis

The partial differential model is made by Eqs. (8), (11), (12)
equipped with no-flux conditions for the variables 𝜙𝑝, 𝜇, 𝑛, 𝑝 on the
brain boundary. We first remark that the partial differential system has
multiple time-scales, namely:

• the phase separation and coarsening of 𝜙𝑝, i.e. 𝑡1 ∼ 𝜖
𝑀0𝛾2𝜙
𝐹 2 ;

• the proliferation rate of 𝜙𝑝, i.e. 𝑡2 ∼
𝜖
𝜈𝑝
;

• the interaction between the precursor protein and the plaques,
i.e. 𝑡3 ∼

𝑀0𝐷𝑝
𝐹𝛿𝑝

• the diffusion of 𝑛, i.e. 𝑡4 ∼
𝐹

𝜖𝑀0𝜈𝑝𝐷𝑛
;

• the proliferation rate of the neuronal damage, i.e. 𝑡5 ∼
1

𝜖𝐶𝑆
.

For the sake of simplicity, let us first introduce the following dimen-
sionless variables:

𝑝̂ =
𝑝
𝑝𝑠

, 𝑛̂ = 𝑛, 𝜇̂ =
𝜇
𝐹
, 𝑡 = 𝑡𝜈𝑝, 𝑥̂ = 𝑥

√

𝛿𝑝
𝐷𝑝

.

After standard manipulations we obtain the following dimensionless
system:

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

𝜕𝜙𝑝

𝜕𝑡
= 𝐷̂∇̂ ⋅

(

𝜙𝑝(1 − 𝜙𝑝)2𝐓∇̂𝜇̂
)

+𝜙𝑝(𝑝̂ − 𝛿)(1 − 𝜙𝑝) + 𝑘̂∇̂ ⋅ (𝜙𝑝𝐓∇̂𝑛̂),

𝜇̂ = 𝑓 − 𝛾̂𝜙𝛥𝜙𝑝,
𝜕𝑝̂
𝜕𝑡 = 𝜈̂

(

∇̂ ⋅ (𝐓∇̂𝑝̂) + 𝛽((1 − 𝑛̂)𝜒𝐶 + 𝑛̂)(1 − 𝑝̂) − 𝜙𝑝𝑝̂
)

,

𝜕𝑛̂
𝜕𝑡

= 𝜖𝐷̂𝑛∇̂ ⋅ (𝐃∇̂𝑛̂)−𝜖𝐾̂𝑛𝑛̂(𝑛̂ − 1)(𝑛̂ − 𝛼) + 𝜖𝐶̂𝑠𝜒𝐶𝑛
(𝐾(𝜙𝑝) − 𝛿𝑛)(1 − 𝑛̂),

(13)

hat is governed by the following dimensionless parameters:

̂ =
𝐹𝛿𝑝

𝜈𝑝𝐷𝑝𝑀0
, 𝑘̂ =

𝛿𝑝𝑘𝑛
𝐷𝑝𝜈𝑝

, 𝛾̂𝜙 =
𝛾2𝜙𝛿𝑝
𝐷𝑝𝐹

, 𝜈̂ =
𝛿𝑝
𝜈𝑝

,

𝑓 = 1
𝐹

𝜕𝛹𝜙

𝜕𝜙
, 𝛽 =

𝑆𝑝

𝛿𝑝
, 𝐷̂𝑛 =

𝐷𝑛𝛿𝑝
𝜈𝑝𝐷𝑝

, 𝐾̂𝑛 =
𝐾𝑛
𝜈𝑝

, 𝐶𝑠 =
𝐶𝑠
𝜈𝑝

, 𝜖.
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Fig. 2. Colourmap of the spatial distribution of 𝜙𝑝 and 𝑛̂ during the later stages of dynamics, shown at 𝑡 = 11.7, 16.2, 20.7, 28.9 setting 𝑘̂ = 2.5, 𝐷̂𝑛 = 1 for the isotropic case. We
bserve the plaques spreading (left) and the onset of the neural damage after plaques clustering (right).
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. Numerical results

.1. Finite element implementation

The dimensionless model in (13) is numerically solved using the
ibrary FreeFEM++ for solving partial differential equations using finite
lement method [29]. The finite element approximation of the model
reserves the physical bounds for the variables representing plaques
nd the neural damage, that are non-negative and smaller or equal
o one. Moreover, the introduction of the degenerate mobility in the
ahn–Hilliard equation makes the solution not unique. In the numerical

ormulation we go beyond the latter issue introducing a subdivision of
he nodes of the mesh domain into active and passive nodes, follow-
ng [30,31]. The lumping approximation of the mass scalar products in
he finite element discretization is introduced in order for the discrete
 s

4

olution to be able to track compactly supported solutions of Cahn–
illiard equation with a free boundary which moves with a finite

peed. This method allows to select the physical solutions with compact
upport and moving boundary. Moreover we have taken into account
oth the dissipative behaviour of the system, that is not preserved at
he discrete level, by introducing a splitting of the energy functional
nto a convex and a concave part, and the positivity of the 𝜙𝑝 by
mposing a variational inequality following the algorithm proposed
n [32]. The associated gradient projection algorithm is formulated in
erms of a backtracking line search method, in order to optimize the
hoice of the descent coefficient, using the Armijo method [33], based
n the Armijo–Goldstein condition as in algorithm proposed by [34].
oreover we developed a time step adaptivity procedure for taking

nto account all the time scales of the system dynamics, from the phase
eparation of the plaques to the spread of neural damage.
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Fig. 3. Colourmap of the spatial distribution of 𝜙𝑝 and 𝑛̂ during the later stages of dynamics, shown at 𝑡 = 11.7, 16.2, 20.7, 28.9 setting 𝑘̂ = 2.5, 𝐷̂𝑛 = 1 for the anisotropic case. We
bserve that both the neural damage and the plaque distribution follows the preferential direction of the mobility tensor 𝐓 showing an elliptic shape.
Finally, we performed numerical simulations on a two dimensional
ircular domain centred in the origin with a dimensionless diameter
qual to 100. Since we set the characteristic length to

√

(𝐷𝑛∕𝛿𝑛) =
0.1 mm, it corresponds to a physical domain whose diameter is of
1 cm. We subdivided the domain in triangles, choosing 124 elements
for each side in order to evaluate the plaques formation and the neural
damage propagation and we used continuous linear elements. Since
this is the first attempt to define a diffuse interface model for NDs
and we are interested in the qualitative analysis of its solution, we use
in the following the biological range for the model parameters taken
from previous works on brain tumours [35,36]. In particular, we fix the
values of the dimensionless parameters as 𝜖 = 0.1, 𝐷̂ = 4.48, 𝛾̂𝜙 = 0.03,
̂ = 1000, 𝛽 = 0.045, 𝐾̂𝑛 = 10𝜖, 𝐶̂𝑠 = 5.5, 𝛽 = 0.045, 𝛼 = 0.2, 𝛿 = 𝛿𝑛 = 0.3,
𝜙𝑒 = 0.6, while we vary the values of 𝐷̂𝑛 and 𝑘̂ in the following test
cases. The time step is set to 𝛥𝑡 = 0.5 𝛾̂2𝜙 for the first iteration and
then it is determined step by step through the adaptive procedure. We
5

choose the initial conditions 𝑛(𝐱, 0) = 𝑛0(𝐱) = 0, 𝑝(𝐱, 0) = 𝑝0(𝐱) = 𝜒𝐶
and 𝜙𝑝(𝐱, 0) = 𝜙0(𝐱) = (0.18 + 0.018 ⋅ (1 − 2𝑟))𝜒𝐶 , where 𝑟 is a random
number sampled from the uniform distribution over [0, 1] and 𝜒𝐶 is the
indicator function of the subdomain 𝛺𝐶 , a circle centred at the middle
of the domain with a dimensionless diameter equal to 25. The choice of
the initial expression of 𝜙𝑝(𝐱, 0) ensures that the initial density is in the
metastable regime of the Cahn–Hilliard equation, thus the presence of
a white noise is sufficient to trigger phase separation and coarsening.

4.2. Numerical simulations

We performed numerical simulations varying the dimensionless
parameters 𝑘̂, 𝐷̂𝑛 in order to investigate the effects on the dynamics of
the chemotaxis and of the diffusion of the neural damage, respectively.
We also simulated two different cases of material microstructure, in
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Fig. 4. Colourmap of the spatial distribution of 𝜙𝑝 and 𝑛̂ during the later stages of dynamics, shown at 𝑡 = 11.7, 20.7, 28.8, 37.8 setting 𝑘̂ = 25, 𝐷̂𝑛 = 10 for the isotropic case.
which we give the following Cartesian expressions of the tensors 𝐓 and
𝐃:

• isotropic case, i.e. 𝐓 = 𝐃 = diag(1, 1);
• anisotropic case, i.e 𝐃 = diag(1, 20) and 𝐓 = diag(0.1, 1.9).

We performed the first set of simulations by imposing 𝑘̂ = 2.5, 𝐷̂𝑛 = 1,
exploring both the isotropic and anisotropic scenarios. The early stage
dynamics is about the same for both the two cases. As depicted in Fig. 1,
we first observe the phase separation of the solution for 𝜙𝑝, followed
by a clustering dynamics without any formation of neuronal damage.
We observe no significant qualitative difference between the isotropic
and the anisotropic case.

The later stage dynamics for the isotropic case is depicted in Fig. 2.
Once the plaque clusters are completely formed, the neural damage
begins to expand. The plaques later spread through the healthy tissue
6

following the radial direction of the damage growth, while the inner
region becomes completely damaged.

Fig. 3 displays the numerical results for the anisotropic case, simu-
lated with the same parameters values of the previous isotropic case,
i.e. 𝑘̂𝑛 = 2.5, 𝐷̂𝑛 = 1. In this latter case, the neural damage starts
growing at about 𝑡 = 11.7 and it immediately follows the preferential
direction of the mobility tensor 𝐓, followed by the plaques. At the
final step, we observe that both the damaged area and the plaque
domain take an elliptic shape, highlighting the pivotal importance of
the microstructure on the invasion dynamics.

We finally performed another set of simulations for both the isotropic
and anisotropic cases. In this case, we increased of an order of mag-
nitude the values of both the chemotactic and the damage diffusion
parameters, thus setting 𝑘̂ = 25, 𝐷̂𝑛 = 10. We remark that increasing
𝐷̂𝑛 = 10 by an order of magnitude corresponds to make the diffusion
time-scale 𝑡 one order of magnitude faster than the proliferation
4
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Fig. 5. Colourmap of the spatial distribution of 𝜙𝑝 and 𝑛̂ during the later stages of dynamics, shown at 𝑡 = 11.7, 20.7, 28.8, 37.8 setting 𝑘̂ = 25, 𝐷̂𝑛 = 10 for the anisotropic case.
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ime-scale 𝑡2, whilst the phase separation and coarsening time-scale
re unaffected. In fact, we find that the initial stage dynamics is
ualitatively the same observed in the previous cases, since 𝑛̂ has a slow
ynamics and its onset is completely determined by the phase separa-
ion dynamics of the Cahn–Hilliard equation without the chemotaxis
erm. A considerable difference from the previous scenarios can be ap-
reciated from the simulation results collected in Figs. 4 and 5, for the
sotropic and anisotropic cases respectively. In particular, as remarked
arlier the increased 𝐷̂𝑛 makes the neural damage propagating faster,
nd the increased 𝑘̂ makes the plaques following faster the front of the
eural damage wave.

.3. Biomarkers

In order to provide a biological interpretation of our numerical
esults, we present here two biomarkers suitable for quantifying the
7

ccumulation of plaques and the extent of neurodegeneration, to be
ompared to the well known Jack curves [37].

In a clinical setting, a first biomarker is sought to investigate the
laque accumulation. For the Alzheimer Disease, such indicator can be
dentified with the CSF-A𝛽42 and the amyloid PET. On the other hand,

second biomarker is used to describe the neurodegeneration since
laques can grow logistically reaching the saturation even decades
efore the patient experiences the first symptoms and before MRI or
ET detect neuronal damage. Concerning this latter indicator, FDG-PET
as been proven to be a promising modality for detecting functional
rain changes in AD [38]. The evolution curves of both biomarkers are
haracterized by a sigmoidal shape with a large time shift.

Accordingly, here we propose two biomarkers for evaluation the
imulated dynamics. Firstly, we define the average neural damage as:

𝑛 =
∫𝛺 𝑛̂(𝑥, 𝑡)𝑑𝑥

, (14)

∫𝛺 𝑑𝑥
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Fig. 6. Evolution of the normalized biomarkers 𝐵𝑝 (green) and 𝐵𝑛 (red) over the dimensional time expressed in years for both the isotropic (left) and anisotropic (right) case,
etting 𝑘̂ = 2.5, 𝐷̂𝑛 = 1. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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hat is a measure of brain atrophy. Secondly, we define the average
oncentration of plaques over the whole computational domain as:

𝑝 =
∫𝛺 𝐼𝜙𝑝>0.3𝑑𝑥

∫𝛺 𝑑𝑥
, (15)

here 𝐼𝜙𝑝>0.3 is the indicator function introduced in Section 2.
In Fig. 6, we report the evolution of the two biomarkers 𝐵𝑛 and 𝐵𝑝,

ormalized with respect to their maximum value, over the dimensional
ime 𝑡 expressed in units of years. We observe that for both the isotropic
nd the anisotropic case, 𝐵𝑝 grows earlier and faster than 𝐵𝑛, presenting
he characteristic sigmoidal trend.

On the other hand, 𝐵𝑛 starts growing over time as soon as 𝐵𝑝
aturates, thus presenting a delay over time with respect to plaques
eposition. Accordingly, 𝐵𝑛 displays the typical short-time behaviour of
he Jack curves for neural damage, that are also known to grow more
lowly as disease progressed. Finally, we remark that the curves for 𝐵𝑛
o not appear as sigmoidal as one should expect from Eq. (12). This
iscrepancy is due to the fact that we computed 𝐵𝑛 over a time interval
horter than the characteristic time of the later development of brain
trophy, only to avoid excessive computational costs.

. Conclusion

In this work we developed a toy model for describing both the short-
ime dynamics of misfolded protein aggregation in plaques and the
ong-term evolution of neural damage.

Using the theoretical framework of mixtures theory, we considered
he brain as a biphasic material made of misfolded protein aggregates,
nteracting with a local Lennard-Jones potential and a nonlocal short-
ange term, and of healthy tissue behaving as a perfect fluid. The
esulting Cahn–Hilliard type equation for the misfolded proteins con-
ains a growth term depending on the local availability of precursor
roteins, that follow a reaction–diffusion equation. The misfolded pro-
eins also posses a chemotactic mass flux driven by gradients of neural
amage, that is caused by local accumulation of misfolded protein and
hat evolves slowly according to an Allen-Cahn equation.

The partial differential model made by Eqs. (8), (11), (12) has
een solved numerically using the finite element method in a simple
wo-dimensional domain, evaluating the effects of the mobility of the
isfolded protein and the diffusion of the neural damage. We consid-

red both isotropic and anisotropic mobility coefficients, highlighting
hat the spreading front of the neural damage follows the direction
f the largest eigenvalue of the mobility tensor. In both cases, we
omputed two biomarkers to quantify the aggregation in plaques and
he evolution of neural damage, that are in qualitative agreement with
he characteristic Jack curves for many NDs.
 A

8

This is the first attempt to use a diffuse interface approach to model
oth the fast fragmentation and segmentation dynamics at the mi-
roscale and the slow spreading of the neural damage at the tissue level.
hile existing multi-scale approach focus on the two-characteristic

ime scales of fragmentation and evolution of the disease proposing
henomenological laws to explain the slow transport of the newly
ormed, spatially localized aggregates [39], here the multi-scale spatial
ynamics is dictated by underlying biological processes that evolve
t five different time scales, determining the phase separation, the
oarsening evolution, the propagation of the neural damage along pref-
rential directions and the interaction between plaques and precursor
roteins. In particular, the proposed Cahn–Hilliard equation for the
laques allows to bridge fast phase separation and clustering with a
low damage-driven coarsening phenomenon. This modelling choice
llows to reduce significantly the numerical cost of solving the highly
onlinear microscopic kinetics equations for the misfolding at the
icroscale, without domain simplification as in [18], and to implement

n adaptive time scale that allows to perform numerical simulation in
macroscopic domain for large time spans, thus avoiding the severe

ime-step constraints, such as the ones imposed by coupling parabolic
nd hyperbolic equations in [19].

The proposed toy model is a preliminary attempt to build a bridge
etween microscopic and macroscopic descriptions of NDs that is based
n a first principles description of both the short- and long-time dy-
amics. As such, it suffers several limitations, as the lack of either a
ealistic polymerization kinetics of the misfolded proteins and of their
euron-to-neuron prion-like propagation mechanism, or the qualita-
ive description of the presented numerical simulation in a simplified
wo-dimensional domain. These aspects must be addressed in the fu-
ure in order to make the model relevant for the biological research
ommunity, e.g. building three-dimensional computational frameworks
rom neuroimaging data and accounting for more realistic constitutive
quations for the different brain tissues, including the role of the
lymphatic pathway for neurodegeneration, and allowing for much
arger simulation times. Once these improvements will be achieved,
he simulation results may guide the identification of undiscovered
preading pathways of the neural damage depending on the specific
rain architecture of each patient, that can be reconstructed from
iffusion tensor imaging into the tensors of diffusion and mobility of
he proposed model, possibly being used as a predictive tool helping
he clinician in the early screening of the pathology.
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