
communications biology Article

https://doi.org/10.1038/s42003-024-06496-9

Label-free morpho-molecular
phenotyping of living cancer cells by
combinedRamanspectroscopyandphase
tomography
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Peter T. C. So 1,5,6, Dario Polli 2,4 & Jeon Woong Kang 1

Accurate, rapid and non-invasive cancer cell phenotyping is a pressing concern across the life
sciences, as standard immuno-chemical imaging and omics require extended sample manipulation.
Here we combine Raman micro-spectroscopy and phase tomography to achieve label-free morpho-
molecular profiling of human colon cancer cells, following the adenoma, carcinoma, and metastasis
disease progression, in living and unperturbed conditions. We describe how to decode and interpret
quantitative chemical and co-registered morphological cell traits from Raman fingerprint spectra and
refractive index tomograms. Our multimodal imaging strategy rapidly distinguishes cancer
phenotypes, limiting observations to a low number of pristine cells in culture. This synergistic dataset
allowsus to study independent or correlated information in spectral and tomographicmaps, andhow it
benefits cell type inference. This method is a valuable asset in biomedical research, particularly when
biological material is in short supply, and it holds the potential for non-invasive monitoring of cancer
progression in living organisms.

Label-free live cell imaging techniques have revolutionized the field of cell
biology by providing non-invasive tools to probe unperturbed and dynamic
morpho-chemical traits of living cells1. The ability to study cellular processes
without theneed for any exogenous label not onlypreserves the integrity and
native physiology of the cells but also eliminates potential artifacts associated
with labeling1. Currently, fluorescent label-based microscopy has a leading
role in the study of functional processes and morphological aspects of cells,
but it comeswith inevitable photo-bleaching, difficult signal reproducibility,
some extent of photo-toxicity, and a limited amount of molecules to be
targeted in parallel2. Several advantages are gained when samples do not
need any manipulation and/or fixation: one can monitor time-dependent
processes over an extended period, preserving the biological material
unperturbed for further analysis or expansion, saving time and costs3. In
recent years, significant technological advances in label-free imaging mod-
alities have propelled the exploration of label-free morpho-molecular cell
profiling at unprecedented levels of spatial and temporal detail4.

Among these advanced label-free imagingmethods, chemical imaging
techniques enable the visualization and analysis of molecular constituents
within living cells by leveraging the inherent chemical contrast given by
biomolecules interacting with impinging light5. Chemical imaging of cells
via spontaneous Raman scattering spectroscopy (RS) is acknowledged as
one of the most informative techniques to describe cellular composition,
organization, and function, by exploiting the Raman scattering effect6,7. It
consists of the inelastic scattering of a small fraction of red-shifted photons
(≈1 out of 106 photons) bymolecules interacting withmonochromatic laser
light. This change in photon energy corresponds to the vibrational energy
levels of the molecular bonds. In the 1980s, researchers began exploring the
use of RS for biological studies8,9. Due to its small cross-section, spontaneous
RS suffers from long exposure times, especially when dealing with a low
density of scatterers.However, for detailed investigationsof cell signatures in
the highly informative fingerprint region of the Raman spectrum (Raman
shift (Ω) = 600 cm−1–1800 cm−1), spontaneous RS is the most widespread
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method for an effective, non-invasive, accurate, and high signal-to-noise
ratio chemical profiling10.

Notably, themorphological arrangement of cells carries biomechanical
information that contributes to describing their status and fate11. Research
efforts have been put in place to develop solutions to reveal the shape, size,
and structural properties of cells in a quantitative fashion without altering
their natural state or introducing artifacts that may affect their behavior.
Cutting-edge technology addressing this challenge sees quantitative phase
imaging (QPI) at the forefront12. The development ofQPI unfolded through
a few milestones13: in the 1930s, the Dutch physicist F. Zernike invented
phase-contrast microscopy, which allowed for the visualization of trans-
parent samples by converting phase variations into intensity differences14.
Interferencemicroscopy came in the 1950s and expanded the possibilities of
phase imaging15. By splitting a light beam into object and reference beams
and recombining it after interacting with the sample, interference patterns
were created, delivering quantitative information about phase variations. In
the following decade, the invention of the laser led to the development of
digital holography, which enabled the reconstruction of both the intensity
and phase from a recorded interference pattern16. QPI kept evolving and
now encompasses various techniques, producing either two-dimensional
(2D) maps of the projected refractive index (RI) (holographic phase
microscopy (HPM)17 and diffraction phase microscopy (DPM)18) or more
informative three-dimensional (3D) RI tomograms (tomographic phase
microscopy (TPM)19,20). However, the major drawback of QPI techniques
consists of a lack of chemical selectivity: by measuring the sample RI, it
delivers an indirect measurement of structural and chemical changes that is
difficult to interpret and compare with standard analytical methods.

These considerations pushed research towards the use of multimodal
microscopy approaches to couple the benefits of label-free chemical and
morphological imaging. In 2011, Kang et al. successfully coupled RS with
HPM21. They showed how cell thickness correlates with hemoglobin dis-
tribution inhealthy redblood cells (RBC) andwithhemozoindistribution in
malaria-infected RBC types. HPM merges digital holography and micro-
scopy to measure the optical thickness and 2D RI variations within the
sample. More recently, the same group compared co-registered HPM and
RS information on a set of human cancer cell lines22: holographic maps
showed high qualitative similaritywith chemical images reconstructed from
the Raman peak of proteins. In 2019, multimodal morpho-molecular
imaging was also achieved by Pandey and coworkers proposing coupled
DPMandRS to observe cell types in living conditions23.DPM, introduced in
2006 by G. Popescu, combines the single-shot nature of HPM with a

common-path geometry, allowing for themeasure of the optical phase with
higher sensitivity24.

A shared aspect of these label-freemultimodal approaches and similar
reports21,25 is the use of 2D QPI maps, capable of delivering only an inte-
grated projection of the RI along sample thickness, to extract the mor-
phological counterpart of the cell profile. On the other hand, TPM achieves
3D morphological imaging20,26, reconstructing a tomogram from multiple
2D phase images acquired at different illumination angles. 3DQPI unlocks
additional quantitative data about cellmorphology (e.g., cell volume, surface
area, cell dry mass and density), and we consider that its combination with
biomolecular fingerprints holds the potential of describing cell types in
greater detail, boosting the accuracy of phenotype inference, even with
limited population sampling. A comprehensive experimental proof of the
potential of merging 3D QPI and RS information to profile cells for
morpho-molecular phenotyping is highly sought in the field.

Here, we address the urge of developing a comprehensive, accurate,
and non-perturbative cancer cells characterization tool by proving the
superiority of co-registered RS and TPM in distinguishing quickly and
quantitatively cancer cells having similar phenotypes (i.e., a non-trivial cell
type discrimination task) (Fig. 1). We demonstrate that our approach can
rapidly characterize and discriminate different human colon cancer cells, at
progressing disease stages (i.e., HT29 colon adenoma, RKO colon carci-
noma, andT84 lungmetastasis of colon carcinoma), using a limitednumber
of label-free living cells. We consider our results valuable for phenotyping
tasks in biomedical research when in need of a rapid and non-perturbative
method and in short supply of biological material.

Results
Quantitative morpho-chemical cell mapping via co-registered
RS and TPM
RS and TPMmaps were sequentially acquired on the same target cell, thus
extracting co-registered morpho-chemical information (Fig. 2). For each
human colon cancer cell line (i.e., HT29, RKO, and T84), five living cells are
considered (Supplementary Fig. 1, Supplementary Fig. 2, and Supplemen-
tary Fig. 3), in order to reduce thematerials and themeasurement timewhile
sampling biological variability27,28 (Supplementary Fig. 4 and Supplemen-
tary Fig. 5).

Raman maps were obtained through a home-built confocal Raman
microscope working at 785-nm continuous-wave laser excitation29

(Methods, RS system). RS data are 3D XY-Ω hypercubes, where each
pixel in the XY spatial plane is composed of a spectrum in the fingerprint

Fig. 1 | Experimental design. RS and TPM are merged on the same field of view to
extract the morpho-chemical profile of cancer cells for quick cell characterization
and phenotype discrimination. By exploiting the high level of quantitative detail that

RS and TPM provide about the same single cell, we demonstrate a rapid and sta-
tistically significant discrimination of cancer cell types using cells in label-free, living,
and unperturbed conditions. Created with BioRender.com.
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region of the Raman vibrational profile of biological matter
(Ω = 600 cm−1 to Ω = 1800 cm−1) (Fig. 2b, f, j). In this work, 50 × 50
Raman spectra per each single-cell field of view (FOV) (i.e., 40 × 40 µm2

with a pixel size of 800 × 800 nm2) were collected with a 1.5-seconds pixel
dwell time (PDT) to obtain sufficient signal-to-noise ratio for rigorous
chemical interpretation down to single-pixel spectra (Fig. 2b, f, j). In fact,
clear differences can be seen in single DNA andRNApixels (Fig. 2b, f, j in
blue), and lipid ones (Fig. 2b, f, j, in red). By sectioning along theΩ axis,
we could retrieve false-color images depicting the spatial distribution of
major subcellular components (Fig. 2a, e, i). These include: (i) generic
organic cellular matter30,31 in the rangeΩ = 1400–1680 cm−1 (Fig. 2a, e, i,
grey channel), with proteins signatures of Amide I and C = C stretching

at 1656 cm−1, phenylalanine and tyrosine at 1604 cm−1, and CH vibra-
tions of aliphatic side chains at 1448 cm−1; (ii) lipid accumulations in the
range Ω = 1440–1450 cm−1, due to the bending of CH2 bonds in fatty
acids (Fig. 2a, e, i, red channel); (iii) nuclei in the Ω = 780-790 cm−1

region32,33, corresponding to pyrimidines ring breathing, including both
nucleobases of DNA and RNA cytosine and uracyl at Ω = 788 cm−1

(Fig. 2a, e, i, blue channel); (iv) cytoplasm34 at Ω = 715–725 cm−1, fea-
turing Raman modes of CN+(CH3)3 in lipids, choline group N+(CH3)3
and phosphatidylcholine vibrations (Fig. 2a, e, i, green channel). RSmaps
distinguish the targeted cell from the substrate, even in presence of
phosphate salts in the culturemedium that generate background peaks at
970 cm−1 (Fig. 2b, grey spectrum).

Fig. 2 | Representative morpho-chemical information collected through RS and
TPM in human colon cancer-derived cells. Cell cycles were not synchronized
through the work, so as to make results agnostic to sampled cell cycle phases
(Supplementary Fig. 12 and Supplementary Fig. 13). a, e, i RS microscopy images of
an HT29, RKO, and T84 cell, obtained integrating the hypercubes along the Ω
dimension in the indicated spectral region. b, f, j On the left, cell average spectrum

(in black) ± standard deviation (in blue), and single-point spectra of nuclei (in blue,
Ω = 780–790 cm−1) and lipids (in red, Ω = 1440–1450 cm−1), compared to the cell
mean (in black) and substrate mean (in grey). c, g, k Set of quantitative information
extracted from the TPM RI maps of the cell. d, h, l Sections of the cell tomogram,
along the axial, sagittal, and coronal planes. Scale bars: 10 µm in both RS and TPM
images.
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On the other hand, TPM delivers cell tomograms, in which the RI of
the specimen constitutes the value of each voxel through the sample
volume13. We employed a holo-tomographic microscope (Methods, TPM
system)workingwith a532-nm laser excitation.TPMimages consist of a 3D
XYZRIdatacube.Onceobtained theRI tomogram,we segmented cells from
the aqueous substrate via proper thresholding (RIthreshold= 1.345) to esti-
mate quantitative values of cell volume (V) [µm3], surface area (S) [µm2],
projected area (i.e., footprint) (A) [µm2], and sphericity (Φ=0-1) (Fig. 2c, g,
k). Thickness (T) [µm] was obtained via an ellipsoid approximation of the
cellular shape, so that T ¼ 3=2 � VA. The refractive properties of a cell (ncell)
exhibit a strong dependence on the total concentration of non-acqueous
cellular content, mainly proteins35: ncell x; y; z

� � ¼ n0 þ αCðx; y; zÞ, where
n0 is the RI of the medium, α = 0.19ml/g is the well-established refraction
increment [ml/g] of proteins36, andC is the concentration of dry content [g/
ml]. Hence, from the extracted values of C, we can estimated the dry mass
density D [pg µm-3] of the cell, as D ¼ RRR

C x; y; z
� �

dxdydz ¼P
C x; y; z
� �

ΔxΔyΔz, where Δx, Δy and Δz represent the size of voxels
above threshold (Fig. 2c, g, k). Having access to V and D, we computed the
overall drymass (DM) [pg] of the specimen as a product of these quantities.
The tomogram slices along the axial (XY), sagittal (YZ) and coronal (XZ)
plane of the cell reveal 3D subcellular structures (Fig. 2d, h, l).

In this work, the presented set of morpho-molecular descriptors was
obtained from the same cell by systematically co-registering the two
microscopy approaches. In the following, we show that such data carry
enough information to rapidly discriminate similar cancer cell subtypes,
easing the phenotyping task bymeasuring a limited amount of living cells in

their original form, avoiding any time-consuming manipulation, labeling
and/or fixation.

Extractingchemical information fromRSforcell characterization
Cell spectra obtained via RS are high-dimensionality data: for eachXYpoint
in the Raman image, the Ω dimension contains 870 wavenumbers.
Dimensionality reduction of such a large dataset is needed to extract
information relevant to cell type differentiation. We present an effective,
simple, quick and human bias-free data-processing pipeline to derive che-
mical features that most represent the differences between the observed
cancer cell types, leveraging Principal Component Analysis (PCA) and
Multiple Linear Regression (MLR)37,38 on cell-averaged Raman spectra.

PCA is a widely validated method in spectroscopy to reduce the
dimension of hyperspectral Raman data, as it preserves the chemical
interpretability of the new dataset39. It is not simply possible to consider the
first principal components (PCs) as themost significant ones for phenotype
discrimination40, based on the fact that they explain the highest variance in
the original data. To dissect how PCs relate to target phenotypes, we
exploitedMLR41,42: linear regression coefficientsquantify the contributionof
each PC in differentiating target variables (i.e., cell phenotype =
β0+ β1 ∙ PC1+ β2 ∙ PC2+… + βn ∙ PCn). We used as independent vari-
ables the first 10 PCs (Fig. 3a), which explain 98.9% of cumulative variance,
then analyzed their MLR coefficients (βi) statistics to identify a subset of
significant PCs. This screening isolated three coefficients (Fig. 3a):
β2 = 0.301, β5 =−0.54, and β7 =−0.416, with p = 0.026, p = 0.003 and
p = 0.008, respectively43: we selected PC2, PC5 and PC7 (Fig. 3) as

Fig. 3 | PCA-MLR analysis results on the dataset of cell-averaged Raman spectra
measured in living human colon cancer cell lines. aMLR fitting equation and
estimated model coefficients (βi) with their statistical significance (p-values) by via
a two-tailed Student t-test. In grey, low-significance (p-value < 0.05) β coefficients. In

red, high-significance (p-value < 0.01) β coefficients. b Partial leverage plots of sig-
nificant PCs in the MLR model. c PCA loadings with indication of relevant Raman
peaks. Red PCs are associated to highly significant β coefficients, the grey PC features
lower significance. Sample size = 5 independent cells/phenotype.
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independent predictors of cell type.We analyzedMLRpartial leverage plots,
obtained as plots of the residuals of the dependent variable, omitting the
selected regressor (i.e., the partial dependent residuals), against the residuals
of the explanatory variable regressed on all the others independent variables
(i.e., the partial regressor residuals), to corroborate this selection (Fig. 3b)44.
Such plots identify outliers or high-leverage points that alone impact
strongly on the regression line (Supplementary Fig. 6). One can appreciate
how PC2, PC5 and PC7 partial residuals are well fitted by the βi regression
line (Fig. 3b), confirming the choice of these PCs as the most significant
chemical information for cell type discrimination.

We biochemically interpreted the PCA-MLRoutput via PCA loadings.
The i-th loading is composed by coefficients ranging between -1 and 1, that
give the contribution of each Raman frequency toward the i-th PC. High
absolute values indicate strong positive or negative correlation, while 0
indicates a weak influence45 (Fig. 3c). PC1 explains 43.08% of the total
dataset variance (Fig. 3c), even though it is not a significant regressor in the
MLRmodel, and it is mainly related to the presence of a broad quartz band
ranging fromΩ = 750 cm−1 toΩ =900 cm−1 46, which is the shared substrate
of all samples, thus observing its spectral contribution is reasonable.
Another correlation of PC1 is with the peak of water (Ω = 1600–1700 cm−1)
and general proteins (Amide III and Amide I vibrational energies at
Ω = 1240–1280 cm−1 and Ω = 1628–1662 cm−1, respectively) (Fig. 3c)47,
constituents shared by the samples. On the other hand, PC2, explaining
24.82% of the total variance (Fig. 3a), features a broad peak of quartz
overwhelming DNA and RNAmodes (Ω = 788 cm−1,Ω = 815 cm−1 and at
Ω = 826–831 cm−1) (Fig. 3c), along with a relatively lower amount of pro-
teins (phenylalanine at Ω = 1007 cm−1, Amide I at Ω = 1240–1280 cm−1,
CH3 in general proteins at Ω = 1385 cm−1 and Ω = 1460 cm−1), and fatty
acids in lipids (Ω = 1440 cm−1 and Ω = 1460 cm−1). It suggests scarcity of
cell matter in favor of background signal, which may be due to lower cell
thickness (see Tab. 1). Its significance in distinguishing cell subtypes is the
lowest in the pool of selected PCs. In fact, PC5 and PC7 alone are capable to
separate cell types in the PCA space (Fig. 4). In particular, β5 displays the
highest statistical significance (i.e., p = 0.003) and the highest absolute value
(i.e., β5 =−0.54) (Fig. 3a). The PC5 loading is negatively correlated with
amino-acid vibrations of proline and hydroxyproline, as well as C-C
vibration of collagen, atΩ = 856 cm−1, C-N vibrations in proteins and C-C
stretching in lipids34 atΩ = 1131–1152 cm−1. Conversely, atΩ = 1240 cm−1,
PC5 is positively related to nucleic acids, mostly RNA34 (Fig. 3c) (Tab. 1).
This alignswith PC2 interpretation, attributing a relevant role in cancer cells
discrimination to nucleic acids prevailing over proteins and lipids. PC7

mainly shows a negative correlationwith: (i) the C-N stretching vibration in
proteins and to the C-C stretching modes of lipids and proteins34 around
Ω = 1030–1090 cm−1 and Ω = 1122–1160 cm−1, (ii) the Amide I band

(Ω = 1240–1280 cm−1), as well as (iii) fatty acids in lipids (Ω = 1440 cm−1

and Ω = 1460 cm−1) (Tab. 1).
Overall, PCA-MLR attributes a leading role toDNA andRNA content

in the diversification of colon cancer cell types, accompanied by relative
variations of lipids and proteins amount. The effectiveness of the proposed
PCs screeningmethod is visually clear in scatter plots of PCs scores (Fig. 4):
the significant PC5 – PC7 pair of regressors corresponds to the PCA plane
with the highest spatial separation among phenotypes.

This PCA-MLR chemical interpretation is in line with reports using
invasive characterization techniques such as destructive gene expression
analysis on large cell populations. Lung metastatic colon cancer cells are
distinguished from colon resident types by a downregulation of angiogenin
and amphiregulin, lung-specific angiogenesis proteins48. This is in agree-
ment with positive PC7 scores in metastatic T84s, telling them apart from
residentHT29s andRKOs (Fig. 4). Accordingly, previous research identifies
nucleic acids variations distinguishing colon-resident cancer cell lines49,50:
here, HT29s and RKOs are mainly separated along PC5 (Fig. 4).

Extracting morphological information from TPM for cell character-
ization. Thanks to the 3D RI maps obtained through TPM, a set of
quantitative descriptors of cell morphology can be derived through
numerical calculation: the average RI, dry mass (DM) and density (D),
sphericity (Φ), volume (V), surface area (S), footprint (A), and thickness
(T). It is worth noticing that the generation of RI tomograms and the
subsequent extraction of data requires extended computational power,
unlike the use of raw spectra in RS measurements. Indeed, first the field-
retrieval algorithm is used to obtain 2D phasemaps. Then, the diffraction
tomography algorithm delivers 3D RI tomograms (see Methods, TPM
system). This comes with the advantage of having ready-to-use mor-
phological information, leading to a simplified data processing pipeline
to discriminate cancer cell subtypes. TPM images are reduced to eight
numerical observables, not requiring dimensionality reduction ahead of a
feature importance study (Fig. 5).

On average, visual inspection via standard bright-field microscopy
does not highlight any peculiar trait differentiating these colon cancer
cells, except for a slightly more elongated shape shown by RKOs (Supple-
mentary Fig. 7), and a slightly smaller and more roundish shape in HT29s.
Conversely, TPM data reveal significantly different morphological features.
HT29s display the highest morphological difference when compared
to others (Tab. 1). Their average RI (Fig. 5a) is higher with respect to
RKO and T84 types (RIHT29 = 1.364 ± 6 × 10−4, RIRKO = 1.359 ± 7 × 10−4,
and RIT84 = 1.362 ± 0.001), and this translates into higher average
D values (Fig. 5c) (DHT29 = 0.159 ± 0.003 pg µm−3, DRKO = 0.133 ±
0.004 pg µm−3, and DT84 = 0.148 ± 0.006 pg µm−3). They also have higher

Fig. 4 | PCA score plots analysis results on the
dataset of cell-averaged Raman spectra measured
in living human cancer lines. By screening the first
PCs through MLR, PCA score plots can be used to
linearly separate human colon cancer cell types in
the PCA space, based on their biochemistry. Sample
size = 5 independent cells/phenotype. a The scatter
matrix compares pair-wise the first 7 PCs, explain-
ing 96% of the total dataset variance. Red dashed
lines highlight pairs of the most significant PCs,
namely, PC5 and PC7. Grey dashed lines identify the
less significant PC, namely, PC2. b The entire set of
significant PCs is represented in the 3D PCA space.
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average sphericity (Φ) (Fig. 5d) (ΦHT29 = 0.685 ± 0.014, ΦRKO =
0.572 ± 0.009, andΦT84 = 0.566 ± 0.052). In linewith this,HT29s are thicker
(Fig. 5h) (THT29 = 2.835 µm ± 0.092, TRKO = 2.465 µm± 0.133, and
TT84 = 2.289 µm± 0.220). Figure 5 shows other morphological trends,
despite not statistically significant. RKOs distinguish from both HT29s and
T84s because of a lower D (Fig. 5c). T84s have lower Φ (Fig. 5d) and T
(Fig. 5h), resulting in a larger S (Fig. 5f).

To better quantify the mutual relationship between these traits, we
analyzed their Pearson Correlation Coefficients (PCCs), reflecting any lin-
ear correlation and their pairwise statistical significance (Fig. 6). Interest-
ingly, although morphological traits do not exhibit highly different trends
among cancer subtypes, their correlation distinguishes cell types more
clearly.

Excluding trivial correlations, such asD andRI pairs and diagonal self-
correlations, significant PCCs pairs (*) vary across cell types. A significantly
positive PCC characterizes dry mass (DM) and volume (V) in all pheno-
types (HT29: PCC= 0.982, p = 0.003; RKO: PCC = 0.983, p = 0.003; T84:
PCC = 0.987, p = 0.002): regardless of the subtype, an enlarged V is asso-
ciatedwith ahigherDMcontent. In linewith this, alsoAandSpairwithDM
in a strongly positive PCC. Other PCCs exhibit values unique to some
phenotypes. While T84s feature a negligible PCC relating D with V, S, and

A, we can observe a D reduction in HT29s as they increase their overall
dimension, whereas RKOs tend to increase their D, in an opposite trend
(Tab. 1). As for cell shape, a peculiar morphological trait of T84s is a clear
negative correlation between Φ and S, a trend shared by HT29s but not
present in RKOs (HT29: PCC =−0.498, p = non-significant (ns); RKO:
PCC = 0.224, p = ns; T84: PCC =−0.973, p = 0.005). Similarly, cell V andA
feature positive PCC values withΦ only in RKO cells; this entails a peculiar
morphological feature: as the dimension increases in RKOs, they acquire a
more spherical shape.Vice versa, asV, S, andA inHT29s andT84s increase,
they lose their spherical appearance (Tab. 1). When comparing trends
(Fig. 5) though, these phenotypes feature similar cell dimension, with RKOs
having a lower sphericity. Indeed, one can tell apart RKOs as the less
roundish type in the XY plane, appreciable also through bright-field
inspection (Supplementary Fig. 7) but here statistically quantified via TPM.
Also, T84s distinguish by their negative correlation between T and other
dimensionality indexes (i.e., V, S, and A): the physical interpretation of this
results is that, as they grow bigger in dimension, they tend to spread on the
culture substrate decreasing their thickness, a behavior not shown inHT29s
and RKOs.

TPM unlocks a highly detailed quantitative and comparative mor-
phological description of different colon cancer cells. In line with our

Fig. 5 | TPM-derived quantitative morphological traits of HT29, RKO and T84
colon cancer cells and relative significant trends. Box plots report the standard
error of the mean (SE) of morphological indexes computed from TPM maps,
whiskers represent the 90% confidence interval (CI), whereas grey solid and dashed
lines represent themean andmedian of the distribution, respectively. Sample size = 5

independent cells/phenotype. amean cell RI, b cell DM [pg], c cell D [pg µm-3], d cell
Φ [0-1], e cell V [µm3], f cell S [µm2], g cell A [µm2], h cell T [µm]. P-values are
computed through the U-Mann Whitney non-parametric hypothesis test and are
here shown for significant comparisons (*p-value < 0.05), otherwise consider sig-
nificance not reached.
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observations, Zadka et al. previously showed how HT29s set apart from
other colorectal cancer cells, not including the ones here used, by having
higher RI and D values, similarly quantified here via TPM51.

Cell type discrimination via combined morpho-molecular
profiling
In thiswork, besides showinghowchemical andmorphological information
canbe independently extracted and interpreted (Table 1) viaRS andTPMto
rapidly differentiate similar living cancer cells, we show that integrating this
synergistic insight leads to superior cell phenotype inference.

To this aim, we quantitatively estimated phenotype inference through
multinomial logistic regression (MLoR) mathematical modeling. This
model, fed with independent chemical, morphological, and, ultimately,
combined morpho-molecular data, can tell apart the colon cancer types
(HT29s, RKOs, or T84s) by estimating the phenotype probability. To
evaluate competing MLoR models, election methods are the Likelihood
Ratio Test (LRT) or the Akaike’s Information Criterion (AIC). The LRT
probability canbeused to estimate the significance of the inference.TheAIC
quantifies model accuracy weighted by its complexity: it is directly

proportional to thenumber of explanatory variables, so that a simplermodel
receives a lower penalty resulting in a lower AIC.

First, we test the entire set of significant RS and TPM information,
namely, the most significant PCs and the most relevant morphological
observables for RS- and TPM-based phenotype inference, respectively
(Fig. 7a–c). When using the complete set of significant PCs, the chemical
information is enough to explain the differences between cell types (Fig. 7a),
with LRT p-value = 1.161 × 10−5 andAIC = 16.188. Conversely, when using
TPM information (Fig. 7b), the accuracy is significant (LRT p-value =
0.006), but AIC = 30.804 witnesses poor model fitting. Merging these two
sets of explanatory variables (Fig. 7c) results in a more complex model, not
improving any performance (LRT p-value = 9.865 × 10−4, AIC = 28.011).

To further break down the impact of each piece of information for
phenotype inference, we limit to only the most relevant RS and TPM
explanatory variables, in simplermodels that ease interpretation (Fig. 7d–f).
The most significant RS and TPM information to distinguish cell types are
PC5 (p = 0.003) (Fig. 3) andD, respectively.When training theMLoRmodel
with PC5, we observe a drop in performance (LRT p-value = 0.002, AIC =
28.416, and inference accuracy 66.7%) with respect of the full RS-based

Fig. 6 | Pearson correlation matrices of TPM-derived quantitative indexes. The
heatmaps report PCC values for morphological indexes pairs. In blue, negative
correlation (PCC < 0). In red, positive correlation (PCC > 0). Resident colon cells,
namely, HT29s a and RKOs b and metastatic T84s colon cancer cells c PCC

heatmaps. Statistical significance (*p-value < 0.05) is computed via a two-tailed
Student t-test and indicated for each significantly correlated pair. Sample size = 5
independent cells/phenotype.

Table 1 | Quantitative morpho-molecular traits differentiating colon cancer-derived cell types

Technique Cell trait HT29 RKO T84

RS
(chemical)

DNA and RNA relative abundance over
C-C and C-N in proteins and lipids (PC5)

✓ × ×

RS
(chemical)

Thin cell, relative scarcity of
cellular organic matter (PC2)

✓ ✓ ×

RS
(chemical)

Relative scarcity of proteins and lipids,
C-C and C-N, CH2 and CH3 (PC7)

× × ✓

TPM
(morphological)

Relatively high D, T, and Φ ✓ × ×

TPM
(morphological)

Cell D correlation with cell dimension ✓ (–) ✓ (+ ) ×

TPM
(morphological)

Cell Φ correlation with cell dimension ✓ (–) ✓ (+ ) ✓ (–)

The table summarizes themain characteristicsof colon cancer-derived cell types that set themapart onamorpho-chemical basis.✓ and× indicatepresenceor absenceof a cell trait, respectively. In caseof
correlation traits, (–) and (+) further specify negative or positive correlation, respectively.

https://doi.org/10.1038/s42003-024-06496-9 Article

Communications Biology |           (2024) 7:785 7



model (Fig. 7d): reducing the number of PCs used as regressors has a
negative impact on model performance, as expected, because PCs are
orthogonal to each other. Conversely, exploiting only D among the TPM-
derived information improves model performance (LRT p-value = 0.004,
AIC = 30.033, and inference accuracy 73.3%) (Fig. 7e),which is explainedby
the high correlation among TPM observables (Fig. 6). The best model (in
green in Fig. 7) is achieved when combining the reduced morpho-chemical
information, PC5 and D (Fig. 7f), through which we achieved superior
discrimination of similar cancer phenotypes (LRT p-value = 2.387 × 10−6,
AIC = 13.429, and inference accuracy = 100%).

Overall, our phenotype inference analysis proves that using more
explanatory variables does not lead to better model metrics, neither in the
goodness of thefit per se (i.e., LRT)nor in thefit accuracyweightedbymodel
complexity (i.e., AIC). Also, a higher number of independent explanatory
variables jeopardizes model interpretability, as the effect of one predictor
cannot be investigated separately, and dependence effects among variables
may confound inference. The use of reduced morpho-molecular informa-
tion increases inference accuracy (Fig. 7f) while easing interpretation to
favor biological understanding.

As this work gives access to co-occurringmorphological and chemical
quantitative data, we investigate the relation between RS and TPM infor-
mation in cells. It is acknowledged that the cell DM is mostly explained by
the mass of protein content13,35, which in turn produces predominant
Raman peaks in the fingerpint region34. We tested experimentally and
quantitatively such morpho-chemical proportionality. As the Raman peak
intensity scales linearly with the concentration of scatterers in the focal

volume, we integrated the area under the curves of major protein-related
Raman modes (i.e., phenylalanine at Ω = 1007 cm−1 and Amide I at
Ω = 1660 cm−1) to obtain a semi-quantitative value representing the overall
cellular protein content. We have access to the DM amount of these same
cells via TPM. By linear fit of these morpho-chemical pairs (Fig. 8), we
obtain a PCC = 0.977, with a significantly positive slope (p = 6.85 × 10−11),
proving high positive linear correlationbetween cell protein content and cell
DM. Nonetheless, major protein peaks cannot compensate the role of
morphological information in phenotyping (Supplementary Fig. 8), at least
whendealingwith cell types not featuringDMas a significant distinguishing
trait (Fig. 5b).

Discussion
This work investigates the informative content, biological interpretability,
and phenotyping potential of combined RS and TPM, a label-free non-
invasive approach for living cell characterization. The data structure of RS
and TPM information clearly differs. Here, we propose two systematic
human-bias free pipelines to extract complementary molecular and mor-
phological information from RS and TPM data for cell type differentiation,
making sure to preserve biological interpretability. We broke down quan-
titatively the individual or synergistic contribution of native morpho-
molecular traits in cell type inference. Notably, only when combining the
most significant chemical and morphological explanatory variables (i.e.,
PC5 and DM), one can obtain exquisite phenotype inference accuracy by
means of a simplified MLoR mathematical model (Fig. 7). This clearly
indicates that the combinationofRSandTPMisnotonly valuableper sedue

Fig. 7 |MLoRmodels statistics to infer colon cancer types: the reducedRS+ TPM
model shows superior LRT and AIC metrics. aMLoR model fed with all the
statistically significant PCs extracted from the RS dataset analysis. bMLoR model
using all the TPM-derived indexes showing significantly different trends across cell
types. c Enlarged MLoR model using all the information fed in a and b. d Reduced
MLoR model using only the most significant chemical information differentiating

cell types, PC5. e Reduced MLoR model using only the most significant morpho-
logical information differentiating cell types, D. f Best model in terms of LRT and
AIC metrics, achieved coupling the one most significant chemical and morpholo-
gical information, PC5 and D. Inference and LOOCV accuracy are not significantly
different from the ones obtained with the extended RS model (see also Supple-
mentary Fig. 9).
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to the higher and diverse amount of extracted information characterizing a
single unperturbed cell, but this synergy is required to boost phenotyping
accuracy: the model using the best RS explanatory variable (i.e., PC5)
achieves 66.7% inference accuracy with LRT p-value = 0.002 and AIC =
28.416; themodel using the best TPMexplanatory variable (i.e., D) achieves
73.3% inference accuracy with LRT p-value = 0.004 and AIC = 30.033,
whereas the combined morpho-molecular model achieves 100% type
inference accuracy with LRT p-value = 2.387 × 10−6 andAIC = 13.429. This
holds true even when tackling the discrimination of very similar cell types,
such as the human colon cancer-derived cell subtypes in this work.Notably,
our results exploited a limited sample size while accounting for biological
variability andmodel overfitting (Supplementary Fig. 4 and Supplementary
Fig. 5), ultimately saving time and costs. Investigating the predictive power
of thismorpho-chemical dataset on unseen examples is beyond the scope of
this work. Still, we observe that the same reduced subset of morpho-
molecular data is key to ensure high phenotype prediction accuracy as well,
as shown through leave-one-out cross validation (LOOCV) (Supplemen-
tary Fig. 9). To further study prediction performance, enlarged datasets
should be generated in future research.

Furthermore, this work investigates any shared information between
RS and TPM maps, mainly given by the positive linear correlation
(PCC = 0.977) of cell protein content52, as encoded into the intensity of their
molecular vibrations and into their refractive behavior13,35,53, two clearly
different observables. In fact, correlating RS and TPM-derived traits in
proteins is important: TPM may be useful to monitor drug response,
especially when the drug affects cellular proteins, such as proteasome
inhibitors. This further confirms the soundness of FOV co-registration and
theory alignment of our experiments.

Although our morpho-molecular cell-phenotyping strategy works
with cell-averaged data that are easily and quickly extracted form RS and
TPMmaps, we demonstrate that this approach can also be easily applied for
intra-cellular organelles characterization (Supplementary Fig.10), where RS
proves to be a valid chemical probe to tell apart subcellular structures with
comparable RI in TPM maps, overcoming their intrinsic lack of chemical
specificity.

It is worth noticing that the acquisition time of an RS and a TPMmap
differ: while the former generally takes from tens of minutes to hours, the
latter is much faster, generally taking a few seconds. Hence, we envision
TPMas an effective pre-screening tool to speed up live-cell characterization,
to be coupled to co-registered RS mapping at a second stage to achieve
exquisite phenotyping accuracy and cell characterization21. Also, the speed
mismatch betweenRS andTPMcan be overcome by using coherent Raman
scattering (CRS) techniques8,54,55, which typically target oneRaman shift at a
time, selected based on the RS full-spectrum analysis (e.g., here, addressing
onlyPC5-specific peaks). CRSwould reduce chemical imaging time,making
it comparable with TPM.

To foster a wider transferability of our methods in biology and bio-
technology, combining RS and TPM imaging into one single plug-and-play
platform would be beneficial: it would limit the engineering skills required
from the operator and ease the method by avoiding transportation and co-
registration of the analytes across systems. Furthermore, combined RS and
TPMhave a potential for non-invasive monitoring of cancer progression in
living organisms. The need for an epi-detection scheme and the limited
accessibility of target cells in in-vivo scenarios are challenges, but recent
reports confirm the effectiveness of in-vivo TPM56,57 or RS58,59, mainly
exploiting oblique illumination schemes, fiber-optics and endoscopy.

Fig. 8 | RS-derived protein peaks integral is linearly related to TPM-derived
protein drymass. aThe scatter plot y-axis shows values of the area under the Raman
peak curves of phenylalanine and Amide I, two predominant protein-related peaks.
The x-axis reports values of the DM via TPM. The dashed line is the linear fit of the
dataset with intercept fixed at the origin. Sample size = 5 independent cells/

phenotype. The table reportsfitting statistics and slope value ± standard deviation.D
distribution (exploited together withV to calculate the cell DM) and Raman peaks of
cells corresponding to b point 1 (T84) and c point 2 (RKO) are shown. Scale
bars: 10 µm.
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The presented methods and tools, not requiring any sample manip-
ulation with respect to standard culture conditions, ultimately stand as an
effective, fast, accurate and practical solution for cell type characterization
and discrimination in biomedical and cancer research, also in the common
scenario of short supply of biologicalmaterial thanks to the robustness of the
approach to small sample sizes.

Methods
Cell culture
This study employsHT29 colorectal adenocarcinoma cells (ATCC, product
code HT29 HTB-38, USA), RKO colon carcinoma cells (ATCC, product
code RKO CRL-2577, USA), and T84 cells of colon cancer lung metastasis
(ATCC, product code T84 CCl-248, USA). HT29s were cultured in base
medium consisting of McCoy’s 5a (Modified) Medium (ThermoFisher
Scientific, catalognumber: 16600082,USA), supplementedwith fetal bovine
serum (FBS) (Millipore Sigma, catalog number: F0926, USA) to a final
concentration of 10%, and 5000U/mL Penicillin-Streptomycin (PenStrep)
(ThermoFisher Scientific, catalog number: 15070063, USA) to a final con-
centration of 1%. RKO cells were cultured in Eagle’s Minimum Essential
Medium as a base medium, adding 10% FBS and 1% PenStrep. T84 cells
were cultured in Dulbecco’s Modified Eagle’s Medium (DMEM): F-12
Medium (ThermoFisher Scientific, catalog number: 21041025, USA) sup-
plemented with 5% FBS and 1% PenStrep. Cells were expanded in 250mL
cell cultureflasks (Avantor byVWR, catalog number: 10062-862, USA) and
passaged every 48 hours using Trypsin/EDTA (Millipore Sigma, catalog
number: T4049, USA) for detaching from substrates. Cells were transferred
to 35mmquartz-bottomPetri dishes (WakenBTech, catalog number: SF-S-
D12, Japan) at least 12 hours before RS and TPMmeasurements, to ensure
cell adhesion to the uncoated substrate. To ease the localization of desig-
nated target cells when switching from the RS to the TPM microscopy
system, so todeliverco-registered chemical andmorphologicalmaps, quartz
bottoms were marked with a reference grid. Details about our approach to
ease a quick co-registration of RS and TPMmaps of single living and label-
free cells are presented in Supplementary Fig. 11 (see also Supplementary
Fig. 10). Through culture and measurements, cell physiological conditions
were granted.

RS system
This study employs a home-built high-throughput microscope capable of
multi-position and multi-timepoint point-scanning Raman microscopy.
The laser source is a 785-nm continuous-wave Ti-Sapphire laser cavity
(Spectra-Physics, model: 3900 S) with average output power of 750mW,
pumped by a 532-nm laser operating at 5-W average power (Spectra-
Physics, model: Millennia eV). An inverted Olympus IX83 fluorescence
microscope body is integrated with such 785-nm Raman excitation laser
coupled to thebackport,where a749-nmdichroicmirror (ThorLabs,model:
DMSP750B) deflects the excitation to the sample through an Olympus
UPLSAPO60×1.2NAwater-immersionobjective. The average laser power
at the backport of the microscope is tuned to be 100mW via a polarizer,
achieving 75mW average laser power at the sample plane. Similarly, white
light is coupled for brightfield imaging.Thebrightfield andRaman imaging
modes are switched by swapping dichroic filters with auto-turrets. Galvo
mirror-based scanning and stage scanning are combined to acquire each
single FOV and multiple FOVs, respectively, delivering high-throughput
Raman measurements. A custom MATLAB (2020b) script communicates
with an open-source microscope control software (Micro-manager)60, a
digital acquisition (DAQ) board, and signal detection to automatize data
acquisition. The script pipeline allows for a multi-dimensional measure-
ment consisting of brightfield,fluorescence andRaman channels atmultiple
positions and z-stacks. The backscattered light is collimated by the same
objective. Through the 785 nmdichroicmirror, visible light (brightfield and
fluorescence signals) is short-pass filtered from the Raman scattering signal
and sent to a NIR spectrograph with a 5.03 nm/mm nominal dispersion
grating having central wavelength at 750 nm (Andror, Holospec HS-HSG-
785-LF) and a detector CCD camera (Princeton Instruments, model: PIXIS

100BR eXcelon). The fluorescence and brightfield channels are imaged by
the Orca Flash 4.0 v2 sCMOS camera from Hamamatsu Photonics. The
exposure time for each point in the Raman measurement is 1.5 s. This
implies a light dose of 261.63 kJ/cm2 at the sample plane, which is sig-
nificantly lower compared to previously reported values that ensured
noninvasiveness in living cells61. Also, we systematically maintained cells in
culture for at least two passages after measurements occurred, to experi-
mentally confirm the noninvasiveness of our methods: neither cell pro-
liferation abnormalities nor nonstandard cell detachment was observed.
FOV is 50 × 50 pixels, 40 × 40 µm2, with each pixel corresponding to
800 × 800 nm2. The time to acquire Raman hyperspectral images is 1 hour
per FOV. Evaporation of the immersion water for the objective is com-
pensated by a home-built automated water-immersion feeder using syringe
pumps and syringe needles glued to the tip of the objective lens. Here, water
was supplied at a flow rate of 1 µL/min. To conduct live cell imaging,
samples are incubated throughoutmeasurement using a top stage incubator
to maintain physiological conditions (Tokai Hit, model: stxg-welsx-set). It
distributes heat uniformly within the incubation chamber through a top
heater leaving the bottom free for optical access for the inverted config-
uration objective. An integrated temperature sensor allows real-time feed-
back regulation to achieve temperature control at 37 °C. The incubation
set also keeps the humidity level inside the chamber > 95% by heating
distilledwater in an internal peripheral bath unit. An automated gas blender
controller unit connected to a 100% CO2 gas cylinder mixes CO2 with
surrounding air obtaining 5%CO2 and 95% air as an input to the chamber.
Wavenumber calibration is regularly achieved exploiting standard acet-
amidophenol samples to annotate knownRamanpeaks and theRamanshift
axis is derived by quadratic interpolation. We systematically set the Z
coordinate of the RS imaging plane by maximizing the signal counts on the
CCD camera. We observed that such a position along the Z axis coincided
with+ 5 µmwith respect to the imaging plane not showing any traceof cell-
related Raman peaks, due to a focal spot falling fairly inside the quartz
substrate.

RS data processing
Raman hyperspectral maps are post-processed via MATLAB (2023a) and
“RamApp”, a web-based tool developed internally62, with the following
ordered steps. Through “RamApp”, spectra are corrected for cosmic rays
employing the built-in spike removal tool. Then, thefluorescencebaseline of
each spectral pixel is fit according to the adaptive smoothness partial least
squares algorithm, with a choice of λ = 5 × 106 as the smoothness
parameter63, and subtracted. Spectral noise correction via Savitzky-Golay
filtering (employing a second-order polynomial) is used as a spectral
denoiser, with a 7-points filter window. Each Raman hyperspectral map is
normalized by dividing it by its Frobenius norm. Through MATLAB
(2021b), PCA is computed in the processed Raman maps, and PC1-pro-
jected images clearly distinguish cell pixels (highpixel values in theprojected
image) from background ones (low pixel values in the projected Raman
map). Hence, cell pixels selected by high PC1 values are averaged into one
representative spectrum per cell, and imported in Origin(Pro) (Version
2022. OriginLab Corporation, Northampton, MA, USA) for the further
statistical analysis.

TPM system
The quantitative phase images of cells were obtained with a commercial
tomographic phasemicroscope (TomocubeHT-2H, Tomocube Inc., South
Korea)64. It uses a 60 × 1.2NAwater-immersion objective that, coupledwith
a 532-nm green excitation laser, leads to lateral and axial resolutions of
~110 nm and ~356 nm, respectively. Theoretical calculation and experi-
mental demonstration of such spatial resolution are reported in greater
detail by Park and coworkers65, using the same optical setup. Tomograms
are reconstructed using the diffraction tomography algorithm with the
Rytov approximation on a set of 100 2D phase images scanned in a circular
pattern with a DMD-driven illumination angle of 49° with respect to the
optical axis64. Each 2D phase image fed into the algorithm is obtained from
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spatially modulated interferograms through the field retrieval algorithm66.
All TPM maps in this study, covering a volume of 40 × 40 × 40 µm3, cor-
responding to 425 × 425 × 210 pixels, were taken encompassing the same
corresponding FOV in Raman hyperspectralmaps of cells. To conduct live-
cell imaging, we exploited a dedicated commercial incubation chamber
providing physiological conditions (Tomo Chamber, Tomocube Inc.,
South Korea).

TPM data processing
TPM holographic tomograms of cancer cells were analyzed using
TomoStudio software (Tomocube Inc., South Korea). The RI of PBS
(RI = 1.3342) was used for background calibration.We applied 0.19ml/g as
the refraction increment, which is widely established by previous
reports36, and RI = 1.345 as the threshold to run a volumetric segmentation
of the target cell, so as to restrict to these voxels the computation of TPM
morphological indexes. Such extracted data are imported inOrigin(Pro) for
further statistical analysis.

Statistics and reproducibility
For RS data analysis, PCA is run on the standardized dataset (mean = 0 and
standard deviation = 1 to obtain a normal data distribution) through the
PCAfor SpectroscopyOrigin(PRO)add-on.MLR isperformedonPCscores
and cell types through the Origin(Pro)MLR built-in function, and statistical
significance of MLR β coefficients is calculated through a two-tailed t-test
with a 0.05 significance level. ForTPMdata analysis, statistical significance of
V, S, A, RI, D, T, DM, and Φ across HT29, RKO and T84 cell types is
computed via U-Mann Whitney non-parametric test, with a significance
level of 0.05, to allow for a non-normal distribution of data points. Sig-
nificance ofPCCvalues in correlation analyses is calculated via a two-tailed t-
test, with a significance level of 0.05. MLoR models are fit on RS and TPM-
derived data using the Logistic Regression Origin(Pro) add-on, which
includesLRTandAICbuilt-in algorithms formodel statistics andevaluation.

To sample biological variability, HT29, RKO and T84 cells included in
this work are independently cultured in different plates: we produced n = 5
independent biological replicates per each of the three cancer cell subtypes.

Reporting summary
Further information on research design is available in the Nature Portfolio
Reporting Summary linked to this article.

Data availability
All data needed to support the conclusions in this paper are present in the
paper and in the SupplementaryMaterials and SupplementaryData. Source
data and analyses output data can be found in the open-access Zenodo
repository67 titled Supplementary material - Superior Label-free Morpho-
Molecular Phenotyping of Living Cancer Cells by Combined Raman
Spectroscopy and Phase Tomography, at the following link: https://doi.org/
10.5281/zenodo.10779109.Other data are available from the corresponding
author on reasonable request.
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