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Abstract: There is an ongoing effort to advance methodologies for culturing functional photoreceptors
in vitro for retinal regenerative strategies. To support the formation of functional photoreceptors, a
scaffold should replicate the native environment. The aim of this study was to optimize a sodium
alginate–gelatin (SA-G) bioink to mimic the retinal properties while ensuring the printing of constructs
with high shape fidelity. The optimized bioink was thoroughly characterized in terms of its physical,
mechanical, and rheological properties, printability assessment, and preliminary biocompatibility.
The material showed a constant degradation rate, which is crucial for effective tissue regeneration
as it provides support for cell differentiation and polarization while gradually degrading to allow
cell proliferation and matrix deposition. The optimized bioink displayed stiffness comparable to
the native photoreceptor layer, potentially providing appropriate mechanical cues for photoreceptor
maturation. Additionally, it exhibited shear-thinning behavior, the presence of yield stress, and fast
recovery kinetics, which are essential for successful extrusion. The high shape fidelity of 3D-printed
constructs suggested the feasibility of printing complex patterns to drive photoreceptor polarization.
The preliminary cell results demonstrated homogeneous cell distribution and sustained cell viability
over time. Overall, these findings indicate that the optimized bioink can provide the mechanical and
topographical cues necessary for cultivating photoreceptors in vitro for retinal regeneration.

Keywords: direct ink writing; sodium alginate; gelatin; retinal regeneration; bioink; rheological
characterization

1. Introduction

Many pathologies affecting retinal tissue lead to irreversible vision impairments due to
the loss of photoreceptors. Regenerative medicine represents a viable strategy for treating
these conditions by replacing dead photoreceptors with healthy ones. Research advance-
ments in cell therapies have shown promise in restoring retinal cells and retinal function [1].
For instance, the use of induced pluripotent stem cells (iPSCs) to generate a functional
retinal pigment epithelium has demonstrated potential in clinical trials [2]. Yet, significant
hurdles, including the long-term survival and integration of transplanted cells, remain [3].
Moreover, photoreceptors are difficult to cultivate and maintain in vitro [4]. To tackle
these issues, cells can be transplanted using a scaffold, allowing for the delivery of an
organized and functional cell layer that integrates better with the host tissue compared
with cell injection. Yet, few studies on the fabrication of photoreceptor scaffolds have been
reported in the literature. Most of these studies focused on creating scaffolds with an
architecture that guides cell differentiation and orientation, which is crucial for fulfilling
the light-sensing function [5]. Steedman et al. proved that the presence of microtopography
positively affected cell attachment and induced the differentiation of retinal progenitor
cells [6]. Similarly, Jung et al. showed that a 3D micropatterned scaffold can guide the
attachment and the differentiation of pluripotent stem cells into photoreceptors [7]. Besides
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topographical cues, scaffold stiffness has also been identified as a key parameter for driving
cells to differentiate into photoreceptors and for maintaining lineage specification [8,9].
Therefore, selecting suitable substrate materials and fabrication techniques is crucial for
recapitulating both the architecture and properties of the in vivo photoreceptor environ-
ment [8]. Current substrates fail to mimic both the architecture and the stiffness of the native
milieu, thus hindering progress in retinal regenerative approaches [7,10]. Hence, recreating
the environment of photoreceptors in vitro still represents an engineering challenge.

Recently, 3D bioprinting has been suggested as a promising technique to fabricate
scaffolds for photoreceptors, as it allows 3D porous architectures with precise control
over pore size, geometry, and cell spatial distribution to be obtained without significantly
affecting cell viability [5,11–13]. Different bioprinting technologies have been developed
and employed according to the application [14]. For instance, Masaeli et al. demonstrated
the feasibility of fabricating a 3D in vitro retina model using an inkjet-based bioprinter [12].
However, with this approach, cells had to be printed in culture medium to avoid clogging
issues. So, the native stiffness could not be matched. Among the bioprinting approaches,
pneumatic-driven extrusion-based bioprinting is one of the most common due to its versa-
tility in printing a wide range of bioinks and its ease of use [15]. Additionally, it enables
the production of clinically relevant constructs, in terms of size, within a reasonable time.
Bioinks employed in extrusion bioprinting must display shear-thinning behavior to enable
successful extrusion and printing while preserving the structure given by the printing pro-
cess [16]. Shi et al. used an alginate–pluronic bioink that included a retinoblastoma-derived
cell line to replicate the photoreceptor layer in a 3D in vitro model [17]. They evaluated the
impact of two different printing patterns on cell morphology; however, the stiffness of the
bioink was not investigated. Hence, to date, a bioink capable of meeting the requirements
for extrusion-based bioprinting and simultaneously accurately replicating retinal properties
has yet to be developed [11,18].

Sodium alginate–gelatin (SA-G) blends have been successfully applied over the years
in extrusion-based 3D bioprinting for engineering different tissues, such as liver and neural
tissue [19–21]. These blends have shown a good printability window, a rapid crosslinking
rate, printing accuracy, and biocompatibility [22,23]. Moreover, they can be obtained via
an easy and cost-effective process. We believe that an SA-G bioink holds great potential
for bioprinting a functional photoreceptor layer, as gelatin provides cell attachment sites,
while sodium alginate exhibits a suitable stiffness for the development of photoreceptors.
Hunt et al. found that a sodium alginate-based hydrogel functionalized with arginine–
glycine–aspartate groups promoted photoreceptor cell differentiation in comparison with
hydrogels based on hyaluronic acid and pure gelatin due to its stiffness [8].

The present research aims to introduce a novel platform that is potentially able to guide
and sustain functional photoreceptors in vitro through both topographical and mechanical
cues. To this end, we optimized a bioink composed of sodium alginate and gelatin to
replicate retinal native properties, such as stiffness, while ensuring successful extrusion and
high shape fidelity in printed constructs. To the best of our knowledge, no bioink with these
features has been developed previously. To investigate the properties of the optimized
SA-G bioink, we performed a comprehensive characterization based on well-established
testing protocols as well as protocols developed specifically for this study.

2. Materials and Methods

A schematic representation of the research methodology is reported in Figure 1.
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Figure 1. Graphic representation of the research methodology.

2.1. Material Preparation

To prepare the SA-G bioink, low-viscosity sodium alginate (154725, Lot Number:
SR01864) and gelatin (bovine skin type B, G9391, Lot Number: SLCF9893) powders were
purchased from MP Biomedicals (Santa Ana, CA, USA) and Sigma-Aldrich (St. Louis, MO,
USA), respectively.

The hydrogel precursor solution was prepared as follows. First, the powders were
separately sterilized in 99.99% ethanol (Sigma-Aldrich, St. Louis, MO, USA) for 15 min. The
sterilization process was repeated three times. After the complete evaporation of ethanol,
0.4 g of sodium alginate powders were dissolved in 10 mL of sterile phosphate-buffered
saline (PBS, 1X, w/o Calcium, w/o Magnesium, pH = 7.4, Gibco, Thermo Fisher Scientific,
Waltham, MA, USA) overnight under vigorous magnetic stirring. Similarly, 1 g of gelatin
was dissolved in 10 mL of sterile PBS at 37 ◦C until total solubilization. The two resulting
solutions were mixed together in a volume ratio of 1:1. Hence, the final alginate and gelatin
concentrations in the precursor were 2% and 5% wt./v. These concentrations were selected
after an optimization process based on preliminary extrudability and printability tests. The
precursor solution was stored at 4 ◦C and used within one week.

The crosslinking solution was prepared by dissolving 2% wt./v of calcium chloride
(CaCl2, Sigma-Aldrich, St. Louis, MO, USA) into sterile distilled water and stored at 4 ◦C
until use. The CaCl2 concentration and the crosslinking duration were optimized based
on previous studies [24]. The use of CaCl2 is widely reported in the literature to crosslink
sodium alginate [25]. The crosslinking mechanism is based on ionic bonds between calcium
ions and carboxylate ions present in the alginate. Briefly, sodium alginate is a linear
polysaccharide containing carboxylate ions, each bonded with a sodium ion. When alginate
is immersed in a CaCl2 solution, the dissociated calcium ions replace the sodium ions in
the alginate, ionically bonding with the carboxylate ions. Since each calcium ion can bond
with two carboxylate ions, the process results in the crosslinking of the polymer chains and,
thus, in the formation of a hydrogel [25].

2.2. Swelling Degree and Degradation Rate

To evaluate the hydrogel swelling and degradation properties, the SA-G precursor
solution was transferred into a Petri dish and crosslinked at 4 ◦C for 10 min. Hydrogel
cylindrical samples (n = 3) of 7 mm diameter and 3 mm thickness were obtained by using



Appl. Sci. 2024, 14, 6980 4 of 15

a biopsy punch. The samples were then crosslinked by submerging them in the CaCl2
crosslinking solution for 10 min at room temperature.

To evaluate the swelling degrees and degradation rates, the samples were placed in a
6-well plate, immersed in complete culture medium composed of high glucose Dulbecco’s
Modified Eagle’s Medium (DMEM, GibcoTM, Thermo Fisher Scientific, Waltham, MA,
USA) supplemented with 10% fetal bovine serum albumin (FBS, American Type Culture
Collection, Manassas, VA, USA) and 1% penicillin/streptomycin antibiotics (GibcoTM,
Thermo Fisher Scientific, Waltham, MA, USA), and incubated at 37 ◦C for the following
time points: 15 min, 30 min, 1 h, 2 h, 3 h, 4 h, 5 h, and 6 h (same set of samples for each
time point) [26]. After specific incubation periods, the samples were weighed to determine
the swelling degree. The swelling degree at each time point was computed according to
Equation (1):

Swelling Degree[%] =
Wt − W0

W0
× 100 (1)

where Wt is the sample weight at each time point, and W0 is the starting sample weight
before adding the solution.

The same set of samples was employed to study the degradation rate. In more detail,
after reaching the swelling equilibrium, samples were incubated at 37 ◦C for 1, 3, 5, 7, 10,
14, and 21 days. At each time point, the samples were weighed, and the degradation rate
was calculated by quantifying the weight decrease as in Equation (2):

Degradation rate[%] = (100 − Ws − Wt

Ws
)× 100 (2)

where Wt is the sample weight at each time point, and Ws is the sample weight reached at
swelling equilibrium.

2.3. Mechanical Tests

Hydrogel mechanical properties were measured by performing uniaxial tensile tests
through an ad hoc setup. This includes two poly(lactic acid) (PLA, K Kentstrapper, Florence,
Italy) plates fabricated using fused-deposition modeling (Verve, Kentstrapper, Florence,
Italy). Each plate consists of a base and a protrusion with dimensions of (30 × 30 × 10)
mm and (10 × 10 × 20) mm, respectively (Figure 2a). The protrusions were designed to be
inserted and secured into the jaws of a testing machine (Synergie 200, MTS Systems, Eden
Prairie, MN, USA) by tightening, thus preventing any slipping of the plates. Hydrogel
samples (n = 5) obtained as described in Section 2.2 were tightly glued to the bases of the
plates by using a biocompatible tissue adhesive (3MTM VetbondTM, Thermo Fisher Scientific,
Waltham, MA, USA). Subsequently, the plates along with the sample were mounted onto
the testing machine, which was equipped with a 100N loading cell (Figure 2b). Samples
were pulled until failure at a displacement rate of 0.1 mm/s at room temperature (25 ◦C).
The displacement rate was selected based on previous tensile tests on retinal samples [27].

For the analyses, force (N)−elongation (mm) data were elaborated to obtain the stress
[kPa]−strain [mm/mm] relationship for each sample. The stress and the strain were
computed as indicated in Equations (3) and (4), respectively. The elastic modulus (E)
was extracted from the stress–strain plots as the slope of the initial linear region of the
stress–strain curve.

σ =
F
A

(3)

ε =
∆L
L0

(4)

where σ and ε are the stress and the deformation, respectively. F is the force applied to
the original cross section A, and ∆L is the change in length with respect to the original
length L0.
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2.4. Rheological Characterization

Rheological analyses were carried out at 25 ◦C using a rotational rheometer (Discovery
HR2, TA Instruments, New Castle, DE, USA) equipped with a cone-plate geometry (di-
ameter: 20 mm). The testing temperature was selected based on the printing temperature.
Prior to all tests, a conditioning step, consisting of a rotation of the tool at 10 s−1 for 30 s
followed by a soak period of 30 s, was included.

To evaluate the rheological properties of the SA-G bioink, two specific tests were
performed: a flow curve and a strain sweep. In the former, the viscosity and the shear
stress exerted on the material in response to the applied shear rates were measured in a
continuous flow experiment. Specifically, the shear rate was progressively increased in a
logarithmic manner from 0.001 to 10,000 s−1. Ten points per decade were registered, and
the test time was 180 s., i.e., 30 s per decade. In the latter, material responses, namely the
storage modulus (G′) and the loss modulus (G′′), were measured by applying oscillatory
strains in a logarithmic manner from 0.01% to 1000% at a frequency of 1 Hz. Ten points
per decade were recorded. The testing parameters for the flow curve and strain sweep
were determined by conducting preliminary tests. To assess the impact of cells on the
bioink rheological properties, both tests were repeated on the SA-G bioink loaded with
L929 cells at different cell densities (5 × 106 cells/mL and 10 × 106 cells/mL) [16]. The cell
encapsulation procedure will be illustrated in Section 2.7.

To investigate the material recovery ability after shear application and removal, a
strain recovery test and an elastic recovery test were carried out. In the strain recovery
test, the viscosity was measured during the following consecutive steps that mimic the
printing process: (i) pre-printing phase (shear rate of 0.05 s−1 for 300 s); (ii) printing (sudden
increase in shear rate to 811 s−1 for 60 s); (iii) post-printing phase (shear rate of 0.05 s−1 for
300 s). Thirty points per step were recorded. A 0.05 s−1 shear rate was chosen to simulate
material resting conditions, whereas 811 s−1 was found to be the maximum shear rate
value applied to the material during extrusion. It was computed by using Equation (5),
which was derived from the Hagen–Poiseuille law with Rabinowitsch correction [28].

Shear rate =
4Q
πR3 × 3n + 1

4n
(5)

where Q (mm3s−1) is the flow rate, R (mm) is the inner radius at the outlet of the nozzle used
in the bioprinting process and (n − 1) is the slope of the viscosity versus shear rate graph
on a log–log plot obtained from the flow curve. To assess the material elastic recovery after
the printing process, oscillatory time sweeps made at a frequency of 1 Hz were performed
with alternating high/low shear stresses, i.e., 7 × 10−4 and 10−6 MPa, respectively. The
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maximum shear stress value set in this test was the one corresponding to a shear rate of
811 s−1. The material was allowed to recover for 2 min to simulate the non-printing phases.
All rheological measurements were repeated three times.

2.5. In Vitro Cytotoxicity

Cylindrical hydrogel samples (n = 3), prepared as described in Section 2.2, were placed
in 6-well plates and incubated in complete culture medium at 37 ◦C and 5% CO2. The
medium was collected at different incubation times (1, 5, and 7 days). Meanwhile, L929,
a murine fibroblast cell line (Catalog No. CCL-1TM, American Type Culture Collection,
Manassas, VA, USA), was routinely cultured in complete culture medium at 37 ◦C and 5%
CO2, with medium replacement every 2 days. The cells were cultured for four sequential
passages until they reached the desired density. L929 cells were then seeded in 12-well
plates at a density of 1 × 105 cell/well and grown until they reached 70% confluency.
Subsequently, these cells were cultured for 24 h with the medium that had been incubated
with the hydrogel samples. As a control, cells were cultured with fresh complete culture
medium. All experiments were performed in replicates of three (n = 3). After 24 h,
cell viability was assessed using the alamarBlueTM assay (InvitrogenTM, Carlsbad, CA,
USA) according to the manufacturer’s instruction. Alamar blue is an oxidation–reduction
indicator that changes color upon reduction by living cells. To perform the assay, the alamar
blue stock solution was diluted to 1:10 with complete culture medium. The resulting 10%
alamar blue solution was incubated with the cells for 3 h at 37 ◦C. After incubation, a
volume of 100 µL/well was transferred to a 96-well plate for absorbance reading. The
absorbance at 570 nm and 600 nm was measured using a microplate reader (infinite 200Pro,
Tecan Group Ltd, Männedorf, Switzerland), and the percentage viability was computed as
the percent difference in reduction between treated and control cells.

2.6. Printability Assessment

Cellink INKREDIBLE+ (Cellink AB, Gothenburg, Sweden) was used to print the
SA-G bioink. Such a 3D bioprinter is based on pneumatic extrusion technology and
is equipped with dual printheads featuring a heating system and built-in photocuring
modules. Moreover, it includes patented clean-chamber technology that efficiently filters
air through an H13 HEPA filter, thus providing a clean printing environment. All structures
introduced in this section were designed with Solidworks 2020 (Dassault Systems Solid
WorksCorp, Waltham, MA, USA), sliced with PrusaSlicer 2.3.3. (Prusa Research, Prague,
Czech Republic), and printed at 25 ◦C. Two conical nozzles with inner diameters of 22G
(0.41 mm) and 25G (0.25 mm) were used. Prior to printing, the hydrogel precursor solution
stored at 4 ◦C was incubated at 37 ◦C for 15 min, thus allowing the solution to be transferred
to a printing cartridge. The printing cartridge was left at 25 ◦C for 40 min before printing to
enable partial gelatin crosslinking. After printing, all structures were physically crosslinked
at 4 ◦C for 5 min followed by chemical crosslinking in a 2% wt./v CaCl2 bath for 10 min.

Printability was assessed by evaluating the filament formation and printing accuracy
in terms of filament merging and shape fidelity in multi-layered structures [16]. For the
first test mentioned, four lines were printed at different increasing velocities, i.e., 5, 10, 15,
and 20 mm/s, by applying a pressure of 25 kPa. The test was repeated using a printing
pressure of 30 kPa. The line widths were measured using ImageJ software (NIH, Stapleton,
NY, USA, ver. 1.54i) after imaging the lines with an optical microscope (Eclipse Ti2, Nikon,
Tokyo, Japan). Based on the results of this test, optimized printing parameters were chosen
for further analyses. The printing accuracy on the x–y plane was determined through the
filament fusion test [29]. For this test, a precise pattern was designed that involved parallel
lines spaced at different distances (from 0.5 mm to 3 mm), with a progressive 0.5 mm
increase for each subsequent line. Ultimately, circular discs with a diameter of 30 mm and
a thickness of 0.4 mm were designed and printed with four layers to evaluate the shape
fidelity of multilayered constructs. Specifically, the dimensions of the printed structures
were measured using ImageJ software and compared with the original dimensions set in the
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digital model of the structure. Moreover, optical images taken by the Eclipse Ti2 microscope
were analyzed to investigate the pore geometry of the printed discs. Subsequently, the
printability index (Pr) was computed using Equation (6) [16]:

Pr=
L2

16 × A
(6)

where L and A are the pore perimeter and area, respectively.

2.7. Bioprinting

Before bioprinting, L929 cells routinely cultured in complete culture medium were
centrifuged and resuspended in fresh culture medium at a density of 5 × 106 cells/mL.
The cell suspension was mixed with the SA-G precursor solution previously heated at
37 ◦C for 15 min by means of a luer-lock connector to homogeneously encapsulate cells
within the solution. The SA-G bioink containing cells was transferred into a printing
cartridge equipped with a 22G (0.41 mm) conical nozzle and left at 25 ◦C for 40 min before
printing. Four-layered grids with dimensions of 10 mm × 10 mm × 1 mm were then
printed using the printing parameters established with the printability tests (Section 2.6).
The printed structures were crosslinked as indicated in Section 2.1 and cultured at 37 ◦C
and 5% CO2. Cell viability was evaluated with the LIVE/DEAD Cell Viability Assay
(Invitrogen, Carlsbad, CA, USA) following manufacturer instructions. Fluorescent images
were acquired with an optical microscope (Eclipse Ti2, Nikon, Tokyo, Japan) 1 and 5 days
after printing.

2.8. Statistical Analyses

Statistical analyses were performed with IBM SPSS software (ver. 29). Results are
presented as mean ± SD. To evaluate the effect of cell density on the SA-G viscosity,
the Friedman test was used with a 95% confidence interval, whereas for the cytotoxicity
analysis of degradation products, two-way ANOVA was employed with a 95% confidence
interval. Significant differences were reported for p-values lower than 0.05, with * indicating
a p-value < 0.05.

3. Results and Discussion
3.1. Swelling Degree and Degradation Rate

Hydrogel swelling ability is crucial for the penetration of nutrients and for the trans-
port of metabolic products, thus promoting cell viability and proliferation within the
hydrogel [30]. Moreover, when developing a hydrogel as a bioink, its swelling behavior
needs to be evaluated and optimized to preserve the shape fidelity of the printed structures
once immersed in culture medium [16]. Figure 3a displays the average swelling degree of
the SA-G hydrogel samples. Within the first hour, the average degree of swelling increased
to approximately 55%. Then, the hydrogel samples continued swelling at a slower rate
with an average rise of 20% until the sixth hour, when they reached the swelling plateau.
The maximum swelling degree value was 80%, on average. Such a value allows for the
uptake and transport of nutrients dissolved in the cell culture medium, thus favoring cell
viability and proliferation, while retaining shape fidelity of the printed constructs. Indeed,
based on the findings of Li et al., bioinks characterized by a swelling degree of nearly 100%
did not show significant spreading of filaments and pores in the printed constructs [31].

As for the degradation rate, the material should progressively degrade to allow cells to
proliferate and deposit new extracellular matrix while preserving the initial structure of the
printed constructs [32]. The SA-G hydrogel samples exhibited a constant weight decrease
over 21 days (Figure 3b). On day 21, the average weight decrease was 16%, although few
samples were completely degraded.
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3.2. Mechanical Testing

The mechanical properties of the SA-G hydrogel samples were studied through uniax-
ial tensile testing, as knowledge about retinal mechanical properties is mainly based on
uniaxial tensile tests [33]. Since the conventional grips used for uniaxial tensile testing exert
localized pressure on soft materials, leading to significant local deformations and fractures,
a custom setup able to constrain the sample without causing clamping-induced fractures
was designed and developed. The sample fracture site at the end of mechanical testing
proved the effectiveness of the new setup (Figure 4a). Figure 4b shows a typical tensile
stress−strain curve of the tested SA-G hydrogels. The curve presents a linear elastic region
followed by failure, consistent with the literature [34]. As observed in Figure 4b, the fracture
was not instantaneous. The stress dropped gradually, indicating a progressive failure of
the hydrogel. This behavior may be due to the presence of regions with slightly different
crosslinking degrees, although further studies are needed to confirm this hypothesis. The
average elastic modulus (E), extrapolated from the stress–strain graph, was 37.5 ± 0.36 kPa.
According to our previous results, the average E of porcine retinal tissue at room temper-
ature is lower (13.4 ± 0.0067 kPa) [27]. However, the test was performed ex vivo on the
entire retinal tissue. Qu et al. exploited a phase-resolved acoustic radiation force optical
coherence elastography method to determine the elastic properties of different porcine
retinal layers in vivo. They found that the stiffness increased from the ganglion layer to the
photoreceptors, with the maximum value of 25.9 ± 7.36 kPa in the photoreceptor layer [35].
Hence, the stiffness of the SA-G bioink is akin to the stiffness of the native photoreceptor
layer. Thus, it can provide in vivo-like mechanical cues, which are essential for promoting
cell differentiation into photoreceptor phenotypes [8].
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3.3. Rheological Characterization

The study of bioink rheological properties is a prerequisite for a successful extrusion-
based process. Indeed, it enables a preliminary evaluation of the bioink extrudability
and printability [16]. Therefore, SA-G bioink rheological behavior, including its viscosity,
viscoelastic properties, and shear and elastic recovery, was deeply investigated.

The flow curves performed on the SA-G precursor solutions with and without cells
are displayed in Figure 5a. From these curves, the presence of a pseudoplastic (or shear
thinning) behavior, i.e., a decrease in the material viscosity when applying a shear stress,
can be evaluated. The pseudoplastic behavior is a requirement that a bioink must fulfill to
be suitable for extrusion-based 3D bioprinting [16]. Specifically, shear-thinning behavior is
necessary to extrude with ease a material that has a relatively high zero-shear-rate viscosity
(i.e., the viscosity of the material when no shear rate is applied) through a narrow nozzle.
Indeed, during the extrusion, a high shear rate is applied to the material, thus reducing its
viscosity and allowing for a more uniform filament deposition. As for the SA-G solution
without cells, a zero-shear-rate viscosity plateau of 1000 Pa·s was encountered, followed by
shear-thinning behavior starting from 0.1 s−1. The presence of cells did not significantly
impact the zero-shear-rate viscosity value nor the pseudoplastic behavior, in agreement
with the findings of Jain et al. [36]. Another desirable rheological feature of a bioink is
represented by the presence of a yield stress, which is the stress value at which the material
starts flowing and, therefore, an indication of the material’s ability to maintain its own
shape after the extrusion process. A high yield stress will prevent the printed structure
from collapsing before cross-linking occurs. Such a characteristic was evaluated by plotting
the viscoelastic properties, namely the storage modulus (G’) and loss modulus (G”), of the
SA-G solutions (Figure 5b). For all solutions, at low strain values, G’ was higher than G”,
thus implying that the materials have solid-like behavior, whereas starting from a strain
of approximately 800%, G” was higher than G’, resulting in liquid-like behavior of the
materials. The point at which G’ and G” have the same value is called the crossover point,
and it indicates the presence of a yield stress. Indeed, after the crossover point, the material
can flow, thus enabling extrusion during the 3D printing process. All inks exhibited a
crossover, thus showing the presence of a clear yield stress and, hence, their extrudability.
No significant differences in G’ and G” values were encountered between cell-laden bioinks
and the bioink without cells.

Recovery tests were performed to evaluate the material’s ability to regain its original
properties after printing. Since rheological properties were not affected by the presence
of cells at any cell density, these tests were carried out on the SA-G bioink without cells.
The results of the strain recovery test are presented in Figure 5c. The viscosity at resting
conditions was about 1000 Pa·s; then, when a high value of shear rate was applied, the
viscosity value dramatically dropped. These results agreed with the previous findings
regarding zero-shear-rate viscosity and pseudoplastic behavior. Once the high shear was
removed, the viscosity returned to its initial resting value after a small transition region.
Such an outcome proved that the SA-G material has fast recovery kinetics, which is essential
to ensure high shape fidelity. The good material recovery ability was confirmed by the
elastic recovery test, where rapid transitions from solid-like to liquid-like behavior were
found when alternating stress values were applied (Figure 5d).

Taken together, these findings demonstrate that the SA-G bioink is a well-suited
material for extrusion-based 3D bioprinting [37].
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Figure 5. (a) Flow curves showing the viscosity−shear rate behavior of SA-G bioinks with and
without cells. Error bars represent the standard deviation. Analyses were performed on SA-G bioinks
with no cells, with cells included at a density of 5 M cells/mL, and with cells included at a density
of 10 M cells/mL; (b) Results of strain sweep tests displaying the storage (G’) and loss (G”) moduli
against the oscillation strain. G’ and G” are represented by square markers and circle markers,
respectively. Analyses were performed on SA-G bioinks with no cells, with cells included at a density
of 5 M cells/mL, and with cells included at a density of 10 M cells/mL. (c) Strain recovery test results;
(d) Elastic recovery test results. G’ and G” are represented by square markers and circle markers,
respectively. SA-G: sodium alginate–gelatin.

3.4. In Vitro Cytotoxicity

As for the cytotoxicity of the products released during material degradation, cell
viability was analyzed after culturing cells in contact with eluates of the SA-G hydrogel
samples for 1, 5, and 7 days. The time points were chosen according to the results of the
degradation test (Section 3.1). Cell viability was not significantly affected by the presence
of the degradation products (Figure 6). Indeed, at every time point, the cell viability was
found to be higher than 90%. Additionally, no statistical difference was found between
the viability of the controls and of the cells in contact with SA-G eluates at any time point
(p-value = 0.07). This result suggests that the SA-G bioink is non-cytotoxic and, hence, can
be loaded with cells for 3D bioprinting applications.
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3.5. Printability Assessment

Once it was verified that the SA-G bioink met the rheological requirements needed for
the extrusion-based process, filament formation and printing accuracy were assessed.

The first test consisted in printing four lines at different speeds and pressures with
a 22G nozzle to evaluate filament continuity and the average line width using an optical
microscope (Figure 7a). At all applied pressures, the average line width decreased as the
speed increased (Figure 7b), achieving an average line width of 0.45 ± 0.124 mm at 25 kPa
and of 0.5 ± 0.2 mm at 30 kPa for a printing speed of 20 mm/s, thus approximating, in
both cases, the value of the nozzle inner diameter. The printing of narrower lines is due
to a smaller amount of deposited material when higher speeds are applied. However,
these speeds led to filament discontinuity and inhomogeneities. In contrast, filaments
printed at 5 and 10 mm/s were continuous and homogeneous. Applying a higher pressure
resulted in the deposition of a greater amount of material, as it induced higher flow rates.
Therefore, at increasing pressures, broader lines were obtained. For instance, at a printing
speed of 10 mm/s, the average line width was 0.592 ± 0.079 and 0.7 ± 0.1 for a pressure
of 25 and 30 kPa, respectively. Thus, when using the 22G nozzle, the best compromise
between printing resolution and filament continuity was achieved at a printing speed
of 10 mm/s and an applied pressure of 25 kPa. Finally, the effect of nozzle diameter on
printing resolution was evaluated by repeating the test using a 25G conical nozzle. In
this case, to obtain a continuous filament, a minimum pressure of 120 kPa, nearly five
times the pressure needed with the 22G nozzle, was required. Consistent with the results
obtained using a 22G nozzle, the average line width decreased with increasing speed
(Figure S1). The 25G nozzle provided higher printing resolution compared with the 22G
nozzle, achieving an average line width of 0.30 ± 0.091 at a printing speed of 20 mm/s.
These findings indicate that nozzle diameter significantly impacts the printing conditions
and resolution. The choice of nozzle diameter should be tailored to the desired application.
For bioinks containing cells, and especially primary cells, it is crucial to minimize cell death
by optimizing the printing conditions. According to the literature, increased dispensing
pressure is a major cause of cell damage due to elevated shear stresses on the cells [38]. As
future studies will focus on assessing the formation of a functional photoreceptor layer
that includes primary stem cells within the SA-G bioink, the 22G nozzle, a printing speed
of 10 mm/s, and a pressure of 25 kPa were selected for further printability tests and for
3D bioprinting.

Printing accuracy was investigated through the filament fusion test, calculation of
the printability index, and the comparison of real dimensions with the digital ones. Based
on the results of the filament fusion test, filaments merged only when printed at a fil-
ament spacing of 0.5 mm (Figure 7c). The same outcome was obtained when printing
Nivea Creme, considered in the literature as a demonstration ink, proving SA-G bioink’s
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ability to print fine details like small pores with sharp angles [39]. To better investigate
such capabilities, small pore geometries were obtained by printing porous circular discs
(Figure 7d). Consequently, the printability index (Pr), which depends on the pore perimeter
and area, was derived. The average Pr (1.080 ± 0.0025) was close to the ideal Pr, showing
a high geometric accuracy. Ultimately, no relevant difference was encountered between
the average diameter of the printed constructs (30.25 ± 0.056 mm) and that of the digital
model (30 mm).

In conclusion, the SA-G bioink was demonstrated to be printable with high shape
fidelity and printing accuracy.
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Figure 7. (a) Representative microscopy image of a single printed filament. Scale bar = 200 µm.
(b) Average line width at different printing speeds and pressures using a 22G conical nozzle. Error
bars represent the standard deviation. (c) Picture of the result of a filament fusion test. Scale
bar = 5 mm. (d) Picture of porous circular discs. Scale bar = 5 mm. All the structures were printed
using SA-G bioink. SA-G: sodium alginate–gelatin.

3.6. Bioprinting

Based on the results of the printability assessment (Section 3.5), the cell-laden SA-G
bioink was printed at a speed of 10 mm/s and a pressure of 25 kPa. Post-printing cell
viability was assessed by staining living (green) and dead (red) cells. High cell viability
(>98%) was observed after 1 day of culture (Figure 8a,b) and was maintained at day 5
(Figure 8c), with no abnormal cell death detected. This is consistent with the in vitro
cytotoxicity findings (Section 3.4), confirming that the SA-G bioink does not negatively
affect cell viability. In addition, the high post-printing viability indicates that the shear
stresses generated during bioink printing did not cause major cell death. Ultimately,
Figure 8 demonstrates a homogeneous cell distribution throughout the printed constructs.
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These results pave the way for incorporating more relevant cell types, such as primary
stem cells, into the bioink. In this study, a well-established immortalized cell line (L929
cells) was selected for preliminary biocompatibility screening, as there is no photoreceptor
cell line able to comprehensively recapitulate photoreceptor phenotypes [4]. Further
investigations are needed to assess the impact of the SA-G bioink on the behavior of
primary cells.
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Figure 8. Fluorescence microscopy images of the LIVE/DEAD assay. Green and red indicate live and
dead cells, respectively: (a) Image of a printed filament 1 day after printing; (b) Image of a corner
within the printed grid 1 day after printing; (c) View of a pore of the printed grid and a zoomed-in
view of a filament 5 days after printing. Scale bar = 200 µm.

4. Conclusions

In this study, we aimed to optimize an SA-G bioink formulation to match the properties
of the native photoreceptor layer and to be successfully extruded and printed with good
resolution. To assess its suitability as a substrate for photoreceptors in in vitro culture,
we conducted a comprehensive characterization of an SA-G bioink. Our results showed
that the stiffness of the bioink closely mimics the in vivo photoreceptor stiffness. This
parameter plays a crucial role in the development of a functional photoreceptor layer,
as it influences the cell behavior guiding the cell phenotype and genotype. In addition,
through rheological and printability tests, we demonstrated the bioink’s ability to fabricate
multilayered structures characterized by high shape fidelity. This feature is crucial for
obtaining a microstructure able to drive photoreceptor polarization, thus replicating their
highly organized in vivo configuration. Ultimately, the viability of fibroblasts, both in
contact with material extracts and embedded within the bioink, proved that the SA-G
material is non-cytotoxic. Taken together, these findings suggest that the proposed SA-G
bioink may be used as a tissue mimetic to produce a cellularized construct with the specific
pore size and geometry capable of promoting photoreceptor development, alignment, and
functional culture in vitro. Future studies should focus on incorporating stem cells into
the SA-G bioink to form a functional photoreceptor layer in vitro. This step will require
the selection of the appropriate culture medium and growth factors and the execution of
several tests to determine the optimal cell density for mimicking the native high packing
density of photoreceptors. Different printing patterns will then be explored to determine
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which microstructure best supports native-like spatial cell organization. The formation of
a functional photoreceptor layer will be evaluated by conducting a thorough biological
analysis, including of cell viability and proliferation and the expression of specific markers.
Finally, in vivo studies need to be performed to assess the functional integration and
stability of the engineered photoreceptor layer.
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