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Multi-year planning of a rural microgrid
considering storage degradation

Marina Petrelli, Student Member, IEEE, Davide Fioriti, Member, IEEE, Alberto Berizzi, Member, IEEE,
and Davide Poli, Member, IEEE

Abstract—Microgrids play a pivotal role in the attempts to
achieve universal access to electricity; hence, their accurate
planning, which also includes the evolution of the system over
the project lifetime, is essential for maximizing the profitability
of the investments. This paper proposes an iterative multi-
year mixed-integer linear programming (MILP) optimization, in
which power-dependent efficiency and capacity degradation of
storage as functions of the operative strategy are considered. In
this study, the computational burden of such a large problem is
significantly reduced by means of an external loop that accounts
for the hourly storage efficiency and residual capacity and serves
to update the parameters for the MILP optimization of the
following iteration. This approach is tested on a case study of
a community in Soroti, in central-eastern Uganda. Comparison
with the output of a one-shot MILP and with a procedure
that overlooks the effects of the dispatching strategy on storage
characteristics is shown, highlighting the benefits gained with
the proposed algorithm in terms of both simulation time and
accuracy of the design.

Index Terms—Microgrid planning, MILP, rural electrification,
multi-year optimization, storage degradation.

NOMENCLATURE

Indices

h Index of hours
y Index of years
p Index related to photovoltaic panels (PV)
w Index related to wind turbines (WT)
g Index related to diesel generators (DG)
b Index related to batteries (BESS)
i Set of index of components, i ∈ {g, p, w, b}

Parameters

M Big constant
ε Small constant
H Number of hours in one year
H Project lifetime in hours
Y Project lifetime in years
Y life
i Years of life of the component
dh Discount factor
δ Derating factor of salvage value of an asset
ENS Maximum allowed energy-not-served
γz Forecast error of z
Dh Load demand
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di Milano, Milan, 20156 Italy (e-mail: marina.petrelli@polimi.it)

D. Fioriti and D. Poli are with the Department of Energy, Systems, Territory
and Construction Engineering, Università di Pisa, Pisa, 56122 Italy (e-mail:
davide.fioriti@ing.unipi.it)

P pv
h,p Available PV power generation
Pwt
h,w Available WT power generation
F Cost of fuel
H life

g Total DG working hours
A,B Coefficients of fuel consumption curve
Pg Maximum DG working point
Pg Minimum DG working point
ηh,b Working BESS efficiency
ηb Maximum BESS efficiency
Cb Maximum capacity of one BESS
Cres

h,b Total residual capacity
DODb Depth of Discharge
PQb Maximum power-to-energy ratio
PQh,b Power-to-energy ratio
Qthr

h,b Cumulative throughput at h
ncych,b Working maximum number of cycles
αh,b Relative residual BESS capacity
αb Maximum relative BESS capacity
αb Minimum relative BESS capacity
βh,b Relative BESS efficiency
kh,b BESS replacement counter
∆NPC Loop convergence criteria on NPC variability
∆α Loop convergence criteria on αh,b variability
∆β Loop convergence criteria on βh,b variability
∆αH Loop convergence criteria on αh,b at H

V ariables

NPC Net present cost
ICi Initial investment cost
O&Mi Operation and maintenance cost
RCi Replacement cost
SVi Salvage value
CCi Capital cost of one unit
Mi Maintenance cost of one unit
Ni Number of units installed
Du

h Unmet demand
Rh Total reserve requirement
P ren
h Renewable power injected into the system
FCh,g Fuel consumption
Uh,g Number of active DG units (integer variable)
P dg
h,g Power produced by DG
Rdg

h,g Reserve to be provided by DG
Qh,b Energy level of BESS
P dch
h,b Discharging power of BESS
P ch
h,b Charging power of BESS
Rsb

h,b Reserve to be provided by BESS
wdch

h,b Binary variable equal to 1 in discharging mode
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I. INTRODUCTION

A. Motivation

EVEN though access to electricity is increasing worldwide,
there are still approximately 840 million people without

any service, and most of them live in Sub-Saharan Africa [1].
The areas where this challenge has not yet been addressed are
mostly rural and far from the national grid, where extension
of services would be neither rapid nor cost-effective [2], [3].
Therefore, isolated systems take on great importance [4], and
an effective and accurate modelling to size and operate these
systems is essential to enable their dissemination in rural areas
and to efficiently employ the funds allocated by private and
public donors. As microgrid projects last several years, the cor-
responding mathematical formulation typically involves a large
number of binary, integer and continuous variables; hence,
simplification techniques are required, with the drawback of
reducing the accuracy of simulations, especially in terms of
multi-year characteristics. In particular, phenomena such as
the battery capacity reduction and demand growth have a
great influence on the design of the system, but they are often
overlooked.

B. Microgrid sizing approaches

Many approaches have been developed for microgrid plan-
ning, and there are increasing efforts on this topic, given its
urgency. In particular, the approach in [5] involves a genetic
algorithm (GA) to identify a population of possible generation
portfolios, on which different rule-based operating strategies
are tested over one typical year, with the objective of minimiz-
ing costs, fuel use and pollutant emissions. Heuristic methods
are popular when aiming to quickly find an approximate
sizing, but the search space needs to be limited, often to two
technologies only, to avoid incurring combinatorial explosion
[6], [7]. Priority rules are identified for the employment of
the available units, whose operation is analysed on the whole
project lifetime in [6] and on one year in [7]. A non-dominated
sorting GA (NSGA-II) is used in [8] for sizing purposes,
minimizing the total cost and the load curtailment probability.
Similarly, [9] implements a multi-objective NSGA-II for the
design, entrusting the optimal dispatching to a 24-hour MILP.
The work presented in [10] couples a GA-based sizing with
an MILP optimized operation performed on 8 typical days
that represent weekdays and weekends of the four seasons.
A further evolutionary approach recently presented to solve
the sub-problem of selecting valid-size scenarios is particle
swarm optimization, also in this case followed by an MILP
procedure employed to solve the downstream sub-problem
of optimizing the scheduling of system components; this
approach can be performed either on a 1-week interval to
be averaged on the whole month, as in [11], or run on a
complete year with a rolling horizon (RH) technique, as in
[12]. A GA is used in [13] to identify suitable sizing scenarios,
while an MILP procedure optimizes the unit commitment
from weekly averaged data; then, an RH technique with a 1-
hour resolution verifies the validity of the results, accordingly
adjusted. Finally, the approach proposed in [14]–[17] adopts
a one-shot MILP, optimizing sizing and operation all at once:

the time-frame is reduced to one year represented by one
typical day per month in [14] and by three typical days (week,
weekend and peak) per month in [15], [16]. In addition, [17]
uses the same typical days as in [15] but employs a multi-
year approach in which the number of years to be optimized
is flexible and adjusted to the user’s knowledge of the input
data and their forecast.

One of the main issues faced in these works is the trade-
off between accuracy and tractability: the size of the problem
is so large that, in order to guarantee the convergence of
the routine, several simplifying assumptions usually need
to be implemented. According to the literature review, the
following three approaches are the most popular: heuristic
sizing of generating and storage units coupled with rule-based
dispatching of resources [5]–[8], heuristic sizing coupled with
MILP-based dispatching criteria [9]–[13], and one-shot MILP
performing both sizing and operation phases [14]–[17]. The
first two methodologies split the formulation into two sub-
problems; this usually guarantees fast computation time, with
the main drawback being that the optimality of the solution
cannot be assured. In contrast, optimality is not an issue in the
case of the one-shot MILP. Nonetheless, the computational
burden increases dramatically with the number of integer
variables and time steps. For this reason, the time-frame of
the simulation is usually reduced to a few representative days
and strong simplifying assumptions are made to avoid non-
linearities, reducing the number of non-continuous variables,
and to legitimize the compression of the time interval.

C. Multi-year characteristics
The main identified research gap is the simulation and

assessment of projects expected to last a considerable number
of years by means of a few representative days, or at most one
year, with the exception of [6], [11], [17]. This approach forces
the modellers to assume that the simulated time interval is
perfectly replicable along the project lifetime and to overlook
any evolution over the years, thus resulting in inaccurate
designs. Moreover, long-term variations are proven to have
a greater impact on the cost and configuration of the system
with respect to short-term variations, e.g., daily fluctuations
[18]; hence, this work is focused on the former. In particular,
when access to energy is provided for the first time to a rural
community, it is sensible to include load growth in the model.
In this regard, some methodologies have been developed, but
there is no standard yet [19]. In any case, accurate data in
such contexts are very difficult to collect; information are
often scarce and of low quality; hence, it would be difficult
to accurately tailor forecasting uncertainties, which are often
more suitable for applications to industrialized countries.

Moreover, the degradation of batteries significantly affects
the microgrid operational strategy during its lifetime, thus
influencing optimal design of the system and vice versa. The
pace at which the storage degrades depends on how it is used,
and usually, replacement of the component is implemented
when the capacity falls below 80% of its initial value [20],
[21]. An accurate description of this phenomenon, together
with other battery dynamic characteristics (e.g., variable ef-
ficiency), is pivotal for a consistent design of the microgrid.
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To the authors’ best knowledge, few works have managed to
accurately model the battery behaviour within the scope of an
MILP optimization, given the numerous non-linearities. The
works [22], [23] adopt the concept of Coulomb efficiency
explained in [24] to model the capacity degradation: this
efficiency varies with the way the bank is operated in [22],
while [23] identifies an approximation valid for any possible
operating condition, and the available capacity is updated once
a week. The battery life loss is a non-linear function of the
state-of-charge (SOC); this curve is split into linear segments
in [25] to include it into an MILP scheduling. The approach
presented in [26] sets the working conditions of the storage
system (C-rate, temperature) and the maximum number of
cycles are consequently defined, while [27] limits the number
of changes of state of the batteries to reduce degradation.
Finally, a common approach is to model the capacity reduction
as a function of the total throughput, regardless of how the
batteries are operated [11], [17], [28]. The available storage
capacity is an input parameter in most of these works, while
in the case of microgrid sizing, it constitutes a variable to be
optimized; this poses further linearization problems. Further-
more, none of the mentioned papers dealing with microgrid
design and, consequently, with storage sizing adopts a capacity
reduction model that considers the way the battery is managed.
In conclusion, currently, there are no papers that address a
planning problem taking into account a detailed battery model
and its effects on the system operation on the entire lifespan
of the project at an hourly time resolution.

D. Contributions of the work

This work aims at filling the abovementioned gap by
developing a methodology able to detect the optimal sizing
and operation of the plant, pursuing the least-cost objective,
while capturing the complexity of such a system. The proposed
methodology is based on an iterative approach with an MILP
planning core that accounts for a detailed degradation of the
battery efficiency and degradation while preserving conver-
gence quality. To avoid the intractability of standard large
MILP problems with many binary variables, the degradation
model and the efficiency variation are taken into account by
means of an iterative algorithm that updates specific constants
of the MILP core. By doing so, the burden of each MILP
problem is significantly reduced, but the overall approach is
able to simultaneously take into account both the operational
planning and the degradation of the asset performances over
time, which in turn depend on the hourly scheduling. This
approach makes it possible to solve this very complex problem
in both an accurate and computationally efficient way. The
MILP optimization is not directly used in a single shot, as in
the literature, but it is embedded in an iterative scheme for the
purpose of accuracy, while preserving tractability.

Therefore, the main contributions of this paper include (1)
a novel iterative algorithm for multi-year planning of isolated
microgrids in developing countries that (2) accurately models
the variable charging-discharging efficiency of the battery and
its capacity degradation as a function of the hourly power-to-
energy ratio, (3) considering detailed multi-year simulations

Start

Initialize loop

Solve MILP
planning problem

Compute battery
parameters

∆par ≤ ε

End

Update battery
parameters

yes

no

Fig. 1. The optimization algorithm.

spanning the entire lifetime of the project at an hourly time
resolution. The effectiveness of contribution (1) is validated
by proving the infeasibility of taking into account degradation
and variable efficiency of batteries in a traditional one-shot
MILP. The impact of contribution (2) and (3) on the total
cost of a rural microgrid in Uganda is shown, highlighting the
importance of the results for real applications.

II. METHODOLOGY

In the proposed approach, a typical planning problem is
integrated with the battery power-dependent efficiency and
degradation, and the long-term simulations are decomposed
in the iterative algorithm depicted in Fig. 1. The main steps
of the procedure are as follows:

1) Initialize the parameters describing the degradation of
the battery and the power-dependent efficiency of the
battery.

2) The MILP planning problem is run over the project life-
time, including the optimization of the hourly scheduling
of the storage battery bank, using the most recent
parameters modelling the battery. These parameters are
constants for the model.

3) The parameters associated with capacity degradation and
efficiency variation related to the optimized scheduling
are updated.

4) If the convergence criterion on the variation of the
parameters is met, the procedure stops; otherwise, the
parameters are updated and a new MILP is run (go to
2).

In contrast to the standard MILP formulation that would
require a large number of continuous and binary variables to
be optimized inside the MILP framework, the non-linearities
of the battery are modelled in the proposed method through
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Fig. 2. Microgrid architecture

constants updated in each iteration. This reduces the compu-
tational burden of each MILP without significantly compro-
mising the optimality of the solution. The iterative procedure
runs until the variation of the parameters in two consecutive
iterations falls below a threshold. The following subsections
present the details of the proposed approach.

A. MILP sizing algorithm

The proposed approach is very general and can be applied
to any system architecture. However, for the sake of simplicity
and with no loss of generality, we describe the mathematical
formulation of the method for the typical microgrid shown
in Fig 2, composed by diesel generators (DG), photovoltaic
panels (PV), wind turbines (WT), and battery energy storage
systems (BESS). Every technology is connected to an alternat-
ing current (AC) busbar; hence, the sizing of converters (CON)
is embedded into the design of the direct current (DC) units,
namely, PV and BESS. An hourly time interval is considered
and time-variant quantities are assumed to be constant during
each interval.

The proposed model of the system aims at capturing the
most significant phenomena that are incurred in the optimal
design of the microgrid. Moreover, given the MILP formula-
tion aimed at minimizing the net present cost of the system,
the model automatically tends to reduce the operating costs,
hence maximizing the use of renewable energy sources when
available or providing time-shifting to reduce reliance on fuel-
fired generators when economically profitable.

1) Objective function: The function to be minimized is the
net present cost (NPC) formulated as in (1), where ICi is
the initial investment, O&Mi represents the operation and
maintenance expenses, RCi denotes the replacement cost and
finally, SVi is the salvage value.

NPC =
∑
i

(ICi +O&Mi +RCi − SVi) (1)

where i ∈ {g, p, w, b} is the set of indexes of the available
technologies, namely, DG, PV, WT and BESS, respectively;
each element represents the set of available types of compo-
nents for each technology.

The initial investment cost of each technology type is
defined as in (2), where CCi is the capital cost of a single
unit and Ni is the number of installed units.

ICi = Ni · CCi (2)

The O&M costs are defined in (3a) for PV, WT and BESS
as a fixed amount per year y, supposed to be encountered at
the last hour of the year. On the other hand, the O&M costs
of DG, detailed in (3b), depend upon their operation hours
and on fuel expenses. Mi is the yearly O&M cost of one unit
of i, Y is the project lifetime in years, H is the number of
hours in one year, H is the project lifetime in hours, dh is the
discount factor in hour h, Uh,g is the integer variable stating
the number of active DG of type g in hour h, F is the cost
of fuel and FCh,g is the hourly fuel consumption of g.

O&Mi\{g} = Ni ·Mi ·
Y∑

y=1

dH·y (3a)

O&Mg =

H∑
h=1

dh · (Mg · Uh,g + F · FCh,g) (3b)

Given the usual time horizon of microgrid projects, nor-
mally, the only components with a lifetime possibly shorter
than the project duration are DG and BESS, and their re-
placement costs must be taken into account, unlike the other
technologies. The life of DG is expressed in (4a) assuming
H life

g total working hours before replacement. The related
cost is distributed along the corresponding lifetime, instead of
being concentrated at the time of the actual replacement. This
is a conservative approach that tends to overestimate the cost
of DG, pushing towards a configuration based on renewables.

On the other hand, the presence of a replacement counter
kh,b for BESS, increasing every time the relative residual
capacity falls below the minimum threshold αb, enables al-
locating the whole replacement cost when needed, as detailed
in (4b).

RCg =
CCg

H life
g

·
H∑

h=1

dh · Uh,g (4a)

RCb = Nb · CCb ·
H∑

h=1

dh · (kh,b − kh−1,b) (4b)

Finally, the salvage value of the components whose lifetime
Y life
i is assumed longer than the project lifetime Y , namely,

PV and WT, is computed in (5a). Since the DG replacement
cost is addressed as a distributed cost, there is no need to
consider its salvage value, which is instead evaluated for BESS
in (5b) based on the residual capacity available. αh,b is the per-
unit BESS residual capacity, bounded in between a maximum
(αb) and a minimum (αb) threshold. Factor δ serves the aim
of derating the value of an asset when sold after usage.

SVi\{g,b} = δ · dH ·Ni · CCi
Y life
i − Y
Y life
i

(5a)

SVb = δ · dH ·Nb · CCb ·
αH,b − αb

αb − αb
(5b)
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2) Constraints: The power balance constraint at the AC
busbar is reported in (6), where P dch

h,b is the discharging power
from BESS of type b, ηb is the maximum BESS efficiency
of b, βh,b is the per-unit BESS efficiency of hour h, P ch

h,b is
the BESS charging power of BESS of type b, P ren

h is the
renewable power injected into the system, P dg

h,g is the power
produced by the DG units of type g, Du

h is the unmet demand
and Dh is the demand.∑

b

(
P dch
h,b · ηb · βh,b −

P ch
h,b

ηb · βh,b

)
+

+ P ren
h +

∑
g

P dg
h,g +Du

h = Dh

(6)

To avoid the oversizing of the system, load shedding is typi-
cally admitted in these contexts. In particular, in the proposed
formulation, the constraint is enforced to be below a given
threshold of the yearly demand (see (7)), so that significant
mismatches of unmet demand along the project lifetime are
avoided. In the literature, sometimes the same problem is
modelled by using economic penalties in the objective function
for every unit of energy-not-served (ENS) [29], while other
studies have proposed the formulation by hard constraints
[6], [30], as developed in this work. Both models involve
considerations on continuity of supply and provide similar
results, but the former is computationally more demanding as
highlighted in [29]. Moreover, given the scope of application
of the model, it may be difficult to identify the numerical value
to be used in such contexts. Last, public call for tender may
often have requirements in terms of a cap on ENS rather than
estimating its equivalent economic cost. Therefore, the second
approach is selected: load curtailment is admitted and capped
in (7) through the ENS factor.

H∑
h=1

Du
(y−1)·H+h

≤
H∑

h=1

D(y−1)·H+h · ENS (7)

The renewable production injected into the system com-
puted in (8) is at most equal to its availability, where P pv

h,p

is the generation available from the PV generator of type p,
and Pwt

h,w is the generation available from the WT generator
of type w.

P ren
h ≤

∑
p

Np · P pv
h,p +

∑
w

Nw · Pwt
h,w (8)

The next block of constraints is devoted to defining the
behaviour of DG. In particular, (9a) describes a linear fuel
consumption curve according to coefficients A and B, suitable
for small size DG; (9b) and (9c) limit the working area of the
units within Pg and Pg and consider the reserve Rdg

h,g to be
provided; and (9d) limits the total number of active generators.

FCh,g = A · Uh,g +B · P dg
h,g (9a)

P dg
h,g +Rdg

h,g ≤ Pg · Uh,g (9b)

P dg
h,g ≥ Pg · Uh,g (9c)
Uh,g ≤ Ng (9d)

The behaviour of BESS is ruled by (10a)-(10g), where (10a)
defines the energy level Qh,b, limited by (10b) and (10c); the

discharging and charging power are capped in (10d) and (10e)
by the maximum power-to-energy ratio PQb; and (10f) and
(10g) aim at avoiding that the batteries discharge and charge
during the same time interval. ∆h is the selected time interval,
Cb is the maximum capacity of one unit of b, DODb is the
depth of discharge, Rsb

h,b is the reserve to be provided by
BESS of type b, wdch

h,b is a binary variable equal to 1 in the
discharging mode and 0 in the charging mode, and M is a
large constant.

Qh,b = Qh−1,b + (P ch
h,b − P dch

h,b ) ·∆h (10a)

Qh,b ≥ Nb · Cb · (1−DODb) +Rsb
h,b (10b)

Qh,b ≤ αh,b ·Nb · Cb (10c)
P dch
h,b ≤ Nb · Cb · PQb (10d)

P ch
h,b ≤ Nb · Cb · PQb (10e)

P dch
h,b ≤ wdch

h,b ·M (10f)

P ch
h,b ≤ (1− wdch

h,b ) ·M (10g)

To account for the unpredictability related to real-time
dispatching of the system, a reserve requirement Rh to be pro-
vided by DG and BESS is established in (11), proportional to
the unpredictability of load (γd) and availability of renewables
(γpv and γwt). The literature is rich with different approaches
that differ in terms of data and computational requirements;
however, the use of reserves is generally computationally
efficient [7], [10], and the authors regarded the approach as
a good compromise between tractability and representation
of the problem, especially with respect to stochastic [6],
[29] or robust [31] optimization. In stochastic optimization,
uncertainties are often modelled by means of scenarios, which
proportionally increase the size of the problem with often more
than a linear increase of computational requirements; that is
the reason why often representative days are used and/or no
battery dynamics are considered in the literature. Moreover,
the formulation of scenarios and of their probability distribu-
tion requires an amount of data that is hardly available for
developing countries. On the other hand, robust optimization
provides a configuration able to completely fulfil the demand
for any realization of the inputs [31]. The method is com-
putationally efficient, but it tends to oversize the generating
units, leading to a higher overall cost [32], [33]. Hence, it
is likewise unsuitable for our purpose because affordability
is often a priority over reliability of service in cases of first
access provided to rural communities. For these reasons, the
approach involving reserve requirements is preferred.

Rh =γd ·Dh + γpv ·
∑
p

Np · P pv
h,p+

+ γwt ·
∑
w

Nw · Pwt
h,w

(11a)

Rh ≤
∑
g

Rdg
h,g +

∑
b

Rsb
h,b · ηb · βh,b (11b)

B. Update of MILP parameters
As shown in the previous subsection, the dynamic behaviour

of BESS in terms of capacity degradation and variable effi-
ciency is accounted for in the MILP optimization by means
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of the parameters αh,b and βh,b, respectively. The former
quantifies the relative residual capacity at hour h, depending
on the total throughput Qthr

h,b and on the working power-to-
energy ratio PQh,b. The latter indicates the relative charging or
discharging efficiency, and it varies according to the working
PQh,b, which is computed as in (12) after each MILP problem
is solved:

PQh,b =
P ch
h,b + P dch

h,b

Nb · Cb

(12)

The value of PQh,b has to comply with the maximum power
rate of the component (PQh,b ∈ [0;PQb]), and it is discretized
in subintervals, each characterized by a constant maximum
number of cycles ncych,b (i.e., the BESS cycle lifetime if al-
ways operated at that PQh,b) and charging and discharging
efficiencies ηh,b. At each hour h, ncych,b and ηh,b are assigned
according to the relevant interval of PQh,b. The computation
of the parameter βh,b in (13) is now straightforward.

βh,b =
ηh,b
ηb

(13)

To calculate αh,b, first, the total throughput is computed
according to (14).

Qthr
h,b = Qthr

h−1,b + (P ch
h,b + P dch

h,b ) ·∆h (14)

The BESS residual capacity Cres
h,b is modelled as a sawtooth

function: in (15a), it degrades linearly as Qthr
h,b increases, with

a growing slope for increasing PQh,b, i.e., decreasing ncych,b ,
and no replacement is needed; conversely, in (15b), it returns
to its initial value when αh,b falls below αb, i.e., a replacement
is put in place.

if αh−1,b ≥ αb


Cres

h,b =Cres
h−1,b −

1− αb

2 · ncych,b ·DODb
·

· (Qthr
h,b −Qthr

h−1,b)

kh,b =kh−1,b

(15a)

if αh−1,b < αb

{
Cres

h,b =Nb · Cb

kh,b =kh−1,b + 1
(15b)

Finally, the parameter αh,b is computed as detailed in (16).

αh,b =
Cres

h,b

Nb · Cb

(16)

C. Convergence criteria

Convergence of the algorithm is achieved when the fol-
lowing criteria are met. First, the NPC is compared with
the value obtained in the previous iteration NPC∗, and the
relative change ∆NPC, calculated as in (17), shall fall below
a given threshold.

∆NPC =
|NPC −NPC∗|

NPC
(17)

Furthermore, in order to stress the convergence of the
algorithm and improve the NPC, we also introduced conver-
gence criteria on the degrading effects of the assets, modelled
by the parameters αh,b and βh,b. In two consecutive MILP
optimizations, only the degradation parameters (αh,b and βh,b)
are modified; therefore, when limited changes occur on these

parameters, limited differences in the optimal design of the
master MILP problem are expected; hence, this strengthened
convergence criterion is expected to provide more reliable
solutions.

The relative change in the parameters αh,b and βh,b is
detailed in (18a)-(18c).

∆α =

∑
h,b

∣∣∣αh,b − α∗h,b
∣∣∣∑

h,b αh,b
(18a)

∆β =

∑
h,b

∣∣∣βh,b − β∗h,b∣∣∣∑
h,b βh,b

(18b)

∆αH =

∣∣∣αH,b − α∗H,b

∣∣∣
αH,b

(18c)

∆α and ∆β focus on the average absolute variation of the
parameters, while ∆αH evaluates the relative change in the
battery energy degradation occurring at the end of the project.
The rationale behind using the average criterion of ∆α and
∆β is justified by the fact that when a relative mipgap [34]
higher than zero takes place, in two consecutive iterations,
the algorithm may replace the battery in the same day, but
not exactly in the same hour, which may lead ∆α up to αb

in the replacement hour, preventing the convergence of the
procedure but with no significant effect in terms of optimality
of the solution. By using the average absolute criterion, the
above numerical instability is mitigated. Nevertheless, (18c)
guarantees congruity in terms of residual capacity at the end
of the project and, consequently, of time of replacement.
In fact, even if the time of replacement slightly changes at
convergence, the variation in the residual capacity would be
negligible; therefore, equation (18c) increases the stability
of the approach with respect to convergence criteria on the
maximum difference at any hour.

III. CASE STUDY

A. Location and input data

The methodology proposed in the previous section has been
tested on a rural community based in Soroti, in central-east
of Uganda (1.72N 33.6E). Data on local availability of solar
and wind power production have been acquired by means of
the Renewable.ninja web platform [35], [36]. To represent
the multi-year behaviour of the proposed community and its
hourly uncertainties, the load profile, shown in Fig. 3, has
been estimated by accounting for the dynamics of the social
behaviour of the community over the considered time horizon
(10 years) based on the results of the study on social-dynamics
developed in [37]. The methodology described in [38] has
been developed with different input data for each year, in
order to reproduce the relative load growth estimated in [37],
due to the growth in the users and the higher penetration
of appliances; the latter is estimated by using the income
percentiles for the proposed community [39]. Users have been
grouped in 17 different classes (6 residential, 11 business
activities and local services), whose size and number of
appliances per customer grow over time; in particular, we
assumed the demand estimated in [38] refers to the last year
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(a)

(b)

Fig. 3. Estimated load profiles (a) and total yearly demand (b)

TABLE I
COMPONENTS COSTS AND LIFETIMES [7], [8], [11], [12]

Unit size CC(x) M(x) Lifetime

PV 1 kW 1.1 kAC 10 AC/y 20 y
WT 10 kW 27 kAC 810 AC/y 20 y
DG 16 kW 11 kAC 0.208 AC/h 15,000 h
BESS 1 kWh 0.4 kAC 10 AC/y 15 y
CON 1 kW 0.3 kAC 0 AC 20 y

of the project, and we went back in estimating the profiles of
the previous years by reproducing the growth trends analysed
in [37]. By using the methodology described in [38], 20 load
profiles were calculated for every year of the simulation to
assess the hourly uncertainties of the typical profile, which
was calculated by averaging the 20 profiles. A Monte Carlo
technique was used to draw the daily profiles of the entire
year: a Gaussian noise was added to the daily average load,
whose standard deviation equals the one calculated for the 20
different profiles of the corresponding year. The granularity of
both renewable generation and demand profiles is 1 hour.

The capital and maintenance costs of the different units are
shown in Table I together with their maximum lifetime. A
DG fuel cost of 0.75 AC/l is considered. Table II shows the
features of the selected Li-ion battery model. The parameters
in Tables I and II were derived from a literature review and the
authors’ experience. Realistic ranges of the power-to-energy
ratio dependent characteristics were derived from the literature
[40]–[42] and are provided in Table III.

TABLE II
BESS SPECIFICATIONS [6], [7], [42]

Nominal capacity of one BESS unit Cb 1 kWh
Maximum power-to-energy ratio PQb 1 kW/kWh
Depth of Discharge DODb 90 %
Initial State-of-Charge SOCinit

b 100 %
Minimum residual capacity before replacement αb 80 %

TABLE III
BESS CHARACTERISTICS DEPENDING ON PQh,b [40]–[42]

PQh,b ≤ 0.2 0.2 < PQh,b ≤ 0.6 PQh,b > 0.6

ηh,b 99% 98% 95%
ncyc
h,b 3500 3200 3000

B. Simulation parameters
When dealing with electrification projects in developing

countries, it is advisable to consider a limited project duration
with respect to the expected lifetime of the components to limit
risks, given that many changes can arise in a newly electrified
community. For this reason, a project lifetime of 10 years is
considered. Moreover, as in these contexts, a limited loss of
continuity of service comes with almost null social cost; a
yearly loss of load of 5% is admitted [6]. The discount factor
dh is computed based on an 8% nominal interest rate and a
2% expected inflation rate.

C. Test procedure
To prove the effectiveness of the method, the following

models have been developed, tested and compared:
1) Iterative Multi-Year (IMY): the proposed iterative proce-

dure, depicted in Fig. 1, accounting for battery degrada-
tion and variable efficiency in a multi-year environment
at an hourly time resolution.

2) One-Shot Multi-Year (OSMY): a standard literature-
based methodology equivalent to IMY but developed in
a full MILP environment with no iterative algorithm.

3) IMY without battery details (IMYwoB): the proposed it-
erative method (IMY) without accounting for the battery
degradation and variable efficiency. This simulation aims
at highlighting the benefits of considering the battery
degradation since the planning phase.

4) IMY and OSMY with representative days
(IMYrd/OSMYrd): in order to facilitate OSMYrd
to converge and to be able to validate the results of
IMY and OSMY, both IMY and OSMY are developed
using 20 representative days (1 per season, with each
year characterized by a rainy and a dry season in the
area of interest).

5) Sensitivity on battery lifetime (IMY±25%): in order to
evaluate the effects of the battery lifetime on the optimal
design, a sensitivity analysis is performed by increasing
and decreasing the lifetime of the battery (ncych,b ) by
±25%.

The convergence of the MILP optimization has been ruled
by a maximum gap [34] of 3%, the tolerances of the external
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loop related to BESS behaviour (see (18)) have been all set
to 1%, and the convergence criterion on the stability of the
objective function (see (17)) has been fixed at 3%, coherently
with the mipgap. A limit of 5 days has been set for the
duration of the simulations. These values have been tailored
according to the literature and experience of the authors. It
is worth noticing that information regarding the optimality
gap is rarely disclosed, even if it plays a pivotal role in the
tractability/accuracy trade-off. The optimal microgrid sizing is
found in [29] and [43] by setting a 5% mipgap for a similar
formulation; both the algorithms are run on one year with
hourly time steps but no long-term phenomenon is taken into
account. Nevertheless, the time employed by the two algo-
rithms to converge is in the range of a few hours, comparable
with the computational burden of the work presented here,
which is characterized by a much larger size (1.66 million
constraints and 1.31 million variables) and a lower mipgap.

The algorithm has been modelled in GAMS 24.0.2 and
solved with CPLEX. The simulations have been run on a 6-
core 3.20 GHz Intel Core i7 computer with 16 GB RAM.

IV. RESULTS AND DISCUSSION

The main results of all the proposed tests are discussed in
the following sections. The main outcomes in terms of com-
putational burden, sizing, objective function, cost components,
BESS replacement year Y repl

b and residual capacity at the end
of the project αH,b have been summarized in Table IV.

A. The advantages of the proposed approach

The first noticeable result is that OSMY has not converged
within the time limit of 5 days: CPLEX was still branching to
find a first integer-feasible solution for the proposed problem;
hence, no MIP gap was available. This underlines the com-
plexity for standard MILP formulations to handle the proposed
planning problem, while the IMY approach discussed in this
activity successfully converged in 5.5 hours, reaching the
target tolerances in 3 iterations. Therefore, the gain in terms
of tractability of the algorithm is impressive, and this confirms
that the proposed iterative algorithm can easily contend with
multi-year planning problems with battery degradation and
variable efficiency with low requirements in contrast to other
standard techniques such as OSMY. Finally, the optimization
IMYwoB, which neglects battery degradation and variable
efficiency (αh,b = 1 and βh,b = 1 in every time step),
converged in 3.5 hours, which strengthens the robustness of
IMY in reducing the requirements of one-shot methodologies.

Given that our results are characterized by a 3% mipgap,
the comparison underlines the computational efficiency of the
proposed method with respect to the literature [29], [43].

B. Impact of BESS degradation on planning and operation

To evaluate the effects of the battery degradation and vari-
able efficiency, the proposed methodology (IMY) is compared
to IMYwoB, which neglects the above. The results show that
NPC with IMY is approximately 17% higher than IMYwoB,
which suggests that neglecting such phenomena may lead to

a suboptimal design of the system. As a matter of fact, in
IMYwoB, the load is largely powered by renewable sources,
especially during the first four years, due to a larger PV plant
supported by storage; as the load grows, the diesel production
commences, but its share never exceeds 31% of the total
demand (see Fig. 4a). With respect to IMY, this configuration
comes with higher investment costs but limited O&M costs;
moreover, as no battery degradation is accounted for, the
components have high residual value at the end of the project
and the replacement costs are only related to the DG working
hours, as described by (4a). That suggests, however, that in
the real operation, the battery degradation would reduce the
capability of the system to defer to the renewable production;
hence, the reliance on the fuel generator or higher ENS are
likely to occur.

By considering battery degradation and variable efficiency
since the planning phase as in IMY, the result will be tailored
to the actual system’s behaviour; in fact, the optimizer tends to
employ more DG and to leave a less prominent role to PV and
BESS, whose size is reduced by 13% and 20%, respectively,
and which are able to cover alone only the load of year 1 (see
Fig. 4b). In the last year of the project, PV panels are only
providing energy to 54% of the demand, compared to the 64%
of IMYwoB. Now, the NPC is 17% higher, characterized by
a more consistent portion of O&M costs, approximately 35%
higher than the O&M in IMYwoB and mainly related to fuel
consumption, while the initial investment is reduced by 15%.

The results show that the model tends to avoid the replace-
ment of the battery: the net capacity level (83%) at the end
of the optimization period is very close to the replacement
threshold (80%), as shown in Fig. 5. Hence, the accurate
modelling of the storage behaviour has a strong impact on the
optimization results, as the system gradually ends up working
with a way smaller BESS availability.

The trend of fuel consumption along the years in the
two tests is compared in Fig. 6: in both cases, the growing
utilization of diesel generators follows the increase in the
demand, but the degradation of BESS in IMY makes the
use of DG necessary two years in advance. Furthermore, the
use of discounted cash flows for NPC evaluation induces
the optimizer to favour outflows in the late years, leaning
towards a more frequent utilization of diesel units, rather than
oversizing the renewable plant and the storage capacity, which
explains the delay in the employment of DG in both cases. The
local wind availability is not enough to induce the optimizer
to consider the installation of wind turbines, either in IMY or
IMYwoB.

C. Stability and computational efficiency of the results

To highlight the good convergence performances of the pro-
posed algorithm, IMY has been run for 5 additional iterations
after the convergence criteria were met, and the corresponding
behaviour of the convergence parameters and of the objective
function are shown in Fig. 7. It is worth noticing that the
value of the objective function is stable after 3 iterations as
well as parameters αh,b and βh,b. This is the reason why
the corresponding relative changes, namely, ∆NPC, ∆α and
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TABLE IV
OPTIMIZATION OUTPUTS

Time NPC IC O&M RC SV PV WT DG BESS Y repl
b αH,b

[h] [kAC] [kAC] [kAC] [kAC] [kAC] [kW] [kW] [kW] [kWh] [y] [%]
IMY 5.5 316 228 111 17 40 86 / 16 215 / 83

IMYwoB 3.5 271 269 82 13 93 98 / 16 268 / 100
OSMY* >120 / / / / / / / / / / /
IMYrd 8.3 10−4 301 216 104 16 35 80 / 16 206 / 82

OSMYrd 97.2 297 222 98 14 37 81 / 16 218 / 82
IMY-25% 11.4 335 220 115 66 66 83 / 16 205 9 97
IMY+25% 4.93 307 222 113 17 45 84 / 16 207 / 86

* No feasible solution reached in the given time limit: CPLEX was still branching to find a first feasible integer solution.

(a)

(b)

Fig. 4. Dispatching of resources in IMYwoB (a) and IMY (b)

Fig. 5. Storage capacity degradation in IMY

∆αH , fall below the convergence threshold in few iterations
and the procedure stops. The large NPC error of the first
iteration occurs because the first MILP is initialized with
no battery degradation; hence, the sizing corresponds to the
output of IMYwoB. Starting from the second iteration, the
effects of degradation and variable efficiency commence and

Fig. 6. Fuel consumption in IMYwoB and IMY

Fig. 7. Evolution along the procedure’s iterations of the convergence criteria
and of the objective function

PV and BESS are downsized, and the reliance on diesel
increases. Along the iterative procedure, the available DG
power remains constant and the number of PV and BESS
units installed undergoes slight oscillations. The convergence
is reached not only when the final sizing is attained but
also when the algorithm selects the optimal operation of the
installed components. The proposed convergence criteria meet
both: ∆NPC accounts for the total project costs, accounting
for both the investment and operating costs, while ∆α and
∆β focus on the operating effects. In the proposed simulations,
battery degradation has a more significant impact than variable
efficiency. ∆α parameters experience a larger dynamic than
∆β, as shown in Fig. 7, which can be explained by the fact that
the hourly power-to-energy ratio PQh,b usually stays below
the 0.2 threshold since it is profitable to install a large battery
and perform time-shifting of the energy produced by the PV
source.
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D. Validation using typical days

The results reported in Table IV highlight that when repre-
sentative days are used, the proposed methodology (IMYrd)
and the one-shot one (OSMYrd) converge towards similar
designs and values of the objective function; small differences
are justified by the 3% mipgap. It is worth noticing that
the errors in terms of NPC are approximately 1% and the
difference in terms of installed components is very limited.
Despite the low number of representative days, the computa-
tional requirement of OSMYrd is still very high (more than
4 days), while IMYrd requires a few seconds to converge,
which emphasizes the advantages and benefits of the proposed
approach, as already discussed. Furthermore, the results with
IMYrd and OSMYrd are also similar to the values of IMY
and OSMY, which strengthens the quality of the approach,
but IMY is still preferable given its faster convergence and
its higher capability of describing the real dynamics of the
system; in fact, NPC with IMY is 6.4% higher than that with
OSMYrd. However, methodologies with representative days,
such as IMYrd, can be useful tools for preliminary designs
given their low computational requirements.

E. Sensitivity analysis on BESS degradation parameters

Since battery lifetime is a critical element in planning
phases, subject to significant uncertainties, a sensitivity anal-
ysis on the lifetime of the BESS has been performed, and
the results are shown in Table IV. As expected, the higher
the battery lifetime is, the lower the total NPC, as in the test
IMY+25%, corresponding to a lifetime 25% higher than IMY,
the NPC is 2.8% lower than IMY, while it increases by 6%
in IMY-25%. The higher costs of IMY-25% are related to the
need of performing a BESS replacement at year 9 and to a
7% higher utilization of DG. These results suggest how the
cost of using batteries with a lower lifetime is higher that the
benefit of increasing the lifetime by the same amount, and it
underlines the great importance and urgency of developing a
planning methodology able to cope with battery degradation in
real applications. The above achievement is also enforced by
the low computational requirements of the approaches, always
below 12 hours, as shown in Table IV.

V. CONCLUSION

The novel procedure proposed in this study, based on an
iterative approach with an internal MILP core, successfully
addresses the planning of a rural off-grid microgrid with
a detailed multi-year horizon at an hourly time resolution.
This approach enables analysing the dynamics of load growth
and storage degradation with its power-dependent efficiency
throughout the entire project lifetime, with significant benefits
for developers.

The proposed approach has been compared to traditional
methods, validation tests have been performed by using rep-
resentative days, and a sensitivity analysis over the battery
lifetime has also been discussed. The results highlight signif-
icant improvements with respect to the equivalent literature-
based one-shot MILP. The great advantage of the new method

derives from outsourcing the calculations related to battery be-
haviour to an external loop, which reduces the computational
requirements without affecting the quality of the results, as
discussed in the proposed validation. Representative days can
be used in preliminary analyses for rough evaluations, but the
full methodology proposed in this paper is recommended for
the advanced design, given the higher accuracy of the results.
Dedicated simulations highlight that neglecting the effects of
battery degradation and power-dependent efficiency can lead
to underestimating the cost of the system even by 17%, which
may lead to sub-optimal allocation of resources and, most
likely, energy shortages and financial issues. Similarly, the
sensitivity over the battery lifetime has proven the battery to
be a critical component, which can be accurately taken into
account by our approach.

This methodology is expected to significantly advance the
current state of the art in planning algorithms including the
non-linear constraints of the dynamics of the battery. In partic-
ular, it can be implemented in real case studies and sizing tools
so that developers can benefit by more accurate simulations
of the system behaviour, thus having a more appropriate
understanding of the financial and technical requirements
of their investments. The approach can be easily adapted
to different system configurations and typologies, eventually
including modular upgrades of the system during the project
lifetime or relaxing the assumption of perfect knowledge of
the demand and renewable availability.
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