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Abstract: Illegal landfills are uncontrolled disposals of waste that cause severe environmental and
health risk. Discovering them as early as possible is of prominent importance for preventing hazards,
such as fire pollution and leakage. Before the digital era, the only means to detect illegal waste dumps
was the on site inspection of potentially suspicious sites, a procedure extremely costly and impossible
to scale to a vast territory. With the advent of Earth observation technology, scanning the territory
via aerial images has become possible. However, manual image interpretation remains a complex
and time-consuming task that requires expert skill. Photo interpretation can be partially automated
by embedding the expert knowledge within a data driven classifier trained with samples provided
by human annotators. In this paper, the detection of illegal landfills is formulated as a multi-scale
scene classification problem. Scene elements positioning and spatial relations constitute hints of the
presence of illegal waste dumps. A dataset of ≈3000 images (20 cm resolution per pixel) was created
with the help of expert photo interpreters. A combination of ResNet50 and Feature Pyramid Network
(FPN) elements accounting for different object scales achieves 88% precision with an 87% of recall in
a test area. The results proved the feasibility of applying convolutional neural networks for scene
classification in this scenario to optimize the process of waste dumps detection.

Keywords: illegal landfills; contamination; scene classification; deep learning; remote sensing;
computer vision; environmental monitoring

1. Introduction

Illegal waste disposal is one of the most critical activities against the waste man-
agement laws and contributes to the social alarm raised by waste and ecological crimes
substantially. Other examples of waste crimes include burning, falsification of waste docu-
mentation, storage of dangerous materials in authorized landfills, and the international
trafficking of waste, especially towards developing countries [1]. Illegal waste disposals
threaten public safety and health, the environment, and the economy, with scenarios that
range from small dumps created by citizens to vast landfills of toxic materials collected and
buried in dangerous places. Often, criminal organizations set waste on fire to eliminate
evidence of hazardous materials, releasing highly toxic fumes (e.g., dioxin) that put public
health at risk [2].

Unauthorized landfills often lack the proper waste treatment leading to the release of
leachate, which pollutes the water sources and causes long-term damage, e.g., by increasing
cancer incidence [3]. In [4], the authors enumerate the impacts of illegal landfills on the
environment, which comprise the pollution of plants and animals and the corruption of
the air, soil, and water quality, on health, which causes neurotoxicity, infectious diseases,
and respiratory problems, and on the society at large, with effects of economic loss, discom-
fort, change in habits, among others. The detection of illegal landfills is crucial to prevent
and alleviate their impact and the cost of the waste treatment.

When observed from above, waste dumps present themselves as complex arrange-
ments of objects of different shapes, sizes, and orientation: a typical case occurs when a
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shed or a dismissed industrial building is filled with waste, which appears in aerial images
as spilling over the building’s boundaries, and the area contains further clues, such as
sparse debris, pallets, or containers. Further signs can be trucks, the isolation of the place,
secluded access roads, and stressed vegetation [5]. Typical waste deposited in dumping
sites includes organic waste, plastics, glass, metal, paper, wood, textiles, tires, bulky waste,
electronics, hazardous waste, among others [6]. Some examples are illustrated in Figure 1.

Figure 1. Examples of the presence of waste in potentially illegal sites. Red circles indicate suspicious
objects. In all images accumulations of various materials and scattered waste are present. In the first
image on the left, some car carcasses are abandoned at the sides of the shed.

Although efforts have been spent in recent years to detect suspicious sites in im-
ages collected with Earth observation (EO) campaigns, [7], manual photo interpretation
is still the predominant technique. Mass-scale territory analysis is hindered by the essen-
tially manual nature of the photo interpretation task, which skilled experts must perform.
The advances in computer vision (CV) methods boosted by deep learning (DL) models
and techniques hold the promise of capturing the expertise of senior analysts for reducing
the cost and time of illegal landfill detection and territory monitoring [8]. DL has been
successfully applied to many EO tasks such as urban slum mapping [9], land cover classifi-
cation [10], and others [11]. DL has been applied also to EO for waste identification with
an object detection approach aimed at segmenting the regions of the images that contains
waste [8,12].

In this paper, we address the illegal landfill detection problem as a remote sensing (RS)
scene classification task. RS scene classification categorizes the content of aerial images
into semantic classes based on the spatial arrangement and the structural patterns of the
ground objects [13]. More specifically, we cast the problem as a binary classification one in
which the positive class represents the scenes that portray potential illegal waste dumps,
and the negative class represents all the other configurations of the territory.

Although substantial progress has been made in RS scene classification, in [13] the
author summarizes the most relevant challenges to overcome when designing models for
RS scene classification in specific domains:

• Intra-class diversity: in our scenario, this corresponds to the variations of the type of
garbage present in the scene (plastics, tires, wood, building material), of its disposi-
tion (scattered, collected in dumpsters, trucks, or sheds), as well as to the different
geographical contexts (e.g., urban, rural).

• Inter-class similarity: this derives from the fact that the negative class represents all
the “other” configurations of the territory (e.g., residential areas, sports campuses,
open fields), some of which carry a high visual similarity with the positive class scenes
(e.g., industrial districts, legal landfills, cemeteries).

• Object/scene variable scale: the detection of objects might need a varying degree of
context (e.g., garbage stored in dumpsters vs. scattered in a large area). Therefore,
the classifier should extract relevant features at different scales depending on the type
of scene.
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• Limited samples: collecting the ground truth is a difficulty in all supervised learning
methods. In the addressed scenario, this problem is even more relevant due to the
sensitivity of the domain, which may prevent the disclosure of open datasets.

• Cross-domain adaptation: as in all aerial image scene classification tasks, also waste
classification evaluation suffers from the limitation of using training and testing data
from the same domain (geographical region, acquisition device, employed sensor).

In this paper, we study the application of convolutional neural network (CNN) scene
classification models for landfill detection in aerial images, a yet scarcely explored field
lacking empirical evidence. To the best of our knowledge only two previous works have
examined the utility of CNN architectures for waste detection in aerial images [8,12].
The work in [8] provides only a qualitative evaluation of applying the YOLO [14] object
detection CNN architecture to images acquired with drones in a small coastal region in
Senegal. The identified waste dumps are mainly patches of scattered debris. The work
in [12] applies the RetinaNet [15] object detection architecture to satellite images of a urban
region in the Qinpu district (China), achieving 84.7 mean average precision on the test
set. Differently from [8] we assess quantitatively and qualitatively the application of a
CNN scene classifier to a vast region comprising both urban, peri-urban and extra-urban,
areas with a variety of geographical features and waste configurations. Our scene classifier
achieves 94.5% average precision and 88.2% F1 score, with 88.6% precision at 87.7% recall
and it does not require (as both [8,12] do) manually crafted bounding boxes for training,
which are costly and error prone to produce at a large scale. The proposed method, being
based on classification, requires only whole image labels as ground truth. To cope with
the complexity of illegal landfill imagery, in which the recognition of the relevant scenes
might need a varying degree of context (e.g., garbage stored in dumpsters vs. scattered
in a large area), we apply a multi-scale CNN architecture normally employed in complex
scene detection tasks. The method is tested on a large-scale territory, and both a qualitative
and a quantitative evaluation are reported.

The contributions of this paper can be summarized as follows:

• We train a binary CNN classifier for the task of illegal landfill detection. The pro-
posed architecture exploits a ResNet50 backbone augmented with a Feature Pyramid
Network (FPN) links [16], a technique used in object detection tasks to improve the
identification of items at different scales. We evaluate the performance of the archi-
tecture on a test set of 337 images. The classifier achieves 94.5% average precision
and 88.2% F1 score, with 88.6% precision at 87.7% recall. Such a result improves the
accuracy w.r.t. object detection methods without requiring the manual creation of
bounding boxes;

• We analyze the output of the classifier qualitatively by exploiting visual understanding
and interpretability techniques (specifically Class Attention Maps—CAMs [17]). This
procedure allows identifying the representative image regions where the classifier
focuses its attention.

To achieve the goals of the paper we built a dataset for the RS scene classification task
in the illegal landfill domain. The dataset comprises ≈3000 images from which ≈33% are
positive samples. Such positive sites were identified by experts who manually screened
orthophotos at a resolution of ≈20 cm per pixel acquired during 2018 in three Italian
provinces. To better situate our work in the panorama of waste detection research, we also
summarize the state-of-the-art waste detection problem and organize the many heteroge-
neous approaches proposed in the literature by a number of characteristic dimensions.

The paper is organized as follows: Section 2 overviews the related work in the specific
domain of illegal landfill identification and the more general field of deep learning applied
to remote sensing scene classification, Section 3 presents the dataset used in this work,
Section 4 illustrates the proposed DL approaches, Section 5 presents a quantitative and
qualitative evaluation and, finally, Section 6 concludes and provides an outlook on the
future work.



Remote Sens. 2021, 13, 4520 4 of 21

2. Related Work

The computer-aided identification of waste disposal sites has been an active research
area for many years. The methods for identifying waste dumps can be characterized along
several dimensions:

• Data: the input data to the landfills identification process can include structured
data (e.g., cadastral and administrative databases), Geographic Information System
(GIS) data (e.g., land use maps, road networks), remote sensing data (optical, multi
or hyperspectral), in particular, unmanned aerial vehicle (UAV) images and videos,
and street-level images and videos (e.g., from surveillance cameras).

• Time: Data can represent a snapshot at a given time or a data series acquired over
a period.

• Output: The output depends on how the problem is specified. It can be formulated
as a classification task of geographic locations or of images in which an observation
is labeled based on the presence or absence of illegal landfills. Alternatively, it can
be defined as a CV localization task (object detection, image semantic segmentation)
in which the result is a mask indicating the region of the image that belongs to the
illegal landfill area. Based on these formulations, the output can be a set of positive ge-
ographical locations or images, object bounding boxes, or image segmentation masks.

• Method: the methods can be manual, e.g., human interpretation of digital data, heuris-
tic, or data-driven. In data-driven methods, the relevant features can be hand-crafted
or learned from the data [40]. Data-driven methods in the cited works are primar-
ily supervised and can be further distinguished based on their statistical learning
approach (e.g., support vector machines (SVM), deep neural networks, CNNs).

• Range: studies can be small range analyses focusing on the in-depth investigation of a
specific landfill or small region or large scale surveys over a broad geographical area.

• Validation: results can be validated qualitatively (e.g., by experts) or quantitatively
with the aid of ground truth data (e.g., collections of images or geographic locations
corresponding to known waste disposal sites).

Table 1 summarizes the characteristics of the most relevant contributions analyzed
in this Section. An interesting finding is that the works using DL/CNN approaches are
mainly applied to street-level imagery (6). The works applied to aerial imagery (2: [8,12])
used CNN architectures to solve an object detection task in UAV and satellite images,
respectively, and produced a mask delineating the area of the image that contains waste.
This analysis highlights the lack of contributions that explore alternative CNN-based
methods, such as multi-scale scene detection architectures, to solve the illegal landfill
problem at scale without requiring a high number of manually created bounding boxes.

Table 1. Summary of relevant previous research on illegal landfill and waste dump detection. Works are presented in
descending order of publication year.

Input Data Output Method

GIS RS UAV
Street
Level
img.

Location
Classif.

Img.
Classif.

Img.
Object

Det.
Manual Heuri

stic

Data Driven

Classical
ML

DL/
CNN

Deep Learning and Remote Sensing:
Detection of Dumping Waste Using UAV [8] no no yes no no no yes no no no yes

Waste disposal facilities monitoring
based on high-resolution information
features of space images [18]

no yes no no yes yes no no yes no no

YOLO TrashNet: Garbage
Detection in Video Streams [19] no no no yes no no yes no no no yes

Landfill Detection in Satellite
Images Using Deep Learning [12] no yes no no no no yes no no no yes
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Table 1. Cont.

Input Data Output Method

GIS RS UAV
Street
Level
img.

Location
Classif.

Img.
Classif.

Img.
Object

Det.
Manual Heuri

stic

Data Driven

Classical
ML

DL/
CNN

Characterization and mapping of illegal
landfill potential occurrence in the
Canary Islands [6]

yes yes no no yes no no no no yes no

Detection of waste dumping locations
in landfill using multi-temporal
Landsat thermal images [20]

no yes no no yes no no no yes no no

Spatial and temporal distribution of
illegal dumping sites in the nature p
rotected area: the Ojców National Park [21]

yes no no no yes no no yes yes no no

Image classification to determine the
level of street cleanliness: A case study [22] no no no yes no yes no no no yes no

Garbage localization based on weakly
supervised learning in DCNN [23] no no no yes no no yes no no no yes

A case study on the detection of illegal
dumps with GIS and RS images [24] no yes no no yes no no yes no no no

A computer vision system to localize
and classify wastes on the streets [25] no no no yes no no yes no no no yes

Top-down approach from satellite to
terrestrial rover application for
monitoring of landfills [26]

yes yes no no yes no no yes yes no no

Mapping illegal dumping using a high
resolution RS image case study [27] no yes no no no yes no no no yes no

An edge-based smart mobile
service system for illegal dumping
detection and monitoring [28]

no no no yes no yes yes no no no yes

Smart illegal dumping detection [29] no no no yes no yes no no no no yes

Spotgarbage: smartphone app to detect
garbage using deep learning [30] no no no yes no no yes no no no yes

Predictive model for areas with illegal
landfills using logistic regression [31] yes yes no no yes no no no no yes no

Factor analysis and GIS for
determining probability areas
of presence of illegal landfills [5]

yes no no no yes no no no no yes no

The Use of Satellite RS and Helicopter Tem
Data for the Identification and
Characterization of Contaminatedcite [32]

yes yes no no yes no no yes yes no no

Possibility of monitoring of waste disposal
site using satellite imagery [33] no yes no no yes no no yes no no no

GIS, multi-criteria and multi-factor
spatial analysis for the probability
assessment of illegal landfills [34]

yes yes no no yes no no yes no yes no

A method for the RS identification of
uncontrolled landfills [35] yes yes no no yes no no yes no yes no

Southern Italy illegal dumps detection
based on spectral analysis of remotely
sensed data and land-cover maps [36]

no yes no no no yes no yes no yes no

Classification of industrial disposal illegal
dumping site images by using spatial and
spectral information together [37]

no yes no no no yes no no no yes no

Use of maps, aerial photographs, and other
RS data for practical evaluations of
hazardous waste sites [38]

no yes no no yes no no yes no no no

Analysis of landfills with historic
airphotos [39] no yes no no yes no no yes no no no
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Given the scarcity of directly comparable works that apply CNNs to waste dump
classification, we also offer in Section 2.4 a brief overview of the results attained in DL for
remote sensing scene classification in other domains.

2.1. Landfill and Waste Dump Detection from Remote Sensing Data

Early studies on waste detection using RS data focused on the human interpretation of
aerial images. In 1974, the work [41] was published in which the authors proposed the use of
aerial photos to determine the spatial distribution of waste producers and waste quantities.
Around a decade later, the work [39] highlighted the importance of using historical aerial
images to document landfills’ existence, location, extent, and possible nature. In [35], the
authors studied the case of uncontrolled landfills (buried waste) in Veneto (Italy). They
calculate the Stress Vegetation Index (SVI) from multispectral satellite observations. Along
with an analysis of GIS information (e.g., the street network) and other historical aerial
images, they find that stressed vegetation is present in all the illegal landfills and conclude
that SVI is a relevant indicator. In [27], the authors classify WorldView2 high-resolution
8-band multispectral images into six categories, two of which refer to waste: building
rubble and domestic dump. Overall, on a dataset of 610 observations among six categories,
they obtained 85.16% accuracy on the validation split (30%) using a support vector machine.
According to the authors, not all the bands have the same importance on the classification
process for the different classes: the blue band is more significant for domestics dumps
and the yellow one for the building rubble. They also highlight that 54% of the waste
dumps occur on vacant or unused lands. In [24], the authors use images of 0.5 m spatial
resolution in the panchromatic band and 2 m resolution for each multispectral band (Red,
green, blue, and near InfraRed) to identify illegal landfills in the Campania region (Italy)
relying on experts’ photo-interpretation. They claim that artificial intelligence (AI) cannot
replace human knowledge, experience, intelligence, or understanding but acknowledge
that the human eye can only interpret few layers of remotely sensed information at a
time. At the same time, machine processing enables the quantitative analysis of all spectral
bands simultaneously and can detect subtle differences that escape humans. As their work
was performed manually, they call for the implementation of tools to make this task as
automated as possible. In recent years, approaches involving DL techniques have been
employed. In [12], the authors applied state-of-the-art DL models to detect landfills in
satellite images. The problem is formulated as an object detection task rather than as a
scene classification one. They apply the RetinaNet [15] model (with DenseNet [42] as the
backbone) with a dataset with more than 2.000 images of the Shangai district annotated
with bounding boxes framing the garbage. They obtained 84.7% average precision on
the test set using IOU = 0.3. The authors highlight the importance of data augmentations
(flip, rotation, scaling, translation) to enlarge the dataset. The authors also repeat the
experiments with two image sizes (800 and 1000), obtaining different results given to the
different amount of context provided. In [8], the authors also employed a multi-scale object
detection approach over drone images to detect dumped waste on the riverside of Saint
Lois Senegal. They annotated 5000 images with an average of 5 bounding boxes per image
and trained a Single Shot Detector (SSD) model reserving 10% of the dataset for testing.
The authors did not provide the characteristic metric of the object detection task (mean
average precision) on the test set. From qualitative analysis, they observed that predictions
vary according to the zone. The model generated many false positives given to confusion
with non-waste objects (e.g., trees), and for this reason, samples from different regions will
be included to continue their study.

2.2. Landfill and Waste Dump Detection from GIS and Other Structured Data

GIS information is exploited in [34], which reports a study carried out in the Veneto
region divided into two areas for training and validation with 20 and 19 known illegal
sites and 26 and 28 authorized ones, respectively. A weighted linear combination of
different factors (presence of former quarries, proximity to authorized landfills, land use,
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population density) enabled the creation of a waste dump probability map. The results
reported that 84.2% of the known illegal landfills were located in areas with high probability
(0.67–1). Additionally, 738 new positive locations were identified as potentially relevant.
In [5], the authors performed a feature analysis to determine the factors relevant to the
presence of an illegal landfill and created a geo-statistical model to predict their presence.
Features included the local socio-economic level, land use, proximity to urban centers,
and geographic characteristics. The study was carried out in Andalusia with 518 known
locations. The main finding is that the illegal landfills are not randomly distributed in
the territory and 63.3% of the sites reside in areas with high predicted probability (>0.36).
Similar conclusions were drawn in posterior work [31] using a logistic regression model
on different features. The studies surveyed in this section use datasets provided by local
administrative agencies. The number of sites in such datasets usually ranges in the order
of hundreds.

2.3. Image Classification for Street-Level Visual Content

Street-level garbage detection is a problem complementary to identifying landfills in
aerial images, although tackled with comparable CV methods. In [22], the authors evaluate
the cleanliness of streets using a dataset of 22K geo-tagged images annotated by experts.
They contrasted different feature extractors (SIFT, color histogram, CNNs based) and
algorithms (Naive Bayes, SVM, among others) to classify the images into five categories
(bulky item, encampment, overgrown vegetation, illegal dumping, clean). They found that
training sub-models for different geographical areas yielded the best performances and
reported an F1-score of 90%. In [29], the authors trained a GoogleNet [43] model with 1423
images of eight classes (tree, cart furniture, trash, trash bags, electronics, sofa, mattress).
The model achieved 77% average accuracy, and the authors observed that the inclusion of
the clean category introduced noise worsening performances. In [30], the authors created a
dataset of 450 street-level garbage images and applied the AlexNet [44] architecture for
binary classification, obtaining 87.7% average accuracy. In [23], the authors proposed a
semi-supervised method for creating a segmentation mask for the garbage in the image.
For the evaluation, 25 volunteers rated the segmentation masks yielding an average score
of 4.1/5 for 500 images. In [45], the author analyzed 816 urban scenes and achieved
an accuracy of 89% on the test set using the Faster-RCNN [46] with ResNet [47] as the
backbone. In [19], the authors located the garbage in 3974 images with 5535 labels of
four classes: bag, dumpster, bin, and blob (a conglomerate of objects). Using a variation
of the YOLO [14] network and applying data augmentation, they achieved ≈60% mean
average precision. The authors of [48] go a step further and combined object tracking
and pedestrian detection to understand when someone is leaving garbage in the street
from surveillance cameras. They obtained a 79% precision at 64% recall. In most of these
works, state-of-the-art DL architectures were successfully applied to classify waste types at
street level, showing the capability of the methods to learn features that characterize waste
objects viewed up close.

2.4. Deep Learning for RS Scene Classification

RS image classification has rapidly evolved thanks to the availability of high resolution
images and to the advances in the CV field. High resolution pixels do not contain enough
information to represent a whole object and pixel-wise classification does not account for
the relationship between neighboring pixels. Therefore, the analysis at the object-level
rather than at the pixel-level is required [49]. Furthermore, some semantic categories are
characterized by multiple objects in various spatial relations (e.g., airports with planes,
control towers and landing strips). The recognition of such composite configurations in
aerial images is a task known as RS scene classification, which underpins our approach
for detecting landfills composed of many different objects viewed from above. RS scene
classification is challenging because objects may appear at different scales and with different
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orientations causing high intra-class diversity. Moreover, the same type of objects might
compose different categories inducing high inter-class similarity.

Table 2 lists examples of RS scene classification datasets, mostly targeting land use
applications. State-of-the-art datasets comprise a varying number of images per class.
At one extreme, the SEN12MS dataset [50] contains classes with 31,836 images. Other
datasets have much lower numbers: NWPU-RESISC45 [51] contains 700 images per class;
UC-Merced [52] ≈100 images per class. Although some datasets present an unbalance
in the number of images per class, other ones have the same amount of samples for
all classes irrespective of the real distribution. For example, the Brazilian Coffee Scene
dataset [53] contains two classes (coffee and not coffee plantations) with a very unbalanced
real distribution. However, in the experiments the authors used the same amount of
images for both the positive and the negative class. From the datasets listed in Table 2,
one cannot conclude that there is a unique optimal number of samples for the RS scene
classification task.

None of the datasets in Table 2 includes an expert-annotated landfill class. The most
similar category is that of dump sites in the BigEarthNet dataset. The category is rather
generic and gathers only small images with low resolution (10 m per pixel).

Table 2. Datasets for RS scene classification. When classes are unbalanced we specify minimum and
maximum number of samples per class.

Dataset Scenes
Categories

Per Class
Images

Total Images Year

UC-Merced [52] 21 100 2100 2010

WHU-RS19 [54] 19 50 950 2012

RSSSCN7 [55] 7 400 2800 2015

Brazilian Coffee
Scene [53] 2 1438 2876 2015

SIRI-WHU [54] 12 200 2400 2015

RSC11 [56] 11 112 1232 2016

AID[57] [58] 30 220/420 10,000 2017

NWPU-RESISC45 [51] 45 700 31,500 2017

RSI-CB256 [59] 35 690 24000 2017

OPTIMAL-31 [60] 31 60 1860 2018

EuroSAT [10] 10 2000/3000 27,000 2019

BigEarthNet [61] 44 328/217,119 590,326 2019

MLRSNet [62] 46 1500/2895 109,161 2020

MultiScene [63] 36 22/8628 14,000 2021

SEN12MS [50] 16 14/31,836 180,662 2021

Early works addressing the scene classification in remote sensing focused on extract-
ing hand-crafted features or image descriptors, such as SIFT and HOG, as inputs for
supervised (e.g., SVM, RF) or unsupervised (e.g., PCA, k-means) methods. As research on
CNNs emerged, different architectures were used as feature extractors. In the pioneering
work [53], the CaffeNet [64] and OveraFeat [65] CNNs trained with ImageNet were used
as feature extractors and compared with other 22 machine learning methods. With the
UC Merced dataset, the CNNs obtained the best results (93.42% CaffeNet, 90.91% Over-
feat) with a margin of ≈+17% over the best low-level descriptor method. Conversely,
in the Brazilian Coffee dataset, global descriptors’ methods outperformed the CNNs by
≈+3%. This difference was motivated by the fact that UC Merced contained more complex
scenes in which objects have patterns similar to those present in ImageNet, whereas in
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the Brazilian Coffee dataset, textures and spectral features play a dominant role. In [66],
the authors proved the benefit of using the CNNs end-to-end. GoogLeNet was used to
perform classification by adding a fully connected and a softmax layer achieving 97.1%
accuracy with the UC Merced dataset and 91.8% with the Brazilian Coffee one.

The current research directions involve different approaches to improve classical
CNNs. An example is the usage of attention methods [67–69] that focus the computation
on the most informative parts of the input data and have improved both convergence
and accuracy [70]. A different direction is that of multi-scale techniques [71–73] designed
to cope with scenes in which objects of the same type appear with different sizes and
amount of surrounding context. The idea is to combine global features with local object-
level features. Another path is that of semi-supervised learning. Remote sensing offers a
massive amount of imagery, but annotating these data is labor-intensive. Semi-supervised
approaches help exploit unlabelled data, mainly through the use of Generative adversarial
networks (GANs) [16,74].

3. Dataset

For this study, a binary dataset was used. As a starting point, the orthophotos gener-
ated by a remote sensing campaign commissioned by AGEA (https://www.agea.gov.it/
accessed on 27 September 2021 ) were acquired for the Lombardy region (Italy). The images
are collected with an RGB aerophotogrammetry survey at a resolution of 20 cm per pixel. A
set of 990 positive locations corresponding to sites containing waste dumps were provided
to us by experts from the Environmental Protection Agency of Region of Lombardy (ARPA)
from an analysis of 105 municipalities. For each site, two annotations were provided: the
evidence level (low, medium, and high) specifies how confident the annotator is that a site
falls under the illicit category, and the extension level (small, medium, and large) indicates
the size of the site. Such annotations were not used for training but were exploited in
the qualitative analysis of the results. Negative samples were randomly chosen from the
territory of the same municipalities analyzed by the experts. To include unbalance into
the dataset we doubled the number of negative samples with respect to the positive ones,
resulting in ≈2000 negative locations. The locations were split into three geographical
areas for training (75%), validation (13%), and testing (12%). Figure 2 displays the split
with a color-coded representation of the sampling locations: training (white), validation
(blue), and testing (red). One square image was created centered at that location for each
positive and negative geographical position in the dataset. The image size was chosen
randomly among three options: 600 pixels (120 m), 800 pixels (160 m), and 1000 (200 m),
to include a variable amount of context in the dataset.

Figure 3 shows the distribution of the samples by province, extension level, evidence
level, and image size. Most examples have low evidence or extension. At training time,
data were augmented by means of a random flip (vertical and horizontal) applied to images
with 25% probability.

https://www.agea.gov.it/
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Figure 2. Geographic split of the dataset based on the analyzed cities (polygons): training (white),
validation (blue), and testing (red). Map layers provided by GoogleMaps

Figure 3. Distribution of the input samples with respect to provenance, extension, and evidence of
the visible waste dumps and size of the image.

4. Classification Approach

The binary classifier exploits ResNet50 [47] as the network backbone and augments
it with a Feature Pyramid Network (FPN) architecture [75]. FPN improves performances
in object detection when different scales must be taken into account [73,76] and thus can
benefit also classification tasks in which objects of the same class appear with variable
sizes. FPN creates a feature pyramid that has good semantics at all scales by combining
low resolution semantically strong features with high resolution semantically weaker ones.
This is realized by complementing the bottom up feature extraction path typical of CNNs
with a top down path that builds the feature pyramid by extracting adapting and merging
features at multiple levels, as shown in Figure 4. In the Figure {C2, C3, C4, C5}, respectively
denote the outputs of the residual blocks of the ResNet50 stages conv2, conv3, conv4, conv5.
The output of the first stage C1 is not included in the pyramid due to its large memory
footprint. The top-down path starts from C5 and computes the merged features maps (M5
. . . M2), which are upsampled and de-aliased to obtain the pyramid layers {P2, P3, P4, P5}.
Each Pi is subjected to global average pooling (GAP) followed by a flattening operation
to produce the vectors {P′2, P

′
3, P

′
4, P

′
5}. Each P

′
i is input to a fully connected (FC) layer for

performing classification at the respective scale level. Finally, the results of the scale-level
classifiers are concatenated and used as input to the final FC layer to produce the output.
The binary cross-entropy loss function is used with a learning rate of 0.005. An early
stopping strategy is implemented to prevent over-fitting, with a patience factor (number of
epochs with no improvement after which training will be stopped) of 10 and a min delta
(minimum change in the monitored quantity to qualify as an improvement) of 0.0005.

The initialization of the ResNet50 layers is performed with transfer learning from
ImageNet [77,78]. The best results were obtained by freezing the first two layers during the
fine tuning. In the training phase, resizing of the input to a fixed dimension is performed
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to cope with images of different sizes in the same batch and to fit more images in the GPU
memory. The images are also normalized based on the mean and standard deviation of
the dataset. After the last FC classification layer, a Sigmoid function is added obtaining
a value between 0 and 1 that denotes how confident the model is that the image belongs
to the positive class [78,79]. A threshold over this value is used to classify each image.
The model was trained using two Nvidia GeForce RTX 2080Ti GPUs. The batch size was
set to 12 (given the capacity of the server). The weights of the trained model, as well as
additional details on the training phase are published on GitHub (https://github.com/rnt-
pmi/remote-sensing-scene-classification-landfills, accessed on 27 September 2021).

Figure 4. The architecture of the binary classifier extending Resnet50with FPN links.

5. Quantitative Analysis

The binary classification of input samples is performed by setting a threshold on
the confidence score produced as output by the ResNet50 + FPN model. Figure 5 shows
the precision and recall (PR) curve computed on the validation dataset by varying the
threshold [80]. The value to use for the test dataset (0.44) is chosen as the one that maximises
the F1 score on the validation dataset. Maximising F1 makes a good compromise between
the number of missed positive samples and the number of irrelevant sites reported as
positives, which would cause unnecessary interpretation work for the analyst. Table 3
presents the results of applying the classifier to the test dataset. The evaluated metrics
comprise the average precision (AP), which summarizes the PR curve as the weighted
mean of precision values achieved at each threshold, accuracy, precision, recall, F1-score,
and ECE (described next). A moderate drop in performances is observed when switching
from the validation to the test dataset (−1.2 in F1-score). However, the model generalizes
very well on the test dataset with AP exceeding 94% and ≈90% precision at ≈89% recall.

https://github.com/rnt-pmi/remote-sensing-scene-classification-landfills
https://github.com/rnt-pmi/remote-sensing-scene-classification-landfills
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Figure 5. Precision and recall curve for validation split.

Table 3. Evaluation results in the test dataset. The threshold (0.44) is used to compute all metrics except AP and ECE, which
do not depend on the threshold value.

Resnet50 + FPN

Threshold Average
Precision Accuracy F1-Score Precision Recall ECE

Validation
(%) 0.44 95.1 93.0 89.4 89.8 89.1 5.05

Testing (%) 94.5 92.6 88.2 88.6 87.7 7.01

The expected calibration error (ECE) indicates how well the probability estimates can
be interpreted as correctness likelihood. In a well-calibrated classifier of all the samples
that are predicted with a probability estimate of, say, 0.6 (around 60%), should belong
to the positive class [81]. Calibration is related to the reliability of the confidence score,
which is a critical property when a classification model is exploited to make predictions for
high-risk or sensitive applications. In the case of illegal landfills detection, it is particularly
important that the model output reflects the actual underlying probability of the positive
class to support the decision of inspecting a suspicious site. Figure 6 shows the confidence
distribution diagram and the reliability diagram [81] of our ResNet50 + FPN model. The
confidence distribution diagram shows that the model assigns a low confidence value to
nearly twice as many as the samples it rates with high confidence. This proportion reflects
the class distribution in the dataset since there are nearly twice as many negative samples
as there are positive ones. The reliability diagram contrasts the model behavior with the
ideal case represented by the diagonal line, which denotes a perfectly calibrated model.
Figure 6 also reports the expected calibration error (ECE) (Equation (1)) and maximum
calibration error (MCE) (Equation (2)) defined as follows:

ECE =
M

∑
m=1

Bm

n
acc(Bm)− con f (Bm) (1)

MCE = maxmε(1..M)|acc(Bm)− con f (Bm)| (2)

where n is the number of samples in the dataset, M is the number of buckets (each of size
1/M), and Bm denotes the set of indices of observations whose prediction confidence falls
into the interval m.
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As shown in Figure 6, in most cases, the model is moderately more confident than it
should be, except in the 0.4–0.5 bucket, where the over-confidence is high, giving an MCE
of 56. Such a bin has a small effect on the ECE (7.01) given the low number of samples
in this range, as visible in the confidence distribution histogram. An ECE of 7.01 shows
that the model is well-calibrated, and thus, the analyst could use its estimates as realistic
proxies of the actual probabilities.

Figure 6. Resnet50 + FPN calibration assessment: confidence histogram (left) and reliability diagram
(right). The former shows the distribution of confidence scores over the dataset the latter compares the
model behavior to the ideal case of a perfectly calibrated classifier represented by the dashed diagonal.

6. Qualitative Analysis

A visual inspection of the results helps understand the behavior of the model. The
classification of illegal landfill scenes relies on the presence of diverse objects, such as
dumpsters, scattered debris, tires, containers, and others. Thus it is interesting to examine
which objects are responsible for predicting a site as a waste dump. To this end, the compu-
tation of Class Activation Maps (CAMs) [17] can be used to highlight the regions of the
input image with the greatest influence on the model prediction. A CAM is a matrix that is
scaled to the same dimensions as the input image and associated with a specific output
class. Each CAM cell contains a value denoting the relevance of the pixel with respect
to the class of interest. Visually, CAMs can overlay a heat map representation onto the
input image to highlight the pixels with the higher relevance for a specific class. In our
multi-scale context, CAMs are computed at every scale level and multiplied by the weights
of that scale in the last FC layer. Finally, they are combined by element-wise addition and
normalized in the 0 to 1 range. Figures 7–10 exemplify input images overlaid with the heat
maps derived from the respective CAMs.

6.1. Examples of True Positives

Figure 7 exemplifies sites classified correctly and with high confidence (≥98%). Red
boxes are provided to highlight the objects that led the analyst to classify the image as a
positive one. The first example shows a production plant with a waste storage area and
various materials (messy and often very large). The waste dumps regions have a well-
delimited boundary and cover a large part of the image. The model focuses on them quite
precisely, as shown by the CAM heat maps. In the second example, the significant objects
are concentrated in a much smaller part of the image, nonetheless appear as relevant in the
CAM heat map. As suggested by these two examples, the multi-scale analysis capability
afforded by the FPN links helps the detection of relevant objects of different sizes and
coverage. In the third example, the attention focuses on a group of abandoned cars, which
highlights the capability of the classifier to cope with the intra-class diversity challenge
typical of the waste detection task, in which objects of very different nature may contribute
to the prediction.
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The three examples demonstrate the recognition of disparate types of objects with
different sizes and distributions within the image. The model is able to classify all of
them with very high confidence tackling the intra-class dissimilarity and multi-scale
challenges adequately.

Figure 7. Examples of sites correctly classified a positive with high confidence. In each row, the left
image is the input sample with one or more manually created bounding boxes surrounding the
areas with waste. The center image shows the heat map derived from the CAM of the positive class.
The right image zooms on the region where most of the waste appears.

6.2. Examples of False Negatives.

Figure 8 illustrates two cases that were incorrectly classified as negative even if the
expert interpreter had labeled them as containing waste dumps.

The first image shows a site where some waste is visible close to the north wall
of a property and inside the courtyard. In this scene, the CAM components are small
and sparse and overlay regions with rather generic visual content. More intensity can
be seen in the rightmost CAM component, but this is still insufficient to obtain a high
classification score for the whole image. The second case is a site where the presence of
waste is only perceivable indirectly. The experienced photo interpreter noted a patch of
stressed vegetation, which could be a clue of liquid or buried waste. The model fails to
classify the site correctly only from such weak clues. A multi-spectral analysis and the
computation of the vegetation stress index could help solve this case as well [35].
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Figure 8. Examples of sites labeled as positive by the expert photo interpreter but classified as
negative by the model.

Figure 9 shows a case of wrong negative classification due to the lack of significant
context in the image. The first image shows the original sample from the dataset, which
was classified as negative. However, a small shift of the focus to the north-east reveals a
missing part of the scene, which unveils an access road and a field full of litter. When the
whole context is provided, the model achieves high confidence and correctly classifies the
scene. The occurrence of wrong classifications caused by the fragmentation of a significant
scene across multiple input samples can be mitigated by increasing the overlap between
the images of the testing set, to the price of an increase in the computational cost.

In most false negative cases, the CAMs show that the most relevant areas for the model
usually coincide with those highlighted by the human expert. However, the contribution
of such areas to the activation is not enough to trigger the classification layer. The average
confidence of the model for the false negatives is ≈0.17 and most false positives in the test
set were characterized by the expert with “low” (46%) and “medium” (40%) extension and
“low” (35%) and “medium” (35%) evidence.
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Figure 9. Example of a false negative caused by the fragmentation of the relevant scene across
multiple tiles (top). A manually created image of the same scene that includes the missing information
is classified positively (bottom).

6.3. False Positive Analysis

Figure 10 presents three cases classified as positive by the model and not considered as
such by the human expert. The first image represents a scene where some scattered objects
are visible close to a large shed served by a secondary road. The general configuration
looks similar to that of the typical waste dump, but the photo interpreter judged that
the visible objects were not sufficiently clear to justify a positive assessment. The second
example illustrates well the challenge of inter-class similarity. It consists of a swimming
pool area with sun umbrellas and deckchairs. Such objects could be confused with plastic
bags, usually present in waste dumping sites. Although for the human eye it is easy to infer
the real nature of the site based on the context, the model is unable to make the distinction.
In the third example, the model classifies positively a plant that collects metal scraps.
The CAM heat map shows that the model focuses on a big heap of metal scraps and an
area piled with tubes. However, the photo interpreter used other information (the location
address and the yellow page directory) to exclude the site from the suspicious ones.

In most false positive cases, the analyst excluded the danger of a site by visual
inspection or by resorting to collateral information not available to the image classifier.
The average confidence of the model for the false positives is ≈0.7 (70%). This value could
be used to prioritize the positively classified locations, selecting for human validation
suspicious sites with confidence ≥70% first.
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Figure 10. Examples of false positives.

7. Conclusions and Future Work

In this paper, we have addressed the detection of illegal landfills with a binary remote
sensing scene classification task. A dataset was created with the help of experts using
remote sensing imagery. The classical ResNet50 CNN was combined with components
of the FPN architecture to improve the extraction of features at different scales to classify
better images containing relevant objects of different sizes and extensions. The resulting
architecture was trained and evaluated. The classifier achieves 94.5% average precision and
88.2% F1 score, with 88.6% precision at 87.7% recall. The qualitative analysis conducted
with the support of Class Activation Maps (CAMs) provided further insight. In particular,
improvements can be obtained by increasing the overlap between images extracted from
the survey data and by considering non-visual information to enrich the classifier’s input.
The qualitative analysis with CAMs also proved that the model tends to focus on the same
aspects considered by the human expert. This information can be provided to the analyst
as a guide on where to look, which can accelerate the photo interpretation process.

Future work will concentrate on new tasks and research directions:

• Dataset extension. As analysts inspect new territories, their findings will be incorpo-
rated into the dataset, improving the model. Specifically, complex negative examples
will be sought. In the present work, negative examples were sampled randomly,
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but choosing them based on semantic information (e.g., vicinity to “difficult” contexts,
such as swimming pools and cemeteries) could reduce false positives substantially;

• Different imagery. The described analysis was executed on a single type of image
with a resolution of 20 cm per pixel. The experimentation with other resolutions
and different remote sensing products beyond the visible band could lead to more
accurate classification, e.g., including the NIR band to exploit the presence of stressed
vegetation as a clue for buried waste;

• Classification of waste types. The type of waste present at a location is a clue that helps
the analyst categorize a site. Examples include plastic, tires, grouped cars, bulky waste,
sludge, or manure. Moreover, waste treatment plants might intentionally misclassify
waste to deceive law enforcement authorities, e.g., by using non-hazardous waste
codes for hazardous materials. In this scenario, classifying images based on the type
of waste is extremely useful;

• Weakly supervised segmentation. Understanding the extension of relevant objects
could help estimate the level of risk associated with a detected site, which would
help prioritize interventions. Object detection and instance segmentation tools output
bounding boxes and masks from which the area of a waste dump can be computed.
However, training an object detection or instance segmentation model requires a
costly and time-consuming ground truth production process. Weakly supervised
methods have attracted interest in recent years to reduce the effort of ground truth
creation. Illegal landfill detection could be a perfect use case to apply state-of-the-art
weakly-supervised approaches;

• Multi-temporal analysis. Analyzing images taken at different dates could provide
information on the site activity, e.g., growing or shrinking;

• Model efficiency. The ultimate goal of automating the photo interpretation task is
enabling the complete scanning of the territory at a vast scale in a limited amount
of time or even the implementation of near real-time alerting of the insurgence of
waste-related risks. This objective requires a substantial reduction in the inference
time coupled with a limited loss in prediction reliability.
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