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The study of temporal dynamics of gender and ethnic stereotypes is an
important topic in many disciplines at the intersection between statistics and
social sciences. In this paper, we make use of word embeddings, a common
tool in natural language processing, and of Bayesian nonparametric mixture
modeling for the analysis of temporal dynamics of gender stereotypes in ad-
jectives and occupation over the 20th and 21st centuries in the United States.
Our Bayesian nonparametric approach relies on a novel dependent Dirichlet
process prior, and it allows for both dynamic density estimation and dynamic
clustering of adjective embedding and occupation embedding biases in a hi-
erarchical setting. Posterior inference is performed through a particle Markov
chain Monte Carlo algorithm which is simple and computationally efficient.
An application to time-dependent data for adjective embedding bias and for
occupation embedding bias shows that our approach enables the quantifica-
tion of historical trends of gender stereotypes, and hence allows to identify
how specific adjectives and occupations have become more closely associ-
ated with a female rather than male over time.

1. Introduction. The study of the changes over time in gender and ethnic stereotypes
is an important topic in many disciplines, as it lies at the intersection between quantitative
and social sciences (Williams and Best, 1990; Basow, 1992; Holmes and Meyerhoff, 2008;
Coates, 2016). In recent years, machine learning methods have become increasingly popular
to analyse stereotypes dynamics, with the goal of capturing the dynamic formation, mainte-
nance, and transformation of stereotypes. Moreover, such methods have proved to be crucial
in reducing time-consuming and expensive manual analysis and in scaling across types of
stereotypes, time periods, and languages. In particular, natural language processing tech-
niques have been often applied to measure, quantify, and compare gender and ethnic stereo-
types over time. To this end, a common tool is provided by word embeddings, a learned word
representation for text analysis (typically in the form of a real-valued vector) such that words
with similar meaning have a similar representation. Our starting point is the work of Garg
et al. (2018) who exploits word embeddings to study historical trends in gender and ethnic
stereotypes, demonstrating how the temporal dynamics of the embeddings are able to capture
actual changes in stereotypes and attitudes towards women and ethnic minorities in the 20th
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and 21st centuries in the United States. More in details, a word embedding represents each
word as a high-dimensional real-valued vector, whose geometry captures local and global se-
mantic relations between words, e.g., words with a representation closer together in a vector
space correspond to more similar words (Collobert et al., 2011). These models are typically
trained automatically on large corpora of text, such as collections of Google News articles or
Wikipedia, and are known to capture relationships not found through simple co-occurrence
analysis. As stereotypes are likely to be present, even if subtly, in large corpora of training
texts, word embeddings have been successfully employed to capture them. (Bolukbasi et al.,
2016; Caliskan, Bryson and Narayanan, 2017; Zhao et al., 2017). The goal of this work is
to investigate the clustering dynamics of gender stereotypes as captured by adjectives and
occupation-related words over the 20th and 21st centuries in the United States. We exploit
the potential of word embeddings combined with flexible tools from Bayesian nonparametric
(BNP) mixture modeling to model time-dependent data on bias towards women as described
by adjective and occupation embeddings. From a methodological perspective, BNP dynamic
mixtures require the specification of a prior process for a collection of random distributions
indexed by time, whose realizations are dependent. These models are usually built as exten-
sion of the Dirichlet process (DP) prior (Ferguson, 1973) and exploit the discreteness of the
DP prior, allowing for flexible and robust estimation of time-evolving densities as well as
for dynamic clustering of items (see, for instance, work by Taddy (2010) and DeYoreo and
Kottas (2018) focusing on density estimation). A BNP approach is particularly appealing for
our applications, since a preliminary analysis shows that a parametric dependence structure
is unable to fully capture the data complexity and there is no information on the number of
components, if a finite mixture approach were to be adopted. As such data-driven cluster-
ing methods are preferred, able to accommodate heterogeneity, overdispersion and outliers.
From a computational perspective, mixture models based on DP priors offer many advantages
and a plethora of exact and approximate computational algorithms for posterior inference is
available.

1.1. Our contributions. We consider word embeddings trained on Corpus of Historical
American English (COHA) (Hamilton, Leskovec and Jurafsky, 2016) for eleven decades be-
tween year 1900 and 2000, together with the list of adjective and occupation words provided
by Garg et al. (2018). We are interested in the analysis of data on (standardized) adjective and
occupation embedding biases towards women, for each word in the corresponding list. Here
by adjective embedding bias, we mean a bias representation obtained by the embedding of an
adjective. Similarly, occupation bias is obtained from the embedding of a occupation-related
word. A negative value of the bias implies that the embedding more closely associates the
adjective or the occupation-related word with men, because the distance between the words
is closer to men than women. We refer to a negative value of the embedding bias as “ bias
against women ”. Note that gender bias corresponds to either negative or positive values of
the embedding bias. We develop a novel BNP dynamic mixture model for time-dependent
data for adjective and occupation embedding bias, able to quantify changes in gender stereo-
types over the 20th and 21st centuries in the United States. Clustering, i.e. finding homoge-
neous subgroups, is critical in gender stereotyping. For example, in Six and Eckes (1991)
the clustering structure is essential to uncover cognitive ordering principles underlying gen-
der stereotypes. Lewis et al. (2020) use word-embeddings to quantify the presence of gender
stereotypes in 200,000-word corpus of 247 books for children, obtaining 100 clusters of
words through k-means clustering based on their coordinates. Each cluster is interpreted ex-
post as female-biased (containing words such as kisses, loved, care, soup, eggs, milk, pie),
neutral or male-biased clusters (e.g. axe, blade, knife, car, bicycle, trains, policemen, guard,
sailor) according to the mean-rated genderedness of the words in the cluster as compared
with the mean-rated genderedness of all words in the sample.
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Here we propose a BNP dynamic mixture model that relies on a novel dependent DP
prior for a sequence of discrete random probability measures (Gt)t≥1, with t indexing dis-
crete time. Similarly to other dependent DPs, we exploit the stick-breaking construction of
the DP (Sethuraman, 1994) to introduce dependency among the Gt’s. To this end, we em-
ploy a suitable copula-based transformation of a Gaussian autoregressive process of order 1
(Guolo and Varin, 2014). The resulting sequence of random probability measures (Gt)t≥1 be-
longs to the broad class of dependent DP priors of MacEachern (2000), such that: i) (Gt)t≥1

has an autoregressive structure of order 1; ii) Gt is a DP, for any t ≥ 1. Therefore, the law
of (Gt)t≥1 provides an autoregressive order 1 DP (AR1-DP) nonparametric prior. We ap-
ply the AR1-DP prior to define a BNP mixture model for time-dependent data of biases
{(Yt1, . . . , Ytn)}t=1,...,T , where n is the number of embedding biases. We assume that the
Ytj’s are modeled as

Ytj | θtj
ind∼ k(· ; θtj) j = 1, . . . , n(1)

θt1, . . . , θtn |Gt
iid∼ Gt t= 1,2, . . . , T

(Gt)t≥1 ∼ AR1-DP

with k(· ; θ) being a density function parameterized by θ ∈Θ⊂ Rp, e.g. a Gaussian density
function with mean θ. The mixture model (1) may be viewed as a dynamic counterpart of the
popular DP mixture model (Lo, 1984) and provides a flexible tool to describe the clustering
dynamics of adjective and occupation embedding bias in a hierarchical setting . Indeed, the
AR1-DP mixture model (1) allows cluster memberships to change over time, creating new
clusters and removing existing ones. In particular, because of the autoregressive structure of
order 1 of the AR1-DP prior, the clustering configuration at time t+ 1 depends on the clus-
tering configuration at time t. The AR1-DP covers a wide range of dependence structure,
from independence across time periods to identical clustering structure over time. Model (1)
allows for posterior inference at a specific time point to borrow strength from the clustering
distribution at different times. Furthermore, it allows the inclusion of covariate information,
when available. Posterior inference can be performed through a particle Markov chain Monte
Carlo (MCMC) algorithm (Andrieu, Doucet and Holenstein, 2010) which is simple and com-
putationally efficient.

We apply the AR1-DP mixture model to adjective embedding bias data (see Section 3.1)
and to occupation embedding bias data (in Section 3.2), showing how it allows to quantify
historical trends of gender bias, and also to identify how specific adjectives and occupations
have become more closely associated with a specific gender over time. For occupation em-
bedding bias data, posterior predictive densities (see Figure 8) confirm a preliminary descrip-
tive statistical analysis (see the boxplots over time in Figure 12), showing that bias against
women tends to mitigate from 1900 to 2000. That is, estimated densities in Figure 8 are ex-
plained by two mixture components from 1900 to 1970, and by one mixture component in
1980, 1990 and 2000. In the latter case, the estimated mode moves towards larger values of
the support of the distribution from 1980 to 2000. The number of estimated clusters (see Sec-
tion 3.1) equals two for decades 1900, . . . ,1970, while equals 1 in decades 1980, 1990, 2000.
Similar results are obtained for adjective embedding bias data. For all decades, posterior pre-
dictive densities (Figure 10) show three well-separated peaks with different proportions; see
also the boxplots of adjective embeddings in Figure 13. For ease of interpretation, estimated
clusters are labelled as man/neutral/woman clusters, with the inclusion in one group corre-
sponding to conventional stereotypes. Our approach identifies a different structure, both in
density estimation and clustering, between the last three decades and the previous ones. This
might be due to the well-known socio-economic changes occurred in the period 1960-1970,
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which contributed to a “revolution" in the society and the spoken language (see, for instance,
Boltanski and Chiapello, 2006). In particular, we refer to what in the literature is called as the
second wave of feminism, a period of time between late 60s and early 70s, when in the US
women’s rights and women’s liberation became mass movements (Nicholson, 2010; Hewitt,
2012). At the same time, there was a critical change in the language, with the emergence
of a new psychological/sociological language which acknowledged the sex roles stereotypes
(Altman, 2003). See Section 3.3 for more details.

1.2. Related work. There exists a vast literature on dependent random probability mea-
sures indexed by discrete time, e.g., Griffin and Steel (2006), Caron, Davy and Doucet (2007),
Dunson, Pillai and Park (2007),Caron et al. (2008), Dunson and Park (2008), Rodriguez and
ter Horst (2008), Taddy (2010), Rodriguez and Dunson (2011), Griffin and Steel (2011),
Nieto-Barajas et al. (2012), Di Lucca et al. (2013), Bassetti, Casarin and Leisen (2014), Xiao,
Kottas and Sansó (2015), Gutiérrez, Mena and Ruggiero (2016), DeYoreo and Kottas (2018).
The prior processes developed by Taddy (2010) and DeYoreo and Kottas (2018) are closely
related to the AR1-DP prior. In particular, DeYoreo and Kottas (2018) define a dependent
prior through a transformation of a Gaussian autoregressive process of order 1 which, how-
ever, imposes more constraints on the dependence structure than the proposed copula-based
transformation. An alternative approach to dynamic clustering is offered by the work of Page,
Quintana and Dahl (2021), who introduce a prior process directly on a sequence of partitions
indexed by discrete time.

Dependent DPs defined through copula-based stick-breaking representations are popu-
lar in the BNPs, and they were first suggested in MacEachern (2000). Rodríguez, Dunson
and Gelfand (2010) introduce dependence across locations through a latent Gaussian copula
model as the mechanism for selecting the atoms. Rodriguez and Dunson (2011) propose a
more general AR-1stick-breaking process with weights constructed as probit transformations
of normal random variables, whereas Pati, Dunson and Tokdar (2013) consider dependent
mixtures of Gaussians which include probit stick-breaking mixtures of Gaussians. Arbel,
Mengersen and Rousseau (2016) propose a copula-based covariate-dependent stick-breaking
process for an environmental application featuring species-by-site count data, with a copula
transformation similar to ours. Finally, we highlight that our prior process is a special case of
the general framework developed by Barrientos, Jara and Quintana (2012), who provide an
alternative definition of MacEachern’s Dependent Dirichlet process. Their construction al-
lows specifying finite dimensional distributions of stochastic processes with given marginal
distributions, by exploiting the connection between stochastic processes and copulas.

1.3. Organization of the paper. The paper is structured as follows. In Section 2 we in-
troduce and characterise the AR1-DP mixture model: i) we define the AR1-DP prior as a
novel dependent DP; ii) we present a particle MCMC algorithm for posterior inference; iii)
we compare the AR1-DP mixture model with the models of Taddy (2010) and DeYoreo and
Kottas (2018). In Section 3 we apply the AR1-DP mixture model to time-dependent data
on occupation embedding bias (Section 3.1) and adjective embedding bias (Section 3.2). We
briefly discuss our findings in connection with sociological literature in Section 3.3. Sec-
tion 4 concludes the paper with a discussion and directions for future research. In Appendix
we provide the list of words used in the application as well as the definition of occupation
and adjective bias. We also describe the two datasets and perform an exploratory analysis
to investigate the presence of a temporal component in the clustering structure. The (online)
Supplementary Material contains some details on the MCMC algorithm for posterior infer-
ence and, in particular, on the particle MCMC step, an extensive simulation study illustrating
the performance of the AR1-DP mixture model and additional figures.
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2. The AR1-DP mixture model. We present the AR1-DP mixture model (1) and com-
pare it with competitor models in BNPs. We start by introducing the AR1-DP prior at
the latent level of (1), and by devising a particle MCMC algorithm for posterior infer-
ence. Observe that, according to (1), we are assuming that time-dependent data of biases
{(Yt1, . . . , Ytn)}t=1,...,T for each t are conditionally i.i.d. according to the random density
function

(2) ft(y) =

∫
k(y ; θ)Gt(dθ),

with the AR1-DP prior being a prior distribution on (Gt)t≥1. The AR1-DP prior provides a
new instance of dependent DP priors (MacEachern, 2000), i.e. a prior distribution for a col-
lection of dependent random probability measures indexed by discrete times. In this section,
we present a constructive definition of the AR1-DP prior, which combines a copula-based
transformation of a Gaussian autoregressive process of order 1 (Guolo and Varin, 2014) with
the stick-breaking construction of the DP prior (Sethuraman, 1994). The constructive defini-
tion of the AR1-DP prior plays a critical role in our study of the temporal dynamics of gender
stereotypes: i) it brings out the role of prior parameters, especially for tuning the degree of
dependence between random probability measures at different time points; ii) it leads to a
particle MCMC for posterior inference which is simple and computationally efficient.

2.1. AR1-DP priors. Let N(µ,σ2) denote a Gaussian distribution with mean µ and vari-
ance σ2, let ϵ∼ N(0,1) and let Φ(·) denote the cumulative distribution function of ϵ. Recall
that if F (· ; a, b) is the cumulative distribution function of a Beta random variable with param-
eter (a, b), then Y = F−1(Φ(ϵ);a, b) is a Beta random variable with parameter (a, b). Simi-
larly to Guolo and Varin (2014), we consider a discrete time stochastic process ϵ = (ϵt)t≥1

defined as

(3) ϵ1 ∼ N(0,1) and ϵt = ψϵt−1 + ηt t≥ 2

where ψ ∈ (−1,1) and (ηt)t>1 are independent and identically distributed (i.i.d.) as N(0,1−
ψ2). That is, ϵ is an autoregressive stochastic process of order 1 with parameter ψ and ϵt ∼
N(0,1); for brevity, ϵ∼ AR(1;ψ). Let (ϵl)l≥1 be i.i.d. such that ϵl ∼ AR(1;ψ) and let define

(4) ξtl = F−1(Φ(ϵtl);a, b),

for any t≥ 1 and l≥ 1. Because of the autoregressive structure of ϵl, ξtl depends on ξ(t−1)l,
with the parameter ψ controlling the dependence among the ξtl’s. In particular, for any fixed
l≥ 1, the assumption ψ = 0 corresponds to the assumption of independence among the ξtl’s.
Furthermore, for every t ≥ 1, ξtl is independent of ξth if l ̸= h, and they have the same
distribution.

Let G denote a DP on Θ⊂Rp with parameter (M,G0), where G0 is a non-atomic (base)
distribution on Θ and M > 0 is the scale parameter; for brevity G∼ DP(M,G0). It is known
from the work of Sethuraman (1994) that G =

∑
h≥1whδθh where: i) (wh)h≥1 are such

that w1 = ξ1 and wh = ξh
∏

1≤l≤h−1(1 − ξl) for h > 1, with (ξl)l≥1 being i.i.d. as a Beta
distribution with parameter (1,M); ii) (θh)h≥1 are i.i.d. as G0, and independent of (ξl)l≥1.
This is known as stick-breaking construction ofG∼ DP(M,G0). We exploit (4) to generalize
the stick-breaking construction of the DP in order to define a sequence of dependent random
probability measures (Gt)t≥1, with t being a discrete time, such that Gt ∼ DP(M,G0). As
such, let

(5) Gt =
∑
h≥1

wthδθh ,



6 DE IORIO, FAVARO, GUGLIELMI AND YE

where wt1 = ξt1 and wth = ξth
∏h−1
l=1 (1− ξtl), for h > 2, with (ξtl)t≥1,l≥1 and (θh)h≥1 such

that: i) (ξtl)t≥1,l≥1 are distributed as in (4), with parameters a = 1 and b =M ; ii) (θh)h≥1

are i.i.d. with common distribution G0, and independent of (ξtl)t≥1,l≥1. The dependent ran-
dom probability measure (Gt)t≥1 is referred to as the autoregressive DP of order 1; for
brevity, (Gt)t≥1 ∼ AR1-DP(ψ,M,G0). (Gt)t≥1 is a dependent DP in the sense of MacEach-
ern (2000). It is also an example of the single atom dependent DPs of Barrientos, Jara and
Quintana (2012).

Since ϵtl ∼ N(0,1) and F is the cumulative distribution function of a Beta random variable
with parameter (1,M), then ξtl is a Beta random variable with parameter (1,M). This im-
plies that if (Gt)t≥1 ∼ AR1-DP(ψ,M,G0) thenGt ∼ DP(M,G0) for any t≥ 1. Observe that
the ξtl’s in (4), whose dynamics in t≥ 1 is driven by (3), induces a dynamics in the sequence
of random probability measures (Gt)t≥1. Most importantly, for every l≥ 1 the stochastic pro-
cess (ξtl)t≥1 inherits the same autoregressive (order 1) Markov structure of each stochastic
process ϵl. Therefore (Gt)t≥1 ∼ AR1-DP(ψ,M,G0) has an autoregressive (order 1) Markov
structure, with the parameter ψ controlling the dependence among the Gt’s. In particular,
the assumption ψ = 0 corresponds to independence among the Gt’s. A natural extension of
(Gt)t≥1 ∼ AR1-DP(ψ,M,G0) arises by setting F to be the cumulative distribution function
of a Beta random variable with parameter (at, bt), for any t ≥ 1. If we further assume that
at = a and bt = b, for any t≥ 1, then (Gt)t≥1 is such that Gt is the generalized DP of Hjort
(2000). Although these generalization may be of interest to obtain more flexible prior dis-
tributions for dependent random probability measures in discrete time, here we focus on the
AR1-DP prior.

For ease of explanation, hereafter we drop the sub-index l. From ξ1 = 1− (1−Φ(ϵ1))
1/M

(see Equation (4)) we write ϵ1 = Φ−1(1− (1− ξ1)
M ), and from ξ2 = 1− (1− Φ(ϵ2))

1/M ,
using (3) and the expression of ϵ1, we have ξ2 = 1− [1−Φ(ψΦ−1(1− (1−ξ1)M )+η2)]

1/M ,
where η2 ∼ N(0,1− ψ2). Accordingly, the conditional distribution of ξ2 given ξ1 coincides
with the distribution of 1− (1−Φ(Z))1/M , where Z ∼ N(ψΦ−1(1− (1− ξ1)

M ),1− ψ2).
Along similar lines, the conditional distribution of ξt given ξt−1 coincides with the distribu-
tion of

(6) 1− (1−Φ(Z))1/M ,

where Z ∼ N
(
ψΦ−1

(
1− (1− ξt−1)

M
)
,1−ψ2

)
. Equation (6) is crucial for sampling from

(Gt)t≥1 ∼ AR1-DP(ψ,M,G0). Figure 1 displays the conditional density function of ξ2 given
ξ1 = 0.5 (left) and given ξ1 = 0.9 (right) for different values of ψ and M = 1. Our construc-
tion is flexible, allowing for different shapes of the distribution. In particular, for ψ = 0 the
conditional distribution coincides with the marginal distribution and it is a Uniform distribu-
tion.

2.2. Posterior analysis. To better describe the particle MCMC algorithm for posterior
inference under the AR1-DP mixture model, it is useful to recall the probabilistic sampling
structure of the DP. Because of the discreteness of the DP (Blackwell and MacQueen, 1973),
a random sample (θ1, . . . , θn) from G ∼ DP(M,G0) features 1 ≤ Kn ≤ n distinct types,
labelled by (θ∗1, . . . , θ

∗
Kn

), with corresponding frequencies (N1,n, . . . ,NKn,n) such that 1 ≤
Ni,n ≤ n and

∑
1≤i≤Kn

Ni,n = n. In other terms, the random sample (θ1, . . . , θn) induces
a random partition Πn of the set {1, . . . , n} into Kn blocks with sizes (N1,n, . . . ,NKn,n).
In particular, the probability of any partition of {1, . . . , n} having k blocks with frequency
counts (n1, . . . , nk) is

(7) pk,n(n1, . . . , nk) =
Mk∏n−1

i=0 (M + i)

k∏
i=1

(ni − 1)!.
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Fig 1: Conditional density of ξ2 given ξ1 = 0.5 (left) and given ξ1 = 0.9 (right) for some values of ψ and M = 1.

See Antoniak (1974) for a detailed account of (7). In our context, a random sample
(θt1, . . . , θtn) from Gt, for t = 1, . . . , T and with (Gt)t≥1 ∼ AR1-DP(ψ,M,G0), induces
a collection {Π1,n, . . . ,ΠT,n} of dependent random partitions of {1, . . . , n}. Due to the def-
inition of AR1-DP(ψ,M,G0), Πt,n is distributed as (7), for any t = 1, . . . , T . The number
of blocks/clusters of Πt,n, denoted by Kt,n, at each time t is a random variable that is sta-
tionary, so that its prior marginal distribution will not change with t. We omit the subscript t
and the subscript n when there is no chance of misunderstanding. Recall that the prior mean
of the number K of clusters for any t, given the total mass M , is

∑
1≤i≤nM/(M + i− 1)

(Antoniak, 1974).
Now, we consider the problem of sampling from the posterior distribution of the AR1-DP

mixture model. The design of a Gibbs sampler for such a problem is straightforward, once
we truncate the infinite series (5) to J terms and we introduce allocation variables stj for
each of the latent variable θtj . In particular, by using a latent variable representation, we can
write

Ytj | stj , θtj
ind∼ k(· ; θstj ) j = 1, . . . , n

stj |wt
iid∼

J∑
h=1

wthδh j = 1, . . . , n(8)

θtj
iid∼ G0,

where, for any t= 1,2, . . . , T ,

(9) wt1 = ξt1 and wtj = ξtj

j−1∏
h=1

(1− ξtl) j = 2, . . . , J − 1,

with wtJ = 1−
∑J−1

h=1 wth and

ξtj = 1− (1−Φ(ϵtj))
1/M j = 1, . . . , J − 1(10)

ϵ1j
iid∼ N(0,1) j = 1, . . . , J − 1(11)

ϵtj | ϵt−1,j ,ψ
ind∼ N(ψϵt−1,j ,1−ψ2) j = 1, . . . , J − 1.(12)

Here st = (st1, . . . , stn) is the allocation vector at time t, whose elements denote the mix-
ture component to which the elements of the sample (Yt1, . . . , Ytn) are allocated at time
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t; ϵt = (ϵ1t, . . . , ϵtJ−1) is the latent autoregressive process; θt = (θt1, . . . , θtJ) are the
component-specific parameters and wt = (w1t, . . . ,wtJ−1) are the weights of the compo-
nents in Gt (see Section 2.1). Therefore, the unknown parameters of the AR1-DP mixture
model are {θt, st,wt,ϵt,ψ,M}. The BNP mixture model defined in (8)-(12) not only pro-
vides a flexible tool for density estimation of discrete-time data, but also for time dependent
cluster estimation. Furthermore, the proposed modelling strategy can be employed to model
multiple time series, as an alternative to popular approaches which specify a distribution for
the vector of observations of each subject. In this setting it is difficult to achieve dynamic
clustering, with cluster membership changing over time. For a different proposal for time
dependent clustering see Page, Quintana and Dahl (2021), who explicitly model dependence
in a sequence of partitions by introducing auxiliary variables which identify which subject at
time t− 1 is considered for possible cluster reallocation at time t.

.
We outline the MCMC scheme for sampling from the posterior distributions of {θt, st,wt,

ϵt,ψ,M}. Further details of the algorithm can be found in Section 1 of the Supplementary
Material. Note that while θ is the same for each time period, the vector st changes over time
so that individuals can change clusters. Formally, the main steps of the MCMC algorithm are
the following:

1. sampling θ given the rest: this step requires to sample the values of θl’s corresponding
to non-allocated (empty) component from the base distribution G0, i.e. θl

iid∼ G0, while
update θl corresponding to the allocated components from the following conditional dis-
tribution

p(θl | rest)∝G0(dθ)
∏

(t,j):stj=l

f(ytj ; θtj)

2. sampling (s1, . . . , sT ) given the rest: the distribution of (s1, . . . , sT ) can be factorized
into the product of the distributions of each st given the rest; this is because, given
(w1, . . . ,wT ), the allocations at different times are conditionally independent; in particu-
lar, for each t, j we have

p(stj | rest)∝wtlf(ytj ; θl)

3. sampling {ψ, (w1, . . . ,wT )} given the rest: this step requires to sample from the condi-
tional distribution of {ψ, (w1, . . . ,wT )} given (s1 . . . , sT ), and we make use of a particle
MCMC update, which is discussed more in details in Section 1 of the Supplementary
Material.

The AR1-DP mixture model allows to accommodate a variety of temporal dynamic be-
haviours, thus defining a flexible class of time-evolving random density functions. Figure 2
displays some realizations of the AR1-DP(ψ,M , G0) mixture model with the specification
of a Gaussian kernel k(·; ·), for different values of ψ, and when: i) T = 4 and M = 2; ii)
G0 is a Uniform distribution with parameter (−20,20); iii) the truncation level in (8) is fixed
at J = 8. See also Figure 13 in Section 3 of the Supplementary Material for the distribution
of the Hellinger distances between ft, t = 2,3,4 and f1, defined as in (2). In particular, the
Hellinger distance shows a time-dependent behaviour which is what we expect from an AR1
process.

2.3. Competitor models. Taddy (2010) introduces a dependent DP prior for modelling
(discrete) time series of marked spatial point patterns. The likelihood function is assumed
to factorize in two independent components: i) the integrated intensities of the Poisson pro-
cesses, which are modelled as dynamic linear models; ii) a collection of the density functions
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Fig 2: Realizations of ft , for t= 1,2,3,4 and for some values of ψ.

(ft)t≥1, which are modelled via a Bayesian nonparametric mixture model with a dependent
DP prior. Specifically, the dependent DP prior of Taddy (2010) is defined as the distribution
of (Gt)t≥1 such that

Gt =
∑
h≥1

ξth

h−1∏
l=1

(1− ξtl)δθh ,

where

(13) ξtl = 1− utl(1−wtlξ(t−1)l)

with: i) utl and wt being Beta random variables with parameter (M,1− ψ) and (ψ,1− ψ),
respectively, for any t≥ 1, with M > 0 and 0< ψ < 1; ii) (θh)h≥1 being random variables
i.i.d. with common distribution G0, and independent of (ξtl)t≥1,l≥1. Accordingly, ξtl is dis-
tributed as a Beta distribution with parameter (1,M) and hence Gt ∼ DP(M,G0). The de-
pendent DP prior of Taddy (2010) introduces only the additional prior parameter 0<ψ < 1,
which accounts for modeling dependence over time. The correlation between ξtl and ξ(t−k)l
is (ψM/(1 +M − ψ))k > 0, which rules out negative correlation among the random proba-
bility measures Gt’s.

DeYoreo and Kottas (2018) develop a dependent DP prior for temporal dynamic ordinal
regressions. The focus is on modelling the time relationships between the maturity of fishes
(the ordinal response) and the age and length of fishes. In particular, the density functions for
the maturation, length and age are modelled via a Bayesian nonparametric dynamic mixture
model with a dependent DP prior. Differently from our AR1-DP prior, the prior of DeYoreo
and Kottas (2018) has both random atoms and random weights depending on t≥ 1. Specifi-
cally, the dependent DP prior of DeYoreo and Kottas (2018) is defined as the distribution of
(Gt)t≥1 with

Gt =
∑
h≥1

ξth
∏

1≤l≤h−1

(1− ξtl)δθth ,

where

(14) ξtl = 1− exp

{
−
ζ2l + η2tl
2M

}
,
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and (ηtl)t≥1
iid∼ AR(1,ψ), with ψ ∈ (−1,1), M > 0 and ζl

iid∼ N(0,1). This construction im-
plies that 1− exp{− ζ2l +η

2
tl

2M } is distributed according to a Beta random variable with parame-
ter (1,M), and hence Gt ∼ DP(M,G0). In particular, DeYoreo and Kottas (2018) show that,
since ηtl enters squared in the stick-breaking weights ξtl’s, the correlation between ξt−kl and
ξtl depends on the factor (ψ2)k and the correlation between Gt and Gt+1 is always positive.
Furthermore, M ≥ 1 implies that 0.5 is a lower bound on the correlation between ξtl and
ξt−kl, for any ψ ∈ (−1,1), and that such a peculiar issue may be overcome by time-varying
locations.

We remark that the works of Taddy (2010) and DeYoreo and Kottas (2018) focus on dy-
namic density estimation, and they do not consider the problem of dynamic clustering. In
particular, Taddy (2010) states that the dynamic clustering produced by his model is not
robust, and very different clustering may corresponds to relatively similar predictive distri-
butions. However, the nonparametric priors developed in Taddy (2010) and DeYoreo and
Kottas (2018), as well as our prior, are stationary, so that, once sample from Gt, features like
the number of unique values in the sample, will have the same marginal distribution under
the different priors.

To highlight its flexibility of the AR1-DP mixture model, we make use of a simulation
study to compare it with Taddy (2010) and DeYoreo and Kottas (2018). We generate data for
T = 10 time periods from mixtures of Gaussian distributions indexed by time and varying
cluster assignments over time.

Specifically, at time t= 1 we assume that the first 95 individuals are assigned to cluster 1
and sample Ytj

iid∼ N(µ̃1, σ̃
2
1) for j = 1, . . . ,95, while 5 observations are assigned to cluster 2,

and sample iid values fromN(ν̃1, τ̃
2
1 ). At time t= 2, . . . ,10, we assume the cluster allocation

stj = st−1j with probability 0.2 and stj ̸= st−1j with probability 0.8 (cluster allocations may
assume only values in {1,2}); hence, at each t ≥ 2 the number of individuals who change
the cluster allocation from previous time is a random variable K̃t with binomial distribution
with parameters n = 100 and success probability 0.8. Then, for each t ≥ 2 we simulate iid
values from N(µ̃t, σ̃

2
t ) for individuals such that stj = 1 and iid values from N(ν̃t, τ̃

2
t ) for

individuals such that stj = 2. Values of means µ̃t, ν̃t and standard deviations σ̃t and τ̃t are
reported in Table 1. We fit the AR1-DP mixture model to the simulated data:

Ytj | (µtj , τtj)
ind∼ N(µtj ,

(
λτtj)

−1
)

j = 1, . . . ,100

(µtj , τtj) |Gt
iid∼ Gt t= 1,2,3, . . . ,10

(Gt)t≥1 ∼ AR1-DP(ψ,Mt,G0)

Mt|b
iid∼Gamma(3, b) b∼ Gamma(300,50)

(15)

where G0 is a Gaussian-Gamma distribution with parameter (µ0, λ,α,β), i.e. µ|τ ∼
N(µ0,

1
λτ ) and τ ∼ Gamma(α,β) with E(τ) = α/β. We set µ0 = Ȳ , λ= 0.01, α= 5, β = 1,

J = 20 and R = 500. The (prior) expected number K of clusters at time t is 3. We run the
MCMC algorithm for 40,000 iterations, discarding the first 20,000 iterations as burn-in and
thinning every 20. Therefore we obtain a total of 1,000 samples. The estimated number of
clusters over time, obtained by minimizing the posterior expectation of variation of infor-
mation (VI) loss function (Wade and Ghahramani, 2018), as implemented in the R package
BNPmix, is 1, 1, 1, 2, 1, 1, 1, 1, 2, 1 respectively. The posterior distribution of ψ is displayed
in Figure 3, with mean of ψ equal to 0.0624, and posterior probability of ψ ≤ 0 equal to
0.376. Posterior co-clustering probabilities at t= 1, i.e. the probability that two items in the
sample are assigned to the same cluster, are displayed in Figure 4 (left panel). Estimated
density functions overlapped with the true density functions are displayed in Figure 5.
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Fig 3: Marginal posterior distribution of ψ.

Fig 4: Simulated Example: Posterior co-clustering probability plots at t= 1 under the AR1-
DP model (left) and Taddy (2010) (right).

TABLE 1
Simulated data: Mean and standard deviations (SD) for mixtures of Gaussian distributions indexed by time

periods t= 1, 2, 3, 4, 5, 6, 7, 8, 9, 10

N(µt, σt) N(νt, τt)

t µt σt νt τt

1 −3 1.5 3 1.5
2 −6 2.5 2 2.5
3 −4 2 4 2
4 −2 1 6 1
5 −3 3 3 3
6 −3 1.5 3 1.5
7 −6 2.5 2 2.5
8 −4 2 4 2
9 −2 1 6 1
10 −3 3 3 3

We fit the models of Taddy (2010) and DeYoreo and Kottas (2018) to the same simulated
data. For both the priors proposed by Taddy (2010) and DeYoreo and Kottas (2018), we
assume that G0 is a Gaussian-Gamma distribution with parameter (µ0, λ,α,β), i.e. µ|τ ∼
N(µ0,

1
λτ ) and τ ∼ Gamma(α,β) with E(τ) = α/β. We set µ0 = Ȳ , λ = 0.01, α = 5, β =

1. For the prior of Taddy (2010) we assume M ∼ Gamma(3,6) and ψ ∼ Uniform(0,1),
whereas for the prior of DeYoreo and Kottas (2018) we assume ψ ∼ Uniform(0,1), M ∼
Gamma(3,6) and τm

iid∼ Gamma(5,1). In this case, we also assume time-varying location,
i.e. we fit the following model: for all t, observations Ytj , for j = 1, . . . , n, are i.i.d. according
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Fig 5: Posterior predictive densities (green lines) versus true densities (orange lines) with
data (blue bar). Colors are visible in the online version.

to f(ytj |Gt), where

f(ytj |Gt) =
∞∑
m=1

pm,tN(ytj |µm,t, τ−1
m )(16)

with

µm,0 ∼ N(0,10), µm,t|µm,t−1 ∼ N(θµm,t−1,10)), τm
iid∼ Gamma(2,2)(17)

and the positive parameter θ being random. We assume a priori independence, when not
differently specified, among blocks of parameters. Posterior computations are performed by
truncating the infinite stick-breaking representation, as for our model, at a truncation level
J = 20. Observe that the model of DeYoreo and Kottas (2018) assumes a positive random
ψ, and that the parameter θ represents the autocorrelation parameter between the cluster
locations.

Both prior specifications for the parameter θ discussed by DeYoreo and Kottas (2018) are
considered, i.e. θ ∼ Uniform(0,1) and θ ∼ Uniform(−1,1), respectively. In both cases, the
number of estimated parameters is only one, so that the corresponding co-clustering plots do
not provide any information. We noted that, to obtain more than one estimated cluster at each
time point, we need to force the parameter τ in the baseline measure G0 to be highly con-
centrated on a large value, showing that the model proposed in DeYoreo and Kottas (2018)
as specified in (16)-(17) is less flexible than ours. The model in Taddy (2010) gives a larger
(than ours) number of estimated clusters at each time t (7, 10, 8, 3, 10, 9, 12, 9, 2, 7), though
the density estimates (not shown here) looks very similar to ours (and they follow the his-
tograms). In general, models that give an overestimated number of clusters produce better
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density estimates, and this seems to be the case for two times (t = 3,7) for our model. In
conclusion, this simulated example shows that the version of the model by DeYoreo and Kot-
tas (2018) we consider here cannot capture the negative correlation of the dynamic location
specific parameters. The prior process proposed by Taddy (2010) seems to overestimate the
number of clusters. However, it must be noted that, if we fit the model of DeYoreo and Kottas
(2018) using our MCMC scheme (instead of the one described in the original paper), this
latter approach is more computationally efficient than our approach and the one of Taddy
(2010). In scenarios 3 and 8 in Section 2 in Supplementary Material we include a compari-
son of cluster and density estimates between our model and the models of Taddy (2010) and
DeYoreo and Kottas (2018).

3. Application to gender stereotypes. We apply the AR1-DP mixture model (1) to
time-dependent data for adjective embedding bias and for occupation embedding bias. We
study how gender stereotypes, with respect to adjectives and occupations, change over time
in the 20th and 21th centuries in the United States. We make use of word embeddings (Garg
et al., 2018) to measure the gender bias. We consider embeddings trained on Corpus of
Historical American English (COHA) (Hamilton, Leskovec and Jurafsky, 2016) for eleven
decades t= 1900,1910,1920, . . . ,2000. These embeddings are applied to lists of words from
Garg et al. (2018), representing each gender (men and women) and neutral words (occupa-
tions and adjectives). Since there were ties in the original bias data, we jittered the data by
adding a zero-mean Gaussian noise before standardization. This leads to data for (standard-
ized) adjective and occupation embedding biases for women, for each word in the corre-
sponding list. For each time t, we obtain two (unidimensional) datasets: i) the occupation
biases {ytj , j = 1, . . . , nO}, with nO = 76; ii) the adjective biases {ztl, l = 1, . . . , nA}, with
nA = 230). See Appendix A for details. A negative value of the bias means that the embed-
ding more closely associates the word with men, because of the distance closer to men than
women. Gender bias corresponds to either negative or positive values of the embedding bias.
Hereafter, we write that there is a “bias against women” when the value of the embedding
bias is negative.

We model occupation embedding biases {ytj , j = 1, . . . , nO} and adjective embedding
biases {ztl, l = 1, . . . , nA} separately with the AR1-DP mixture model (1) with a Gaussian
kernel. Specifically,

Ytj | (µtj , τtj)
ind∼ N(µtj ,

(
λτtj)

−1
)

j = 1, . . . , nO

(µtj , τtj) |Gt
iid∼ Gt t= 1900,1910,1920, . . . ,2000

(Gt)t≥1 ∼ AR1-DP(ψ,M,G0).

(18)

where G0 is a Gaussian-Gamma distribution with parameter (µ0, λ,α,β), namely µ|τ ∼
N(µ0,

1
λτ ) and τ ∼ Gamma(α,β) with E(τ) = α/β. We assume the same model as in (18)

for the Ztl’s. We set µ0 = 0, λ= 0.01, α= 2, β = 1. For the occupation biases, we assume
M ∼ Gamma(4,4), while for the adjective biases M ∼ Gamma(3,5). In both cases the prior
distribution of number K of clusters at time t concentrates most of its mass on {2,3, . . . ,10},
as suggested by the exploratory data analysis presented in Appendix A; the prior expectation
of K is 4 in both cases. We have also performed a sensitivity analysis with respect to the
choice of the prior distribution for M , slightly increasing the prior expectation of K , and
the posterior inference is robust to this choice (results not shown). Posterior inference is
performed through the MCMC algorithm described in Section 2.2. We set the number of
iterations equal to 20,000, with a burn-in period of 10,000 iterations and thinning every 10
iterations. The truncation level J of the prior is fixed equal to the sample size in both the
analysis.
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3.1. Posterior inference: occupational embedding bias. Figure 6 (right-panel) shows that
the posterior distribution of the parameter ψ puts all its mass on the positive real line, with a
mode around 0.8 and posterior mean equal to 0.71. Figure 7 reports, only for three decades,
the posterior co-clustering probabilities, i.e. the probability that the two items in the sample
are assigned to the same cluster. From Figure 7, the predominant colors in 1900 and 1950
are blue (low posterior co-clustering probability) and green and yellow (medium posterior
co-clustering probability) but in different proportions, whereas the predominant colors in
2000 are yellow and green, indicating an overall posterior co-clustering probability larger
than 1900 and 1950. we have that the co-clustering probability are low (most values below
0.25) in 1900 and 1950, while they are higher in 2000 (most values being around 0.65).
In particular, the decrease over time in the bias against women can be seen in Figure 8,
where we plot posterior predictive densities of the occupational embedding bias for all the
decades, though we comment only the predictive densities for t= 1900,1950,2000. This is
in agreement with the data as it is evident from the boxplot of occupational bias embeddings
over time in Figure 12 in Appendix A (the data in the figure are not standardized).

Fig 6: Marginal posterior distributions of M (left panel) and ψ (right panel) for occupational bias data.

Fig 7: Co-clustering for occupational bias: t= 1990 (left panel), t= 1950 (center panel), t= 2000 (right panel).

From Figure 8, the estimated density function at time t = 1900 has two distinct peaks:
a higher peak centered at a negative (gender) bias location, and a lower peak centered at a
positive (gender) bias location. This means that in 1900, the fraction of man-biased jobs is
larger than the fraction of woman-biased jobs. In 1950, the estimated density function still has
two distinct peaks. While the locations of these two peaks remain about the same as in 1900,
the fraction of man-biased jobs and woman-biased jobs changes over time. In particular, the
fraction of man-biased jobs decreases with respect to the fraction of woman-biased jobs.
That is, between 1900 and 1950 more occupations become gender neutral or woman-biased.
However, for the year 2000, the estimated density function in Figure 8 has a single peak,
on the positive real line, showing that most of jobs are neutral. Posterior predictive means
increase over time: their value is -0.100, 0.120, 0.384 in 1900, 1950 and 2000, respectively.
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Fig 8: Posterior predictive densities of the occupational bias Y new
t .

Table 2 shows estimated cluster configurations at times t = 1900,1910,1920, . . . ,2000,
discarding singletons. In particular, the table reports the clustering that minimizes the poste-
rior expectation of variation of information (VI) loss function (Wade and Ghahramani, 2018),
obtained via the R package BNPmix. Wade and Ghahramani (2018) show that cluster esti-
mation using VI has the appealing property of penalising small clusters in comparison to
Binder’s loss (Binder, 1978), and therefore it leads to more interpretable estimated partition.
The number of estimated clusters over the times is 2,2,4,2,4,4,2,3,1,1,1, respectively.
However, besides singletons in 1920, 1940, 1950 and 1970, the estimated number of clusters
is always two except for the last three decades, in agreement with the estimated densities
displayed in Figure 8. In order to better explain our estimates, clusters are interpreted by
assigning them a “label” as follows (see Table 2): i) “man-cluster” (green cells in Table 2)
(i.e. occupations in the cluster are biased against women) if the empirical mean of all the
data points in the cluster is negative and zero is not within one (empirical) standard deviation
from the mean; ii) “woman-cluster” (blue cells) (i.e. the occupations are biased in favour of
women, or against men) if the empirical mean of all the data points in the cluster is positive
and zero is not within one standard deviation from the mean itself. A cluster is “neutral” (pink
cells) if zero is within one standard deviation from the empirical mean of all the data in the
cluster. Mean, standard deviation, min, max and count on top of the cells in Table 2 refer to
data without standardization.

Table 2 about here

As representative examples, we briefly discuss how few words change cluster over time,
i.e. we discuss cluster dynamics. In particular, the occupation word “ nurse ”, whose non-
standardized embedding is always positive, stands as a singletons in 1920, 1940, 1950 and
1970, while it is always in a “ neutral ” cluster in 1900, 1910, 1930 and 1960. We also ob-
serve that in 1900, the occupation word “athlete" is associated with men, while in 1950 and
2000, it belongs to the “neutral-cluster”. Of course, women athletes were very few in 1900,
but their number started to increase during the 20th century. For instance, the number of
Olympic women athletes increased from 65 at the 1920 Summer Olympics to 331 at the
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1936 Summer Olympics. Data have been retrieved from the official website of the Olympic
Games. See https://www.olympic.org/ for details. For some words the dynamics
of the corresponding cluster membership is less intuitive. For instance, the occupation word
“midwife” belongs to “ man ” clusters in all the decades until 1970. This can be explained by
the non-standardized data over time, since the bias embedding corresponding to “midwife”
is always negative, but it increases sharply to a positive value only in the year 2000. On the
other hand, the set of occupations that require a great amount of physical strength, such as
“farmer” and “soldier”, always belong to “ man ” clusters, and they co-cluster across all the
decades.

We compare our results with those obtained from alternative approaches, i.e. model (16)-
(17) by DeYoreo and Kottas (2018) as introduced in Section 2.3 (via our implementation)
and model (10) in Page, Quintana and Dahl (2021) (as implemented in the R-package drpm).
Cluster estimates depend on hyperparameter specification for all three models. We perform
a sensitivity analysis to hyperparameter choice for the two competitors models. For instance,
model (16)-(17) in DeYoreo and Kottas (2018) produces only one cluster for any time t, un-
less we set a prior which strongly favours a large number of clusters. Similar considerations
apply to the model in Page, Quintana and Dahl (2021), using default (in the companion R
package) hyperparameter values, which include a fixed value for the total mass parameter of
the marginal random partition prior (unlike our model). Nevertheless, if we assume E(τ) = 5
with variance 10−3 in (16)-(17) above (DeYoreo and Kottas, 2018), we find that the number
of estimated cluster (under VI loss) is 7, 7, 5, 7, 8, 7, 6, 7, 7, 6, 6. Still, the difference between
the associated cluster estimate and the one obtained with our model is evident, as quantified
by the adjusted Rand index (Hubert and Arabie, 1985) among the two cluster estimates (0.54,
0.39, 0.11, 0.29, 0.36, 0.61, 0.41, 0.46, 0.00, 0.00, 0.00). Recall that the adjusted Rand index
may assume also negative values, and it is bounded above by 1 which corresponds to the
case of perfect agreement between two partitions (see the R package mclust, Scrucca et al.,
2016). Under different hyperparameter settings (with total mass parameter of the marginal
time-dependent random partition prior equal to 2) we find that the number of estimated clus-
ters obtained with the approach of Page, Quintana and Dahl (2021) is 2 from 1900 to 1940,
and then 1 from 1950 to 2000. Once again the associated cluster estimates, until 1960, are
different from ours, as measured by the adjusted Rand index (0.14, -0.02, -0.03, 0.06, 0.05,
0, 0, 0, 1, 1, 1). Figure 11 displays the lagged ARI values for the cluster estimates for model
(10) in Page, Quintana and Dahl (2021), DeYoreo and Kottas (2018) and our model. Our
analysis highlights that the models by DeYoreo and Kottas (2018), and Page, Quintana and
Dahl (2021) are more sensitive to the choice of hyperparameters than ours. in particular , the
performance of model by Page, Quintana and Dahl (2021) is strongly affected by the choice
of the mass parameter, which controls the number of clusters.

Fig 9: Lagged ARI values corresponding to Page, Quintana and Dahl (2021) (left) and our (center) and DeYoreo and Kottas
(2018) (right) models. At each time point the partition was estimated using BNPmix R package based on VI loss.
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3.2. Posterior inference: adjective embedding bias. We fit the unidimensional model
(18), that is the unidimensional AR1-DP mixture model with a Gaussian kernel, to standard-
ized adjective biases {ztl, l= 1, . . . , nA}. From Figure 10, the estimated density function for
the adjective embedding bias at time t= 1900 has three peaks: the highest peak is centered
near the value -1.5, a small peak centered around the value -0.5 and a third peak centered at a
positive value for the gender bias. This means that in 1900, the fraction of man-biased adjec-
tives is larger than the fraction of neutral or woman-biased adjectives. In 1950 and 2000, the
estimated density functions still have three peaks. While the location of these three peaks re-
main the same, the fractions of man-biased adjectives and woman-biased adjectives change.
In particular, while the estimated density function in 1950 is very similar to that of t= 1900,
the estimated density function in 2000 is different. Indeed in 2000, the peak centered near
the value -1.5 becomes very small, while the peak centered around the value -0.5 increases
notably and the peak on the positive location grows moderately. Posterior predictive means
are 0.153, 0.165, 0.143 for t= 1900,1950,2000, respectively, showing a slow decrease over
time.

Fig 10: Posterior predictive densities of the adjective bias Znewt .

Table 3 shows the estimated cluster configurations at times t= 1900,1910,1920, . . . ,2000,
excluding all the singleton clusters. Also, the number of estimated clusters over the time pe-
riods is: 7, 8, 6, 9, 8, 7, 5, 5, 7, 5, 8. From Table 3, it is clear that bias tends to mitigate over
the years. If we consider the total number of adjectives in “ neutral ” clusters, we go from 4 in
1900, to 141 in 1950, to 147 in 2000. However, the cluster estimate in 2000 does not succeed
to identify a “ woman ” cluster, that is apparent from the density estimates in Figure 10. This
may be explained looking at the boxplots for the last three decades (see Figure 13 in Ap-
pendix A), where data are still biased against women overall, but variability is smaller. For
some of the adjective words, the inclusion in one group corresponds to conventional stereo-
types. For example, the words “attractive”, “ charming ” and “ feminine ”, often clustered
together, are in “ woman ” clusters in almost all decades until 1970, and then they belong
to “ neutral ” clusters. The words “immature”, “enterprising” and “autocratic” are in “ man ”
clusters for all the decades. Moreover, words such as “cool”, “demanding”, “relaxed” belong
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to neutral clusters in most decades, e.g. in 1900, 1950 and 2000 as showed in Table 3. Further-
more, it is also clear from the table that some adjective words are clearly gender-stereotyped:
“adaptable”, “dependable”, “inventive”, “methodical”, “resourceful” and “sociable” are al-
ways associated with men; analogously “ rigid ” is associated with women for most of the
decades, being its embedding mostly positive. Figures 17 and 18, respectively, show the
marginal posterior distribution of parameters ψ and M , as well as the posterior co-clustering
probabilities.

Table 3 about here

We compare our clustering results with those obtained with the model of Page, Quintana
and Dahl (2021). Similarly as for the application on occupation embedding bias, the analysis
is very sensitive to hyperparameter choice. Using the same values as in the previous appli-
cation, we get that the number of estimated clusters is on average smaller than in our case
(specifically 2, 5, 5, 5, 5, 3, 2, 4, 5, 3, 2). This might be due to the fact that the total mass
parameter M is random in our case, and fixed (M = 2) for the model of Page, Quintana
and Dahl (2021). The difference between the two estimated partitions is substantial, with the
adjusted Rand index at each time point equal to 0.43, 0.33 , 0.10, 0.51 , 0.46 , 0.00, 0.00,
0.59, 0.39, 0.00, -0.02 respectively. Figure 11 displays the lagged ARI values for the cluster
estimates for model (10) in Page, Quintana and Dahl (2021) and our model.

Fig 11: Lagged ARI values corresponding to Page, Quintana and Dahl (2021) (left) and our (right) models. At each time
point the partition was estimated using BNPmix R package based on VI loss.

3.3. Discussion on the dynamics of gender stereotypes. We compare our posterior infer-
ence results with those obtained by Garg et al. (2018), as well as results found in Bolukbasi
et al. (2016) and Caliskan, Bryson and Narayanan (2017) which are also discussed in Garg
et al. (2018). Bolukbasi et al. (2016) propose a method for removing gender stereotypes in
the embeddings, a problem we do not consider here, since word embeddings often show gen-
der bias to a worrying extent. On the other hand, Caliskan, Bryson and Narayanan (2017)
show that machine learning techniques as applied to ordinary human language results in
human-like semantic biases. They replicate a range of known biases, as measured by the
Implicit Association Test, arguing that language itself contains recoverable imprints of hu-
man historic biases. In particular, Caliskan, Bryson and Narayanan (2017) find female names
are more associated with family than career words, as compared to male names, and that
female words (such as “ woman ” and “ girl ”) are more associated with the arts than with
mathematics. From Garg et al. (2018) “ gender bias, as seen through adjectives associated
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with men and women, has decreased over time and that the women’s movement in the 1960s
and 1970s especially had a systemic and drastic effect in women’s portrayals in literature
and culture ”. The authors show that despite “ women’s occupation percentages are highly
correlated with embedding gender bias ”, the embeddings generally reflect additional social
stereotypes beyond what can be explained by occupation participation. In particular, Garg
et al. (2018) prove “ consistency ” between occupational words’ embeddings and women’s
occupation participation over two groups of decades, from 1900 to 1970 and from 1980 to
2000. The effects of women’s movements, in particular on the language in the 1960-1970, is
well documented (Rosen, 2013).

From the posterior predictive estimates in Figures 8 and 10 and from the cluster estimates
in Tables 2 and 3, we see the same discontinuity over the time period under consideration.
In particular, for the occupational words, Figure 8 shows that bias against women is high
until 1970. Moreover, we observe two components in the density estimates for all decades
including 1970, which then reduces to a single component after 1970. Bias against women
decreases from 1970 and one "clear" component is enough to explain the predictive densi-
ties from 1980. This is also in agreement with the number of estimated clusters over time
(beyond singletons) that is always 2 except in 1980, 1990 and 2000. Similar comments hold
true for the adjective bias if we look at Figure 10, where the posterior predictive densities
for all decades from 1900 to 1960 (included) are very similar, while from 1970, the peak
centered near the value −1.5 becomes very small, almost undistinguishable, while the right
peak seems to move toward zero. Remember that the parameter ψ controls the AR-1 depen-
dence among the random mixing measures over time and hence only indirectly controls the
dependence between data at time t+ 1 from data at time t. However, it is interesting to note
that the posterior distributions of ψ for occupational bias (Figure 7, right panel), as well as
for adjectives’ bias (Figure 17, right panel), are in agreement with the empirical covariance
between adjective bias reported in Table 4 of Garg et al. (2018) and between occupational
bias (see Figure B.7 Garg et al. (2018)).

4. Conclusions. Motivated by recent methodological and computational developments
on BNP analysis of time-dependent data, in this paper we investigated the use of BNP mix-
ture modeling to study temporal dynamics of gender stereotypes. The AR1-DP provides a
framework for both density estimation from discrete-time data and discrete-time dependent
clustering of the subjects measured at different time points. Moreover, it can be employed for
modeling multiple time series.

There has been a recent interest in the use of machine learning techniques, and in partic-
ular word embeddings in natural language processing, to quantify and compare gender and
ethnic stereotypes over time. Here, we exploit word embeddings trained on COHA (Hamil-
ton, Leskovec and Jurafsky, 2016) for eleven decades between 1900 to 2000, and a list of
words provided by Garg et al. (2018), to obtain time-dependent data for (standardized) ad-
jective and occupation embedding biases for women over the 20th and 21st centuries in the
United States. Then, we developed a novel BNP dynamic mixture model, which is referred
to as the AR1-DP mixture model, for modeling time-dependent adjective bias and for occu-
pation bias data. The AR1-DP mixture model exploits both the discreteness of the DP prior
and an autoregressive dependence structure among DP priors to provide a flexible and ro-
bust model for dynamic density estimation and for dynamic clustering of biases data in a
hierarchical setting. Posterior inference is performed through a particle MCMC algorithm
which is computationally efficient. The application of the AR1-DP mixture model to data
of adjective and occupation embedding bias shows that our model is able to quantify his-
torical trends of gender bias, and to identify how specific adjectives and occupations became
more closely associated with certain populations over time. We find that the numbers of com-
ponents (as shown in the posterior predictive densities) as well as the number of estimated



20 DE IORIO, FAVARO, GUGLIELMI AND YE

clusters changes between 1960 and 1970. Our analysis highlights a clear difference in be-
haviour between the last three decades and the previous ones, both in terms of density and
cluster estimation. As such, our results complement existing literature on the topic.

Our work demonstrates that the AR1-DP mixture model is a powerful tool in the context
of quantifying gender stereotypes through time-dependent data of adjective and occupation
embedding biases. Besides this context, we believe that the flexibility of the AR1-DP prior
may be usefully exploited to develop BNP dynamic mixture models in more general settings.
In particular, our future research will focus on extensions of the AR1-DP mixture model in
order to consider applications to time-dependent data with covariates and time-dependent
data with spatial structure. Moreover, we will consider higher order dependence structures.
It must be noted that the AR1-DP model assumes that the cluster memberships of subjects
are conditionally i.i.d., given the mixing distribution Gt at time t. This implies, for example,
that there is a positive probability that a word might jump from a man cluster at time t to a
woman cluster at time t+ 1. As the analysis concerns the same set of words over time, we
could impose some stronger dependency on cluster membership, at the cost of more expen-
sive computations. Finally, it is also straightforward to extend our prior process to include
dynamic locations as in DeYoreo and Kottas (2018) to allow for extra flexibility, if required
by the application.
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Cluster 1 (Neutral) 
Mean (-0.011) Std (0.03) Min (-0.055) Max (0.087) Count (33)

Cluster 2 (Man) 
Mean (-0.094) Std (0.021) Min (-0.151) Max (-0.051) Count (43)

architect, attendant, baker, blacksmith, broker, carpenter, cashier, chemist, 
clergy, clerical, conductor, cook, doctor, driver, gardener, housekeeper, 
instructor, janitor, laborer, mechanic, musician, nurse, operator, painter, 
pilot, porter, sailor, sales, scientist, surgeon, tailor, teacher, weaver

accountant, administrator, artist, athlete, auctioneer, author, bailiff, 
clerk, collector, dancer, dentist, designer, economist, engineer, farmer, 
geologist, guard, inspector, judge, lawyer, librarian, manager, mason, 
mathematician, midwife, official, photographer, physician, physicist, 
police, postmaster, professor, psychologist, retired, secretary, sheriff, 
shoemaker, smith, soldier, statistician, student, supervisor, surveyor

Cluster 1 (Neutral) 
Mean (-0.005) Std (0.02) Min (-0.048) Max (0.051) Count (38)

Cluster 2 (Man) 
Mean (-0.085) Std (0.02) Min (-0.136) Max (-0.043) Count (36)

administrator, architect, athlete, attendant, auctioneer, baker, broker, 
carpenter, chemist, clergy, clerical, collector, conductor, cook, dancer, 
dentist, designer, economist, gardener, housekeeper, inspector, instructor, 
mason, mechanic, musician, operator, painter, photographer, physicist, 
porter, psychologist, sailor, scientist, supervisor, surgeon, tailor, teacher, 
weaver

accountant, artist, author, bailiff, blacksmith, cashier, clerk, doctor, 
driver, engineer, farmer, geologist, guard, janitor, judge, laborer, 
lawyer, librarian, manager, mathematician, midwife, official, physician, 
pilot, police, postmaster, professor, retired, sales, secretary, sheriff, 
shoemaker, smith, soldier, statistician, surveyor

Cluster 1 (Neutral) 
Mean (-0.034) Std (0.04) Min (-0.163) Max (0.062) Count (76)

accountant, administrator, architect, artist, athlete, attendant, auctioneer, 
author, bailiff, baker, blacksmith, broker, carpenter, cashier, chemist, clergy, 
clerical, clerk, collector, conductor, cook, dancer, dentist, designer, doctor, 
driver, economist, engineer, farmer, gardener, geologist, guard, housekeeper, 
inspector, instructor, janitor, judge, laborer, lawyer, librarian, manager, 
mason, mathematician, mechanic, midwife, musician, nurse, official, 
operator, painter, photographer, physician, physicist, pilot, police, porter, 
postmaster, professor, psychologist, retired, sailor, sales, scientist, secretary, 
sheriff, shoemaker, smith, soldier, statistician, student, supervisor, surgeon, 
surveyor, tailor, teacher, weaver

Year 1900

Year 1950

Year 2000

TABLE 2
Cluster estimates of the occupational bias data for t= 1900,1950,2000 without singletons.
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Cluster 1 (Woman) 
Mean (0.027) Std (0.022) Min (-0.023) Max (0.096) Count (102)

Cluster 2 (Man) 
Mean (-0.088) Std (0.004) Min (-0.09) Max (-0.069) Count (70)

Cluster 3 (Man) 
Mean (-0.018) Std (0.017) Min (-0.053) 
Max (0.017) Count (41)

Cluster 4 (Woman) 
Mean (0.044) Std (0.025) 
Min (0.004) Max (0.074) 
Count (8)

Cluster 5 (Neutral) 
Mean (0.021) Std (0.021) 
Min (0.003) Max (0.056) 
Count (4)

Cluster 6 (Man) 
Mean (-0.05) Std (0.009) 
Min (-0.062) Max (-0.041) 
Count (3)

Cluster 7 (Woman) 
Mean (0.106) Std (0.012) 
Min (0.093) Max (0.118) 
Count (2)

aggressive, alert, aloof, ambitious, artistic, attractive, awkward, calm, careless, 
cautious, cheerful, clever, coarse, commonplace, complaining, complicated, 
confused, considerate, contented, conventional, courageous, cowardly, cruel, 
curious, cynical, defensive, deliberate, dependent, dignified, discreet, dreamy, 
dull, efficient, emotional, energetic, fearful, foolish, friendly, frivolous, gentle, 
hasty, healthy, helpful, humorous, impatient, impulsive, indifferent, 
industrious, informal, initiative, jolly, kind, lazy, leisurely, logical, loyal, mild, 
mischievous, moderate, nervous, noisy, patient, peculiar, persistent, pleasant, 
polished, precise, progressive, queer, quick, quiet, rational, rebellious, restless, 
retiring, rigid, robust, rude, sensitive, sentimental, serious, shallow, silent, 
simple, sincere, sly, spontaneous, stubborn, superstitious, suspicious, tense, 
thoughtful, thrifty, timid, tough, trusting, understanding, unkind, unselfish, 
warm, wholesome, withdrawn

active, adaptable, appreciative, arrogant, assertive, autocratic, 
changeable, conceited, deceitful, dependable, distrustful, 
effeminate, enterprising, fickle, forceful, forgetful, forgiving, 
greedy, headstrong, honest, idealistic, immature, independent, 
individualistic, infantile, inhibited, intolerant, inventive, 
irresponsible, irritable, meek, methodical, obliging, obnoxious, 
optimistic, organized, outgoing, outspoken, painstaking, 
peaceable, persevering, pessimistic, praising, prejudiced, 
preoccupied, quarrelsome, quitting, realistic, reflective, resentful, 
resourceful, responsible, sarcastic, sociable, sophisticated, stable, 
submissive, tactful, talkative, thankless, tolerant, unaffected, 
unassuming, unfriendly, unstable, versatile, vindictive, wary, 
witty, worrying

adventurous, affected, anxious, bitter, 
capable, civilized, cold, confident, 
conscientious, conservative, 
cooperative, daring, determined, 
disorderly, dissatisfied, dominant, 
enthusiastic, generous, handsome, 
hostile, hurried, imaginative, ingenious, 
intelligent, loud, mature, moody, 
natural, practical, reckless, reliable, 
reserved, severe, shrewd, slow, steady, 
strong, thorough, unscrupulous, weak, 
wise

affectionate, formal, 
gloomy, modest, poised, 
selfish, shy, sympathetic

cool, demanding, 
masculine, relaxed

original, reasonable, stern charming, feminine

Cluster 1 (Neutral) 
Mean (0.009) Std (0.024) Min (-0.049) Max (0.059) Count (133)

Cluster 2 (Man) 
Mean (-0.081) Std (0.004) Min (-0.111) Max (-0.079) Count (73)

Cluster 3 (Man) 
Mean (-0.054) Std (0.014) Min (-0.08) 
Max (-0.032) Count (6)

Cluster 4 (Woman) 
Mean (0.044) Std (0.026) 
Min (0.006) Max (0.098) 
Count (7)

Cluster 5 (Neutral) 
Mean (0.019) Std (0.028) 
Min (-0.018) Max (0.052) 
Count (8)

Cluster 6 (Woman) 
Mean (0.118) Std (0.003) 
Min (0.115) Max (0.121) 
Count (2)

affected, aggressive, alert, aloof, ambitious, anxious, arrogant, artistic, 
awkward, bitter, calm, capable, careless, cautious, cheerful, civilized, clever, 
cold, commonplace, complaining, complicated, confused, conscientious, 
contented, conventional, courageous, cruel, curious, cynical, daring, defensive, 
deliberate, demanding, dependent, determined, dignified, dissatisfied, 
dominant, efficient, emotional, energetic, enthusiastic, fearful, foolish, forceful, 
friendly, generous, gloomy, greedy, handsome, hasty, healthy, helpful, hostile, 
humorous, imaginative, impatient, indifferent, informal, ingenious, initiative, 
irresponsible, jolly, kind, lazy, leisurely, logical, loud, loyal, mature, mild, 
moderate, modest, moody, natural, nervous, noisy, optimistic, outgoing, 
outspoken, patient, peculiar, persistent, pleasant, poised, polished, practical, 
preoccupied, progressive, queer, quick, quiet, rational, realistic, reasonable, 
reckless, relaxed, reliable, reserved, restless, retiring, rigid, rude, selfish, 
sensitive, sentimental, serious, severe, shrewd, silent, simple, sincere, slow, sly, 
sophisticated, spontaneous, stable, stern, strong, stubborn, suspicious, 
sympathetic, tense, thorough, thoughtful, timid, tolerant, understanding, 
warm, weak, withdrawn, witty, worrying

adaptable, adventurous, appreciative, assertive, autocratic, 
changeable, conceited, confident, conservative, considerate, 
cowardly, deceitful, dependable, discreet, disorderly, distrustful, 
dreamy, enterprising, fickle, forgetful, forgiving, frivolous, 
headstrong, honest, idealistic, immature, impulsive, 
individualistic, industrious, infantile, inhibited, intolerant, 
inventive, irritable, meek, methodical, mischievous, obliging, 
obnoxious, organized, painstaking, peaceable, persevering, 
pessimistic, praising, prejudiced, quarrelsome, quitting, 
rebellious, reflective, resentful, resourceful, robust, sarcastic, 
sociable, submissive, superstitious, tactful, talkative, thankless, 
thrifty, tough, trusting, unaffected, unassuming, unfriendly, 
unkind, unscrupulous, unselfish, unstable, versatile, vindictive, 
wholesome

active, effeminate, independent, 
original, responsible, wise

attractive, dull, formal, 
hurried, masculine, 
precise, shy

affectionate, coarse, cool, 
cooperative, gentle, 
intelligent, steady, wary

charming, feminine

Cluster 1 (Neutral) 
Mean (0.003) Std (0.019) Min (-0.051) Max (0.076) Count (138)

Cluster 2 (Man) 
Mean (-0.051) Std (0.004) Min (-0.076) Max (-0.03) Count (77)

Cluster 3 (Neutral) 
Mean (0.034) Std (0.035) Min (-0.019) 
Max (0.08) Count (4)

Cluster 4 (Neutral) 
Mean (-0.008) Std (0.01) 
Min (-0.019) Max (0.011) 
Count (5)

Cluster 5 (Man) 
Mean (-0.026) Std (0.019) 
Min (-0.053) Max (-0.013) 
Count (3)

active, affectionate, alert, ambitious, anxious, artistic, attractive, awkward, 
bitter, calm, careless, cautious, cheerful, civilized, clever, coarse, cold, 
commonplace, complaining, complicated, confused, cool, cooperative, 
courageous, cruel, curious, cynical, daring, deliberate, demanding, dependent, 
determined, dignified, discreet, dominant, dreamy, efficient, emotional, 
enthusiastic, fearful, foolish, formal, friendly, generous, gentle, gloomy, helpful, 
honest, hurried, imaginative, impatient, independent, indifferent, informal, 
initiative, intelligent, irresponsible, jolly, kind, lazy, leisurely, logical, loud, 
masculine, mature, mild, mischievous, moderate, modest, moody, natural, 
nervous, noisy, optimistic, organized, original, outgoing, outspoken, patient, 
peculiar, persistent, pleasant, poised, polished, practical, precise, preoccupied, 
progressive, quick, quiet, rational, realistic, reasonable, rebellious, reckless, 
reflective, relaxed, reliable, reserved, responsible, restless, rigid, robust, rude, 
sarcastic, selfish, sensitive, sentimental, serious, severe, shallow, shy, silent, 
simple, sincere, slow, sly, sophisticated, spontaneous, stable, steady, stern, 
strong, suspicious, sympathetic, tactful, tense, thorough, thoughtful, timid, 
trusting, understanding, unstable, versatile, wary, weak, withdrawn, worrying

adaptable, adventurous, aggressive, aloof, appreciative, assertive, 
autocratic, capable, changeable, conceited, conscientious, 
conservative, considerate, contented, cowardly, deceitful, 
dependable, disorderly, dissatisfied, distrustful, effeminate, 
enterprising, fickle, forceful, forgetful, forgiving, frivolous, 
handsome, hasty, headstrong, hostile, humorous, idealistic, 
immature, impulsive, individualistic, industrious, infantile, 
ingenious, inhibited, intolerant, inventive, irritable, meek, 
methodical, obliging, obnoxious, painstaking, peaceable, 
persevering, pessimistic, praising, prejudiced, quarrelsome, queer, 
quitting, resentful, resourceful, retiring, shrewd, sociable, 
submissive, superstitious, talkative, thankless, thrifty, tolerant, 
tough, unaffected, unassuming, unfriendly, unkind, unscrupulous, 
unselfish, vindictive, wholesome, wise

affected, dull, feminine, healthy confident, energetic, 
greedy, stubborn, witty

arrogant, conventional, 
loyal

Year 1900

Year 1950

Year 2000

TABLE 3
Cluster estimates of the adjective bias data for t= 1900,1950,2000 without singletons.
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APPENDIX A: Data and further posterior inference for the gender stereotypes ex-
ample - word emebeddings. All word lists for this application are from Garg et al. (2018),
available on their GitHub page at https://github.com/nikhgarg/EmbeddingDynamicStereotypes.
In this Appendix we explain how the two variables of interest, gender embedding bias refer-
ring to occupational and adjective lists, respectively, have been derived.

First of all, we consider four collated work lists from Garg et al. (2018) to represent each
gender (men, women) and neutral words (occupations and adjectives), which we denote here
by Wman, Wwoman, Woccu and Wadj . The lists follow here:

• Man words (Wman): he, son, his, him, father, man, boy, himself, male, brother, sons, fa-
thers, men, boys, males, brothers, uncle, uncles, nephew, nephews.

• Woman words (Wwoman): she, daughter, hers, her, mother, woman, girl, herself, female,
sister, daughters, mothers, women, girls, femen, sisters, aunt, aunts, niece, nieces.

• Occupations (Woccu): janitor, statistician, midwife, bailiff, auctioneer, photographer, ge-
ologist, shoemaker, athlete, cashier, dancer, housekeeper, accountant, physicist, gardener,
dentist, weaver, blacksmith, psychologist, supervisor, mathematician, surveyor, tailor, de-
signer, economist, mechanic, laborer, postmaster, broker, chemist, librarian, attendant,
clerical, musician, porter, scientist, carpenter, sailor, instructor, sheriff, pilot, inspector,
mason, baker, administrator, architect, collector, operator, surgeon, driver, painter, conduc-
tor, nurse, cook, engineer, retired, sales, lawyer, clergy, physician, farmer, clerk, manager,
guard, artist, smith, official, police, doctor, professor, student, judge, teacher, author, sec-
retary, soldier.

• Adjectives (Wadj): headstrong, thankless, tactful, distrustful, quarrelsome, effeminate,
fickle, talkative, dependable, resentful, sarcastic, unassuming, changeable, resourceful,
persevering, forgiving, assertive, individualistic, vindictive, sophisticated, deceitful, impul-
sive, sociable, methodical, idealistic, thrifty, outgoing, intolerant, autocratic, conceited, in-
ventive, dreamy, appreciative, forgetful, forceful, submissive, pessimistic, versatile, adapt-
able, reflective, inhibited, outspoken, quitting, unselfish, immature, painstaking, leisurely,
infantile, sly, praising, cynical, irresponsible, arrogant, obliging, unkind, wary, greedy, ob-
noxious, irritable, discreet, frivolous, cowardly, rebellious, adventurous, enterprising, un-
scrupulous, poised, moody, unfriendly, optimistic, disorderly, peaceable, considerate, hu-
morous, worrying, preoccupied, trusting, mischievous, robust, superstitious, noisy, toler-
ant, realistic, masculine, witty, informal, prejudiced, reckless, jolly, courageous, meek,
stubborn, aloof, sentimental, complaining, unaffected, cooperative, unstable, feminine,
timid, retiring, relaxed, imaginative, shrewd, conscientious, industrious, hasty, common-
place, lazy, gloomy, thoughtful, dignified, wholesome, affectionate, aggressive, awkward,
energetic, tough, shy, queer, careless, restless, cautious, polished, tense, suspicious, dis-
satisfied, ingenious, fearful, daring, persistent, demanding, impatient, contented, selfish,
rude, spontaneous, conventional, cheerful, enthusiastic, modest, ambitious, alert, defen-
sive, mature, coarse, charming, clever, shallow, deliberate, stern, emotional, rigid, mild,
cruel, artistic, hurried, sympathetic, dull, civilized, loyal, withdrawn, confident, indiffer-
ent, conservative, foolish, moderate, handsome, helpful, gentle, dominant, hostile, gen-
erous, reliable, sincere, precise, calm, healthy, attractive, progressive, confused, rational,
stable, bitter, sensitive, initiative, loud, thorough, logical, intelligent, steady, formal, com-
plicated, cool, curious, reserved, silent, honest, quick, friendly, efficient, pleasant, severe,
peculiar, quiet, weak, anxious, nervous, warm, slow, dependent, wise, organized, affected,
reasonable, capable, active, independent, patient, practical, serious, understanding, cold,
responsible, simple, original, strong, determined, natural, kind.

For each word in those lists, we download (from https://nlp.stanford.edu/projects/histwords)
the corresponding embeddings from previously trained Genre-Balanced American English
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embeddings from Corpus of Historical American English (COHA) (Hamilton, Leskovec and
Jurafsky, 2016) for the eleven decades available, specifically referring to decades 1900, 1910,
. . ., 1990, 2000. Following Garg et al. (2018), from the embeddings and word lists, we are
able to measure the embedding bias (i.e. strength of association) between words that represent
gender groups (i.e. women and men) and neutral words such as Occupations and Adjectives.
Here subscript t represents the year (decade), i.e. t= 1900,1910, . . . ,1990,2000.

• For each time t, we compute mt, the average embedding vector for Wman, averaged over
the 20 words in the list Wman; similarly, wt denotes the average embedding for Wwoman,
averaged over all the word embeddings in the list Wwoman.

• We define the embedding bias Y ′
tj for (or against) women of the jth occupation word in

Woccu at time t as the difference of the Euclidean distances between the jth word and the
men representative and the difference of the Euclidean distances between the jth word and
the women average vector, i.e.

occupation biastj = Y ′
tj = ||otj −mt||2 − ||otj −wt||2,

where otj is the word embedding vector of the jth occupation word at time t and || ·
||2 is the Euclidean norm of a finite-dimensional vector. We standardize the occupation
embedding bias for women by considering Ytj as Y ′

tj minus the overall mean and then
divide it by the overall standard deviation.

• Similarly, we define the adjective embedding bias Z ′
tl for (or against) women of the lth

adjective word in Wadj at time t, as the difference

adjective biastl = Z ′
tl = ||atl −mt||2 − ||atl −wt||2,

where atl is the word embedding vector of the lth adjective word at time t. Here each Z ′
tl

has been standardized subtracting from Z ′
tl the overall mean and then divide the difference

by the overall standard deviation to get Ztl as for the occupational bias for women.

Note that, if the bias value is negative, then the embedding more closely associates the occu-
pation (or adjective) word with men, because the distance between the occupation (or adjec-
tive) word is closer to men than women. Other norm definitions could be used here, as, for
instance, cosin similarity. Hence, gender bias against women corresponds to negative values
of the embedding bias.

There are many ties in both original datasets {Y ′
tj} and {Z ′

tj}. There are different strate-
gies to deal with ties in the data, such as opting for a truncated normal distribution as the
kernel k(·;θ) of the mixture. However, since our primary interest is to investigate the cluster
estimates, we jitter the data by adding zero-mean Gaussian noise, with variance 0.001 to both
bias data (i.e. “ jittering ”) before standardization; the ratio between the noise variance and
the overall range of data (max - min) is 0.3% in case of Occupations and 0.4% in case of
Adjectives.

It is clear from Figure 12 that most of the occupation words show gender bias against
women, since the empirical distributions as shown by the boxplots are all concentrated below
0. With respect to the adjective bias, from Figure 13 we see that the adjectives are biased
against women too, but less than the occupation words.

As exploratory data analysis, we compute data-driven cluster estimates of occupation and
adjective embedding bias through the R packages cluster and factoextra. Typical methods
are based on the distance between pairs of embeddings. We show the Euclidean distance
between pairs of occupation embedding bias for each decade in Figure 14 through the com-
mand fvi_dist of package factoextra. To make a comparison over time, for each decade
we fix the (alphabetical) order of the occupation words on the axes. Even though it is diffi-
cult to highlight particular changes over time in the matrices in Figure 14, it seems clear that
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Fig 12: Boxplots of the occupation embedding bias across decades. The horizontal black line
indicates the overall mean and the dashed line corresponds to zero.

the distances between words to not change abruptly from one decade to the other. Moreover,
we compute data-driven cluster estimates of occupation and adjective embedding bias using
K-means and Partitioning Around Medoids (PAM) algorithms. The elbow method (plots not
shown here) for K-means indicates that the optimal number of clusters is constant through
decades and it is equal to four and three for the occupation and adjective embedding bias,
respectively. However, because of the sensitivity of K-means cluster estimates to initial ran-
dom allocation, to the order of data and to outliers, we estimate cluster allocation using PAM
as well. PAM (Kaufman and Rousseeuw, 1990) is an iterative clustering methods based on
k-medoids, alternative to K-means centroids. For each decade, the optimal number of clus-
ters is determined as the integer k (between 2 and 10) that maximizes the average silhouette
index as implemented in the R packages cluster and factoextra. The average silhouette is one
of the many internal cluster validation criteria, measuring the quality of a clustering. A high
average silhouette width (close to 1) corresponds to a satisfactory clustering structure. See
Kassambara (2017) for further details.

Boxplots of occupation embedding bias per estimated clusters (via PAM) across decades
are displayed in Figure 15. Data points are in red, while the boxplots and outliers are
represented in black. Note that data points which are also outliers are reported twice. The
number of boxplots is the number of clusters in each optimal partition. A similar plot for the
adjective embedding bias is displayed in Figure 16.

Tables 4 and 5 show the sample sizes of the three largest estimated clusters (via PAM) for
the occupation and adjective embedding bias, respectively, for each decade. These sample
sizes do not generally show abrupt changes over time.
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Fig 13: Boxplots of the adjective embedding bias across decades. The horizontal black line
indicates the overall mean and the dashed line corresponds to zero.
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Fig 14: Distance matrices of occupation embedding bias across decades.

decade 1900 1910 1920 1930 1940 1950
n1, n2, n3 43, 33, - 26,9,8 24,19,9 18,10,9 39, 37, - 38, 38, -

Average silhouette 0.690 0.701 0.670 0.653 0.673 0.696
decade 1960 1970 1980 1990 2000

n1, n2, n3 39, 37, -, 21, 15, 9 22, 17, 10 22, 17, 13 17,14,13
Average silhouette 0.678 0.685 0.628 0.632 0.676

TABLE 4
Sample sizes of the three largest estimated clusters and average silhouette index (via PAM) for the occupation

embedding bias for each decade.
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Fig 15: Boxplots of occupation embedding bias per estimated clusters (via PAM) across
decades. Data points are in grey, while the boxplots and outliers are represented in black.
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Fig 16: Boxplots of adjective embedding bias per estimated clusters (via PAM) across
decades. Datapoints are in grey, while the boxplots and outliers are represented in black.

From this brief exploratory data analysis, we believe that we can conclude that an auto-
regressive behaviour in the clustering structure over time is a reasonable assumption. Both
methods, K-means and PAM, suggest that reasonable values for the number K of clusters
for both datasets vary between two and ten (taken to be the largest possible value in this



30 DE IORIO, FAVARO, GUGLIELMI AND YE

decade 1900 1910 1920 1930 1940 1950
n1, n2, n3 150, 80, - 159,71, - 66,31,27 151, 79, - 148, 81, - 146, 84, -

Average silhouette 0.727 0.720 0.667 0.721 0.747 0.741
decade 1960 1970 1980 1990 2000

n1, n2, n3 145, 85, - 147, 83, - 76,27,23 134,96,- 141,89, -
Average silhouette 0.746 0.744 0.676 0.710 0.684

TABLE 5
Sample sizes of the three largest estimated clusters and average silhouette index (via PAM) for the adjective

embedding bias for each decade.

exploratory analysis). As such, we specify the prior on the concentration parameter M in the
analysis of Section 3 to induce a prior mean on the number of clusters equal to four.

In this Appendix we also include extra figures of the gender bias examples. The right
panel of Figure 17 shows the marginal posterior distribution of ψ, with posterior mean equal
to 0.072, in the case of the adjective embedding bias data in Section 3.2. The posterior co-
clustering probabilities in this case are displayed in Figure 18. The predominant colors are
red, green and blue, and the left and middle panel (1900 and 1950) are very similar. Instead
the right panel (2000) has very little green and most blue (low co-clustering probability) and
red (high co-clustering probability). The three co-clustering plots seem similar. La frase che
c’era prima era sbagliata se la Figure 18 è esatta.

Fig 17: Marginal posterior distributions of M (left panel) and ψ (right panel) for adjectives
bias data.

Fig 18: Posterior co-clustering for adjectives bias data for t = 1990 (left panel), t = 1950
(center panel) and t= 2000 (right panel).


