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Abstract We propose a novel meta-learning-based method with digital-twin-enabled multi-mirror 

models to realize inter/intra-node failure localization with only few samples. Experimental results reveal 

that it achieves satisfactory accuracy and adaptability regardless of the number of service requests, 

percentage of OPM and types of failure. ©2023 The Author(s) 

Introduction 

Reconfigurable optical add/drop multiplexers 

(ROADMs) are currently evolving towards multi-

degree architectures to support the growing 

traffic and a more flexible network connectivity 

[1,2]. Since a ROADM is composed of multiple 

devices, such as wavelength selective switches 

(WSS), a ROADM-based optical network 

includes both inter-node and intra-node links, 

where an inter-node link denotes the connection 

between nodes, while an intra-node link denotes 

the internal connectivity within a node. Hence, to 

achieve proper failure localization in ROADM-

based optical networks, faulty devices should be 

identified in both inter-node and intra-node links. 

However, failure localization with inter-/intra-

node has been shown to be a complex task [3]. 

Machine Learning (ML) is a promising 

technique for failure localization [4-6], as ML can 

unveil the mapping between some monitored 

network features and the failure location based 

on historical data. Unfortunately, it is difficult to 

obtain sufficient failure ground-truth data in real 

optical networks, as optical performance 

monitors (OPMs) are not widely deployed and 

historical catalogue of failure data is not always 

comprehensive. Several approaches have been 

proposed to overcome these issues. For example, 

transfer learning allows to transfer models trained 

in networks with sufficient data (i.e., the source 

domain) to networks with insufficient data (i.e., 

the target domain) [7]; or generative adversarial 

networks (GANs) can expand the number of 

available training samples [8]. However, transfer 

learning performance heavily depends on 

correlation between source/target domain, while 

GAN needs lots of samples to train generator. 

Recently, meta learning shows potential to 

model complex tasks with few samples thanks to 

its advanced model updating procedure [9]. By 

performing a “meta training” across similar tasks, 

a pretrained-model can be obtained, which then 

is adapted to a new task by fine-tuning it with few 

samples from the new task. However, obtaining a 

strong pretrained model usually requires many 

tasks. A possible solution is to build several 

mirror models via digital twin according to the 

parameters from the physical network [10-12]. 

These mirror models simulate various scenarios 

(e.g., different failures) to generate tasks. 

In this study, we propose a meta-learning-

based method to locate inter-/intra-node failures 

in ROADM-based optical networks. In this 

method, a digital twin is used to generate training 

tasks. We compare the proposed method with 

transfer learning and artificial neural network 

(ANN) without pretraining in a real testbed. 

Results show that meta learning quickly adapts 

to unseen scenarios with different number of 

service requests, percentage of OPM and failure 

types, and achieves satisfactory accuracy. 

Network Scenario and Failure Model 

Fig. 1(a) presents an example of a 3-node optical 

network with inter-/intra-node fiber links based on 

broadcast-and-selected (B&S) ROADMs. In the 

intra-node part, each electrical switch (E-switch) 
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Fig. 1: (a) Inter-/intra-node optical network with 3-node; (b) 

Failure devices. 
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is equipped with several transponders to send 

and receive traffic. ROADM consists of multiple 

devices, including arrayed waveguide grating 

(AWG), EDFA, splitter and WSS. These devices 

are connected via intra-node fiber links. In the 

inter-node part, inter-node fiber links support long 

distance transmission. Over this network 

architecture, multiple service requests are routed 

passing through different devices, and several 

OPMs (indicated as yellow squares) are 

deployed to monitor network status. 

In optical networks, several devices may fail 

(e.g., due to aging or human activity), as shown 

in Fig. 1(b). Extra attenuation might arise due to 

failures in WSS, inter-node fiber links, AWG and 

splitters. Amplification failures occur when 

EDFAs cannot ensure sufficient amplification to 

signals. Launch failures are due to transponder 

malfunctioning, which may provide insufficient 

launch power. For sake of simplicity, in this work 

we focus on single-failure localization as multiple 

devices are unlikely to fail simultaneously. 

Meta Learning for Failure Localization with 

Digital-Twin-enabled Multi-Mirror Models 

Fig. 2 presents our scheme to obtain a meta 

learner for failure localization that generalizes to 

different failure scenarios. 

Module 1: Generating training tasks by digital 

twin. First, we collect several parameters from the 

physical network shown in Fig. 2(a), including 

launch power of transponders, amplification gain 

of EDFA, and insertion losses of WSS, AWG, 

splitter and fibers. These parameters are used to 

build multiple mirror models as shown in Fig. 2(b), 

where each mirror model denotes a virtual 

scenario (i.e., including different number of 

services requests, OPM and failure types). These 

mirror models will provide different training tasks, 

as shown in Fig. 2(c), where the number of 

service requests ranges from 20 to 100 (step by 

20), percentage of OPM ranges from 0.2 to 1.0 

(step by 0.2), and index 0~6 denotes different 

combinations of failures. Hence, the total number 

of virtual scenarios used for meta training is 175 

(5 × 5 × 7), and for each of them the failure 

locations are randomly selected. In this work, 

each mirror model corresponds to a training task 

𝒯𝑖 , and it generates some samples. These 

samples are divided into support set and query 

set to pretrain and update the meta learner. 

Module 2: Pretraining of meta learner based on 

training tasks. We take an ANN as a meta learner 
in Fig. 2(f). The ANN is denoted by a function 𝑓𝜙 

with parameters 𝜙. Fig. 2(e) shows the updating 

procedure of meta learning, where parameters 

𝜙0 are randomly initialized. When adapting to a 

training task 𝒯𝑖, meta learning will copy 𝑓𝜙𝑖−1 with 

a new function 𝑓𝜃𝑖  and then update 𝑓𝜃𝑖  using 

support set. The updating process is as follows: 

𝜃𝑖
′ = 𝜃𝑖 − 𝛼∇𝜃𝑖ℒ𝒯𝑖

𝑠 (𝑓𝜃𝑖)                 (1) 

where 𝛼 is a learning rate and ℒ𝒯𝑖
𝑠  denotes cross-

entropy loss of the support set in training task 𝒯𝑖. 
Meanwhile, we calculate the gradient for  𝑓𝜃𝑖

′ 

based on query set, and then update meta 

learner  𝑓𝜙𝑖−1 with same gradient: 

𝜙𝑖 = 𝜙𝑖−1 − 𝛽∇𝜙𝑖−1 ∑ ℒ𝒯𝑖
𝑞
(𝑓𝜃𝑖

′)𝒯𝑖
           (2) 

where 𝛽  denotes learning rate and ℒ𝒯𝑖
𝑞

 is the 

cross-entropy loss of query set in training task 𝒯𝑖. 
Module 3: Finetuning of meta learner based on 

testing tasks. After pretraining with training tasks, 

we collect a test task from the physical network 

(see Fig. 2(d)) and use its support set to update 

meta learner by Eqn. (1). The finetuned learner 

will locate failures of inter- and intra-node based 

on the query set, and results are shown in Fig. 

2(g). The above process is called Model Agnostic 

Finetune

WSS

①

②

③
③

③ Failure 
Localization

Query 1

①

Samples

Samples

Pretrain

Gain of EDFA

Insertion loss of WSS/ 
AWG/Splitter/Fiber

Power of transponder

. . .
Parameters

(e)

(a)

(b)

(c)

(d)

(g)

(f)

20 40 60 80100

0 1 2 3 4 5 6

Number of requests

Percentage of 
OPM

Combination of 
failures

Requests

Failures

OPM

0.2 0.4 0.6 0.8 1.0

Att.
Aam.

Lau.
0&1

0&2
1&2

0&1&2

30 50 70 90

0 1 2 3 4 5 6

Number of requests

Percentage of 
OPM

0.1 0.3 0.5 0.7
0.8

. . .

Support/Query set 1

Support/Query set 2

Support/Query set 

Combination of 
failures

20 0.2 1

20 0.2 0

100 1.0 6

Support/Query set 

Support/Query set 

60.830~90

Support/Query set 

60.1~0.990

0~60.890

. . .
0.9

Testing with 
unseen tasks

 
Fig. 2: Meta learning for failure localization with digital-twin-enabled multi-mirror models: (a) Physical network; (b) Mirror 

models; (c) Training tasks; (d) Testing tasks; (e) Updating procedure of MAML; (f) ANN-based meta learner; (g) Faulty devices. 
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Fig. 2: Meta learning for failure localization with digital-twin-enabled multi-mirror models: (a) Physical network; (b) Mirror 

models; (c) Training tasks; (d) Testing tasks; (e) Updating procedure of MAML; (f) ANN-based meta learner; (g) Faulty devices. 



  

Meta Learning (MAML) [14]. 

Experimental Setup and Results 
The proposed scheme is evaluated in the 9-node 
topology shown in Fig. 3(a). For training tasks, 
the detailed parameters are provided in our 
previous work [13]. Testing tasks are collected 
from a testbed shown in Fig. 3(b), where traffic 
generator and analysis (TGA) are connected with 
E-switches to inject live traffic, variable optical 
attenuator (VOA) simulates different failures, and 
OPMs monitor network status. Fig. 3(b) presents 
the experimental setup, which is consistent with 
Fig. 2. The meta learner is composed of ANN with 
324×300×216 neurons, and the learning rates 𝛼 
and 𝛽  are set to 0.001. We consider transfer 
learning and ANN without pretraining as the 
benchmarks. Transfer learning is pretrained with 
training tasks data and finetuned with testing 
tasks data, whereas no-pretraining method 
consists of training only using testing tasks data. 

Fig. 3(c) shows pretraining accuracy of meta 
learning and transfer learning under different 
training epochs (nb: each epoch has 175 tasks), 
where shot denotes the number of samples in 
each task. It can be observed that accuracy 
increases with the number of shots. In addition, 
transfer learning is more accurate and stable than 
meta learning. The reason is that transfer 
learning minimizes the total loss while meta 
learning focuses on stronger adaptability. Shot is 
set to 50 in the following experiments. Fig. 3(d) 
shows testing accuracy for increasing the number 
of service requests, where percentage of OPM is 
0.8 and failure index is 6. Meta learning achieves 
higher accuracy followed by transfer learning and 

no-pretraining due to its efficient pretraining. Fig. 
3(e) shows testing accuracy under different 
percentage of OPM, where the number of service 
requests is 90 and failure index is 6. It shows that 
adding OPMs is beneficial to improve accuracy, 
but it will increase the cost of CAPEX. Moreover, 
meta learning also achieves higher accuracy 
than benchmarks. Finally, we present testing 
accuracy under different combinations of failure 
in Fig. 3(f), where the number of service requests 
is 90 and percentage of OPM is 0.8. The results 
indicate that meta learning improves accuracy of 
18% and 59% on average compared to transfer 
learning and no-pretraining, respectively. The 
failure types do not greatly affect accuracy since 
different failures all result in abnormal monitoring 
values, which is easily analysed by ML. 

Conclusion: We have proposed a novel meta-
learning-based method with digital-twin-enabled 
multi-mirror models to locate failures of inter-
/intra-node. It improved accuracy over 9% on 
average comparing with transfer learning under 
different number of service requests, percentage 
of OPM and types of failure. This approach can 
accurately locate failures with limited data. 
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