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A B S T R A C T

This work presents an investigation on the dynamics of a magnetically frequency up-converted piezoelectric
energy harvester. The magnetic interaction arises between a tip magnet on a piezoelectric bimorph and a
moving magnet. The latter is controlled through a low-frequency shaker at a fixed frequency of 3 Hz. We
investigate in detail the effect of increasing velocity interaction between the magnets at the same input
frequency, in terms of frequency up-conversion (i.e. migration from slow to fast dynamics). We show that,
for increasing velocity of interaction, the frequency of the first bending mode of the piezoelectric bimorph
gradually appears. Also material nonlinearities are observed as a frequency shift of the bending mode. The
work shows also that the magnetic plucking phenomenon can be reliably simulated by means of a reduced
order model that takes into account material nonlinearities.
1. Introduction

The growing need to create an interconnected world through smart
devices makes autonomous sensing an attractive goal, with the aim
of reducing the use of batteries. Among energy harvesting and trans-
duction mechanisms, the exploitation of the kinetic energy from en-
vironmental vibrations using structures equipped with piezoelectric
material is one of the most promising [1,2]. In this way, it is possible
to convert mechanical energy into electrical by the so-called direct
piezoelectric effect [3,4], whereas the inverse effect is adopted for
actuation purposes [5]. The research in this field initially focused on
the transduction mechanism for linear systems [6–8]. Unfortunately,
these studies have shown that without a strong dynamic amplification
of piezoelectric transducers (i.e. near resonance condition), only low
amounts of energy can be recovered [9]. The excitation at resonance
is difficult to obtain, since the transducers are typically small objects
characterized by relatively high resonance frequencies (i.e. hundreds or
even thousands of hertz) while ambient vibration has a strong energy
density below one hundred hertz [6].

To solve this limitation, frequency up-conversion techniques were
introduced through plucking mechanisms. Some of these make use
of mechanical contact through plectra [10,11], others are realized
through impacts [12,13], or through magnetic interaction between
permanent magnets. The latter technique is favorable as it avoids
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impacts and early degradation of the piezoelectric crystals [14]. Mag-
netic plucking was initially introduced by considering two separate but
coupled oscillating systems. Typically, a transducer equipped with a
magnet vibrates due to the interaction provided by another magnet
mounted on a dynamic system able to vibrate at low frequency. In such
a way it is possible to create an impulsive force directly applied to the
energy harvester [15–17]. Many systems in the literature are based on a
rotational mechanism, such as Pillatsch et al. [18,19], Fu and Yeatman
[20], and Shu et al. [21], who also recently exploited the activation of
different structural modes [22]. Studies on the best orientation of the
magnets on these rotational mechanisms have been made by Xue and
Roundy [23]. The aforementioned studies are conducted by considering
the input driving frequency, in the range of 1–35 Hz as a parameter for
the harvester performance. The literature lacks a specific study on the
effect of the magnetic interaction velocity on the magnetic FuC. To the
best of our knowledge, the only study about the velocity was carried
out by Dauksevicius et al. [24] without considering the nature of the
material response (i.e. linear or nonlinear), with reference to rotational
mechanisms. Moreover, the relative velocities that are considered in
that paper are by far larger than the typical values of human motion.

In this work, we first investigate in detail the effect of increasing
velocity interaction between the moving magnets at the same input fre-
quency, in terms of frequency up-conversion (i.e. migration from slow
to fast dynamics). Then, we observe and discuss inherent piezoelectric
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Fig. 1. Schematic of the typical bimorph for energy harvesting with piezoelectric layers in series connection with addition of the magnets for the magnetic plucking.
(material) nonlinearities that may arise during the magnetic plucking,
and their implications in terms of energy harvesting.

The paper is organized as follows: Section 2 presents the modeling
for the piezoelectric energy harvester and the magnetic force, together
with the calibration of the mathematical model parameters. Section 3
presents the experimental investigation and the comparison with the
numerical time domain simulation and the discussion of the results.
Various effects of the system response are analyzed: velocity of inter-
action between magnets, gap distance, and electrical load resistance.
Closing remarks are provided in Section 4.

2. Modeling

2.1. Piezoelectric bimorph model

To describe the behavior of the piezoelectric transducer, the unified
nonlinear nonconservative electroelastic model proposed in [25] is
adopted. The model is valid under moderately high mechanical and
electrical excitation levels. Both hysteretic elastic and electromechani-
cal nonlinear coupling are considered. The ferroelectric hysteresis is not
considered since it is assumed that the piezoelectric layers work well
below the coercive field, as will be shown later. The following expres-
sion of nonlinear enthalpy density 𝐻𝑝 is assumed for the piezoelectric
material [25]:
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where 𝑆1 is the axial strain, 𝐸3 is the electric field in the polarization
direction, 𝑐11,𝑝 and 𝑒31 are the linear elastic and piezoelectric constants,
and 𝑐111,𝑝 and 𝑒311 are the nonlinear elastic and piezoelectric constants.
𝜀33 is the dielectric constant. The nonconservative work is assumed as
in [25], which takes into account the first and second order structural
damping and the Joule heating of the load resistance (see Appendix A).

In Eq. (1), the presence of the sign function states that the enthalpy
density is expressed in the strain amplitude rather than the strain
itself. In this way, the second-order terms do not disappear, in the
equation of motion, if the model is applied to a symmetric layering.
Such a choice is justified by the fact that if third-order nonlinearities
are introduced to avoid the effect of vanishing second-order terms, an
experimental inconsistency in terms of backbone curves is observed. In
fact, the model also predicts a linear backbone curve in the range where
nonlinearity is pronounced, which was experimentally demonstrated
[25,26]. The piezoelectric cantilever beam with a tip mass is modeled
by adopting the Euler–Bernoulli structural theory. A schematic of the
beam, together with the moving magnet in typical positions that will
be adopted in the experiment, is shown in Fig. 1.

The stresses 𝑇1 and the electric displacement 𝐷3 are computed
through the equations:

𝑇1 =
𝜕𝐻𝑝 (2)
2
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𝜕𝐻𝑝

𝜕𝐸3
(3)

To spatially discretize the problem, Galerkin’s method is applied
by using only one degree-of-freedom (dof) 𝑢(𝑡) for the transversal
displacements of the beam 𝑢3(𝑥1, 𝑡) and voltage at the electrodes 𝑣(𝑡)
(see Appendix A). By applying Hamilton’s principle, the electromechan-
ical equations of motions are represented by the following system of
ordinary differential equations (ODEs, see Appendix A for details):
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where 𝑓𝑒𝑥𝑡 represents the sum of all external forces acting on the
mechanical dof. 𝑚 is the modal mass of the first mode, 𝑏1, 𝑘1 𝜃1 are
the linear damping, stiffness, and coupling coefficients respectively,
while 𝑏2, 𝑘2, and 𝜃2 are the nonlinear counterparts. 𝐶 is the effective
capacitance of the piezoelectric cantilever.

2.2. Magnetic force

The investigation on the modeling of the magnetic forces has been
conducted in a previous work [16]. To avoid cumbersome finite ele-
ment analysis (FEA), the analytical formula provided by Akoun and
Yonnet in [27] is adopted, which supposes uniform and rigid magneti-
zation of the involved magnets. It is in good agreement with FEA results
and experiments.

The interacting magnets are represented in Fig. 2. If 𝑖 is the cartesian
direction of the force component in which one is interested in, the force
is computed with the formula:
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where J and J′ are the magnetization vectors (in Tesla) and 𝜇0 is the in-
vacuum magnetic permeability equal to 4𝜋10−7 H/m. The parameters
𝑚, 𝑛, 𝑝, 𝑞, 𝑟, 𝑠 can be equal to 1 or 0 and their combination identifies the
corner of the magnets. The coefficients 𝜙𝑖 depend on the geometrical
dimensions of the magnets. For details on 𝜙𝑖, 𝑈𝑚𝑛, 𝑉𝑝𝑞 , 𝑊𝑟𝑠, 𝑅, see
Appendix B. In the experiments the magnets are cubic NdFeB with a
side length of 3.18 mm and a magnetization of 1.32 𝑇 (K&J Magnetics,
Inc. B222).

2.3. Model calibration

Except for the mechanical damping, all the linear parameters in
the differential system (4) can be computed from supplier data. On
the other hand, the identification of nonlinear parameters requires
experimentation [25,28]. To identify the linear damping coefficient
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Fig. 2. Illustration of a couple of interacting permanent magnets implemented from
[27].

𝑏1, and the nonlinear parameters 𝑐111,𝑝, 𝑒311, and 𝑏2 a Piezo Systems
Inc. brass-reinforced T226-A4-103X bimorph beam with PZT-5A active
material and equipped with a tip magnet is employed in a base-
excitation setup featuring a Brüel and Kjær Type 4809 electrodynamic
shaker coupled with a Spektra VCS-201 controller to maintain the
desired acceleration level. Frequency sweeps are performed at five
RMS acceleration levels including 0.03 g, 0.05 g, 0.1 g, 0.3 g, and
0.5 g. Once the experimental voltage output is obtained for multiple
acceleration levels and load resistances equal to R = 1 kΩ, 5 kΩ, 10 kΩ,
50 kΩ, 100 kΩ, and 500 kΩ, the nonlinear parameters are extracted
by fitting the numerical voltage–frequency response curves with the
corresponding experimental results. The experimental setup as well as
the bimorph cross-section and sample voltage sweep results for a load
resistance of R = 100 kΩ with the fitting are shown in Fig. 3.

The geometrical and physical quantities of the bimorph are listed
in Table 1. All the identified parameters are in agreement with those
identified by Leadenham and Erturk for the same beam, [25] except
for the linear and nonlinear damping which can be attributed to
minor differences in clamping and environmental conditions. It is also
interesting to observe the behavior of the backbone curve for different
load resistors. In Fig. 4, the experimental FRFs of voltage indicate
that for increasing load resistance, the backbone curve remains linear
but undergoes a clockwise rotation, limiting the effect of inherent
nonlinearity (i.e. slight shift of the resonant frequency).

3. Experimental investigation and simulation

3.1. Setup description

The experimental procedure for studying the magnetic plucking has
been realized with the setup showed in Fig. 5. The setup features a
long stroke shaker (APS-113) with a magnet attachment. The shaker is
actuated using a harmonic function with constant frequency of 3 Hz.
The velocity of the moving magnet is measured using a laser Doppler
Vibrometer (Polytec PDV-100), which is also used as the feedback
signal for the vibration controller Spektra VCS-201 that maintains
a specified maximum velocity level between 0.3 m/s and 0.7 m/s.
The voltage output of the bimorph is measured across a load resistor
ranging from 1 kΩ up to 100 MΩ, while the tip velocity is recorded
with a Polytec OFV-505 vibrometer. A linear precision positioner is
used to accurately set the gap distance between the magnets with little
uncertainty (±0.025 mm) by moving the clamped bimorph.
3

Table 1
Physical and geometrical data of the piezoelectric bimorph.

Description Symbol Value Unit

Total beam length 𝐿∗ 31.8 mm
Overhang length 𝐿 26.7 mm
Width 𝑏 3.16 mm
PZT-5A layer thickness ℎ𝑝 0.265 mm
Brass layer thickness ℎ𝑏 0.125 mm
PZT-5A mass density 𝜌𝑝 7800 kg∕m3

PZT-5A Young’s modulusa 𝑐11,𝑝 66 GPa
PZT-5A nonlinear elastic constant 𝑐111,𝑝 −60 TPa
PZT-5A linear piezoelectric constanta 𝑒31 −11.6 C∕m2

PZT-5A nonlinear piezoelectric constant 𝑒311 −20 kC∕m2

PZT-5A dielectric constant 𝜀33 14.6 nF∕m
Brass mass density 𝜌𝑏 8500 kg∕m3

Brass Young’s modulus 𝑐11,𝑠 100 GPa
Linear damping coefficientb 𝑏1 1.70e1 N∕m
Nonlinear damping coefficientb 𝑏2 9.00e5 N∕m2

a Constants provided by the supplier.
b These values are obtained by direct fitting on the lumped-parameter model of the
Eq. (4).

The relative velocity of interaction is manipulated by acting only
on the amplitude of the signal provided to the shaker. The system is
built in such a way that the peak velocity of the input harmonic signal
occurs at the minimum distance between the magnets (i.e. h in Fig. 1).
The magnets are in the repulsive configuration, that is of most interest
for energy harvesting [16]. It is important to underline that, in general,
it is not necessary for the moving magnet to follow a harmonic motion
for having plucking [30]. In any case, the impulsive character of the
magnetic interaction is connected to the relative velocity rather than
to the amplitude of the movement of the moving magnet.

3.2. Effect of the plucking velocity

The first investigation concerns the observation of voltage–time
histories for a fixed gap distance h = 2.5 mm between the magnets
and for a fixed electrical resistance R = 100 kΩ, and varying velocities
of the magnetic interaction. Fig. 6 shows the recordings made for the
different tests. For the slower case (0.3 m/s, top left), it can be observed
that there is a snap in tension experienced by the bimorph but there
is no presence of high-frequency vibration. This is due to the fact
that the observed phenomenon is basically quasi-static and corresponds
to the deflection and discharge of the beam under the action of the
magnetic force. By considering the increasing velocity, as indicated in
the other plots of Fig. 6, gradually the presence of the free-vibration
of the bending mode appears. In the case of 0.4 m/s, a weak presence
of the first mode is observed after the voltage peaks. In that case, the
beam attempts to vibrate but the moving magnet attached to the shaker
is still close enough to interact and suppress the oscillation. As the
velocity increases, the moving magnet is gradually further away from
the beam. The magnetic interaction after the peak is in that case always
lower, allowing the beam to oscillate more and more tending towards
the free vibration condition. An increase in the interaction velocity has
a clear effect on the impulsiveness of the induced magnetic force. For
the 0.3 m/s case, it is observed in the plots that the induced quasi-static
phenomenon lasts about 0.05 s. For the faster case (0.7 m/s), the snap
phase preceding the high-frequency vibration lasts about 0.017 s. The
impulsiveness of the phenomenon also has an effect in terms of signal
magnitude which increases as the velocity increases. This is due to a
completely different dynamics as the initial velocity conditions of the
beam change. The inertial effects are also gradually different. In fact,
the positional nature of the force imposes that the beam must always
reach the same maximum deflection during the magnetic interaction
phase. However, for increasing velocities, the beam will have less and
less time to reach that spatial configuration, experiencing not only
speeds but also different accelerations, and so inertial effects.
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Fig. 3. Left : experimental apparatus used for the sweeps including (1) accelerometer, (2) clamp, (3) cantilever with a tip magnet, and (4) shaker. Top right : cross section of the
bimorph, obtained from [29]. Bottom right : comparison of voltage–frequency plots between experimental results and numerical time-domain analysis with 𝑅 = 100 kΩ using the
fitted nonlinear parameters. The arrow indicates increasing amplitude of RMS acceleration.
Fig. 4. FRFs of voltage of the cantilever without tip mass for different RMS acceleration levels including 0.03 g, 0.05 g, 0.1 g, 0.3 g, and 0.5 g, and load resistance between 1
kΩ and 500 kΩ.
3.3. Frequency content migration and inherent nonlinearities

Further considerations on the plucking mechanism can be made by
considering the frequency response of the bimorph. In particular, it is
observed how frequency migration (from low to high frequency) occurs
through the voltage response, by considering just a single magnetic
plucking cycle which consists of magnetic interaction between the
magnets and a possible subsequent high-frequency free vibration. It
is considered the influence of various parameters which are described
below. To conduct such observation, fast Fourier transforms (FFTs) are
observed. Fig. 7 (left), shows the FFT of the voltage response as the gap
between the magnets changes, with the same chosen load resistance
and interaction velocity fixed at 0.7 m/s. As can be seen, an increase
in the gap distance between the magnets lowers the amplitudes. This
can be explained by considering that as the gap distance increases, the
4

magnetic force decreases, limiting the deflection experienced by the
beam which have a direct consequence on the voltage amplitudes. Two
peaks are observed in the FFTs: one at low frequency, between 25 Hz
and 70 Hz associated with the magnetic force exchanged between the
magnets, and another one around 260 Hz which is associated with the
first bending mode of the bimorph. As will be seen later in detail, the
frequency associated with this mode can slightly change due to inherent
nonlinearities. In general, however, the presence of the second peak in
the FFTs is not guaranteed. The fact is due to the activation of free
vibrations of the cantilever only if the relative velocity is large enough,
as explained in Section 3.2. As shown in the voltage–time histories of
Fig. 6, the phenomenon must be fast enough for the same frequency of
the input signal to induce vibration. If the velocity at which the magnets
interact is not high enough, there is no high-frequency oscillation (see
the case with 0.3 m/s in Fig. 6) and the highest frequency peak would
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Fig. 5. Frequency up-conversion experimental apparatus.
Fig. 6. Experimental voltage–time histories for varying velocities of interaction (0.3 m/s, 0.4 m/s, 0.6 m/s, 0.7 m/s), gap distance h = 2.5 mm, R = 100 kΩ.
disappear. Such observation is confirmed by the plot of Fig. 7 (right) in
which the FFTs of different recordings are represented for a fixed gap
distance of 2.5 mm, a resistor of 100 kΩ and variable velocity in the
range 0.3 m/s–0.7 m/s. For the case of 0.3 m/s, there is the exclusive
presence of a single peak at 24.94 Hz. By increasing the velocity of the
shaker, with the same frequency of 3 Hz, the second peak gradually
5

appears and is always higher in frequency. Thus the positional nature of
the magnetic force means that frequency conversion of an input signal
to the structural mode of interest may or may not occur, at a given input
frequency. What therefore determines the success of the frequency up-
conversion is a sufficiently fast interaction between the magnets. This is
due to the fact that the initial conditions of displacement and velocity
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Fig. 7. Experimental voltage FFTs for different gap distances h with a velocity of interaction equal to 0.7 m/s, R = 100 kΩ (left). FFTs for varying velocities of interaction and
gap distance h = 2.5 mm (right). The black dashed line identifies the frequency of the first bending mode of the bimorph.
Fig. 8. Experimental voltage FFTs for varying velocities of interaction, gap distance h = 2.5 mm, R = 5 kΩ (left). Zoom on the peaks of the FFTs for varying velocities of interaction
and gap distance h = 2.5 mm (right).
determine different dynamics in a mechanical system. Also, the higher
velocity of the moving magnet means that after the first snap of the
beam, there is more space to oscillate without interference with the
repulsive magnetic interaction. In Fig. 7 (right) it is detected also a
gradual shift of the first peaks to higher frequencies for the increasing
velocity of the shaker. This is due to the more rapid interaction between
the magnets.

The frequency shift effect due to the increase in load resistance
is a well-known behavior in piezoelectric vibration energy harvesting
systems [8] in conditions of harmonic motion of the support. In a more
general context in terms of material behavior, the frequency sweep of
the plot in Fig. 4 for different accelerations amplitudes and resistance
showed both the effect of frequency shift due to electromechanical
coupling and also greater inherent material nonlinearity (softening), as
the short circuit condition is approached. This can be clearly seen by
looking at the various inclination of the backbone curves (dashed red
curves) which tend to vertical for increasing electrical resistance. The
latter fact can be seen as a stiffening effect provided by increasing the
load resistance. The presence of inherent material nonlinearity has been
also observed in the plucking phenomenon, especially near the short
circuit condition. In fact, Fig. 8 shows that by using in the experiment
R = 5 kΩ and focusing only on the high-frequency phase of the beam
(i.e. by excluding the first peak in the FFTs), for increasing velocity
of interaction, a shift to lower frequencies of the first bending mode of
the beam is detected. In more detail, Fig. 8 (left) shows the FFTs, and 8
(right) the zoomed view of the peaks for velocities that include the acti-
vation of the first mode. This means that the beam is losing stiffness and
6

this is attributable to inherent material nonlinearities, having excluded
geometric-type nonlinearities (very stiff cantilever). Furthermore, the
experienced electric field values are well below the coercive field of the
piezoelectric material and so, dielectric or ferroelectric nonlinearities
are here excluded. The observed nonlinearities are of the ferroelastic
type [25]. Such phenomenon implies that if the natural frequency of
the resonator changes, also the optimal condition for energy harvesting
will change. In the same plot, it can be seen that in the cases of 0.6 m/s
and 0.7 m/s, the oscillator exhibits the peak at the same frequency of
257.47 Hz. This is attributable to the fact that the amplitude of the
measured signal changes little from 0.6 m/s to 0.7 m/s. Furthermore,
it is observed in the time histories of Fig. 6 that between 0.4 m/s
and 0.6 m/s, the system radically changes its dynamics from a ‘‘no
plucking’’ to a ‘‘plucking’’ state. The amplitude of the signal is therefore
not proportional to the velocity of the shaker, since different dynamics
can be activated.

Another observation is the fact that in the experimental mechanism
of this work, the imposed velocities experienced by the moving mag-
net are guaranteed since it is externally driven. In other words, the
magnetic interaction does not influence the motion law of the shaker.
In more practical and realistic cases [16] this cannot be guaranteed,
because the magnetic force is often two-way coupled and can influence
the dynamics of the moving magnet. In that case, considering the
repulsive configuration, this influence is not known a priori which
depends case by case on the characteristics of the involved resonators.

Experimental parametric analyses have been conducted by consid-
ering velocities and load resistances in the range 0.3 m/s–0.7 m/s and
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Fig. 9. Experimental parametric analyses for the RMS voltage over 2.5 s (left) and the associated power (right) for varying electrical load resistor R, and velocity of the magnetic
interaction. The arrow indicates increasing gap distance h (2.5 mm, 3.0 mm, 3.5 mm).
Fig. 10. Experimental parametric analyses for energy over 2.5 s of test, the arrow indicates increasing gap distance h (2.5 mm, 3.0 mm, 3.5 mm), (left). Top view for the case
of gap h = 2.5 mm (right).
1 kΩ–100 MΩ, respectively. Three values of gap distance have been
considered: h = 2.5 mm, 3.0 mm, and 3.5 mm. The results are plotted
in Fig. 9 for the RMS voltage (left) and the associated power dissipated
in the resistor (right), through the Joule’s Law:

𝑃 =
𝑉 2
𝑅𝑀𝑆
𝑅

(6)

where 𝑉𝑅𝑀𝑆 is the RMS voltage and 𝑅 the electrical resistance. In
the aforementioned plots, different surfaces correspond to different
gap distances. By increasing the gap distance between the magnets
(indicated by black arrow in the plots) the output voltage decreases.
This is reasonable considering that the magnetic force also decreases.

The plot in Fig. 10 (left) shows the trend of the energy obtained
in the tests over 2.5 s of operation. Again, different surfaces indicate
different gap distance h. In all cases, the optimal load is identified
around 1 MΩ, except for the case with a smaller gap distance, h =
2.5 mm. In this case, the optimal load shift could be attributed to the
inherent nonlinearities since the force values are higher than in the
other cases and the phenomenon is the fastest among the considered
ones. Fig. 10 (right) shows the plot of the energy from the top and it
can be appreciated that depends on the optimal conditions. For low
velocity values (e.g. 0.3 m/s), a significant band of obtainable energy
is between 1–5 MΩ, if instead the velocity increases, the highest values
of the considered surface (therefore gap) tend to gather between 0.5–
1 MΩ. The same behavior is exhibited for the other considered gap
distances.
7

3.4. Numerical time-domain simulation — comparison with experimental
results

The calibration of the computational model (4) allows to perform
time-domain numerical simulation. A MATLAB program has been de-
veloped that solves the system of ODEs with the Runge–Kutta method.
For the case of R = 100 kΩ and h = 2.5 mm, Fig. 11 shows the com-
parison between the experimental and the numerical response over 2
s, in which the nonlinear terms in the differential system (4) have been
neglected. The plot in Fig. 12 instead, shows the comparison taking
into account inherent nonlinearities (stiffness, ferroelastic hysteresis,
and coupling). The plots in Fig. 13 show that the model manages with
excellent approximation to capture the response also for other resistor
values (left) and velocities of interaction (right). The simulation results
show that in harvesters subjected to magnetic interaction, strain values
can be such to compromise the validity of the linear piezoelectricity
hypothesis. By considering reversible (elasticity and coupling) and
nonconservative (damping) nonlinearities sources the prediction of the
behavior can be improved.

4. Conclusions

In this work, the dynamical behavior of a frequency up-converted
piezoelectric energy harvester is investigated by means of magnetic
forces between permanent magnets. The experiments showed that at
a fixed low frequency of 3 Hz the FuC occurs only for sufficiently high
velocities from 0.4 m/s to 0.7 m/s. The results of this aspect of the
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Fig. 11. Comparison between experimental response and time-domain numerical simulation performed with linear piezoelectricity, gap distance h = 2.5 mm, R = 100 kΩ, and
velocity of interaction 0.7 m/s over 2 s.

Fig. 12. Comparison between experimental response and time-domain numerical simulation performed with the nonlinear electroelastic model, gap distance h = 2.5 mm, R = 100
kΩ, and velocity of interaction 0.7 m/s over 2 s.

Fig. 13. Zoom on a single plucking and free-vibration phase, h = 2.5 mm, R = 10 kΩ. Comparison between experiments and nonlinear electroelastic time-domain simulation with
velocity of the moving magnet equal to 0.7 m/s (left), and 0.4 m/s (right).
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work show that the design of a magnetic FuC mechanism is strictly
linked to the expected operational speeds of the moving magnet. Such
a fact leads primarily to the conclusion that the design phase requires
knowing the velocities to which the device will be subjected. Hence
the specific application field of the harvester beyond the frequency
content of the seismic signal should be considered. For the sake of
completeness, it is emphasized that in a real device, the dynamic
behavior could get even more complicated. In the studied system, the
seismic mass (i.e. the shaker) is externally driven and therefore the
interaction velocity values are guaranteed and coincide with the input
ones. In a real object, the magnetic interaction could be such as to
influence the velocity values of the seismic mass, thus slowing down
the phenomenon in the repulsive case. In general, this does not happen
when the kinetic energy of the seismic mass is much greater than the
work done by the magnetic force along the interaction path. It has
also been observed that the peak velocity of the transducer is always
lower than those provided by the moving magnet input and this value
varies significantly even with the considered resistor and gap distance
between magnets.

Furthermore, another novel contribution is that the presence of
softening has been observed, which leads to variations in the dynamic
characteristics. This aspect should not be neglected in a conscious
design of the plucking mechanism, especially when the gap between
the magnets is very low and the resulting forces are high. The softening
phenomenon can be captured with sufficient accuracy by a lumped
parameter mathematical model if also the material inherent nonlin-
earities (elasticity, coupling, and ferroelastic effects) are considered.
Obviously, the sources of nonlinearity to be considered can change in a
different context, such as dielectric effects and/or nonlinear kinematics.
The drawback of using a nonlinear model is the fact that a specific
calibration is needed, and usually, the data sheets for transducers
do not provide a nonlinear mechanical characterization. The effort
could be avoided on the industrial scale, where processes benefit from
repeatability and a single characterization is valid for a large number
of devices.

The limitation of the magnetic FuC related to the velocity of the
interacting objects opens new perspectives in terms of strategies to
design FuC systems when the velocity of the input signal is not suf-
ficient to trigger the harvester. A possible solution could be to combine
the magnetic interaction with multistable systems able to accumulate
potential energy and release it suddenly in terms of kinetic energy to
increase the velocity of the interaction.
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Appendix A. Mathematical model of the bimorph

Kinetic energy. The kinetic energy  of the system is the sum of the
contributions of the beam and of the tip mass:

 = 𝑏 +𝑡 (A.1)

The kinetic energy of the piezoelectric beam is:

𝑏 =
1
2 ∫

𝐿

0
𝑏𝑚𝑑

[(

𝜕𝑢3
𝜕𝑡

)

+
(

𝜕𝑦
𝜕𝑡

)]2
𝑑𝑥1 (A.2)

In Eq. (A.2) the mass density for unit length of the layered beam
as been introduced 𝑚𝑑 :

𝑑 =
𝑁
∑

𝑘=1
∫

𝑥3,𝑘

𝑥3,𝑘−1
𝜌𝑘 𝑑𝑥3 (A.3)

here 𝜌𝑘 is the mass density of the 𝑘th layer. Since the beam is
upposed very thin, its rotational inertia terms have been neglected.
n the following, the distributed mass �̂� will be used:

̂ = 𝑏
(

𝜌𝑠ℎ𝑠 + 2𝜌𝑝ℎ𝑝
)

(A.4)

here 𝜌𝑠, 𝜌𝑝 are the mass densities and ℎ𝑠, ℎ𝑝 the thicknesses of the
tructural and the piezoelectric layers. The kinetic energy of the tip
ass can be computed as:

𝑡 =
1
2

[

𝑚𝑡

(

𝜕𝑢3
𝜕𝑡

)2
+ 𝐽𝑡

(

𝜕2𝑢3
𝜕𝑡𝜕𝑥1

)2

+ 2𝑆𝑡

(

𝜕𝑢3
𝜕𝑡

)(

𝜕2𝑢3
𝜕𝑡𝜕𝑥1

)

+ 𝑚𝑡

(

𝜕𝑦
𝜕𝑡

)2
]

𝑥1=𝐿

+
𝜕𝑦
𝜕𝑡

(

𝑚𝑡
𝜕𝑢3
𝜕𝑡

+ 𝑆𝑡
𝜕2𝑢3
𝜕𝑡𝜕𝑥1

)

𝑥1=𝐿

(A.5)

where 𝑚𝑡, 𝐽𝑡, 𝑆𝑡, are respectively the tip mass, its second order moment
ith respect the neutral axis of the beam and the first order moment.
he presence of the first order moment in Eq. (A.5) is due to the
symmetry of the tip mass with respect to the longitudinal axis of the
eam. The vertical motion of the support has been called 𝑦.

Internal energy.

 = ∫𝑠
𝐻𝑠 𝑑 + ∫𝑝

𝐻𝑝 𝑑 (A.6)

here 𝐻𝑠 is the enthalpy of the structural layer and 𝐻𝑝 of the piezo-
lectric Layer, and 𝑠 and 𝑝 are the volume of the structural and

piezoelectric layer, respectively. For the structural layer, only linear
elasticity is assumed. i.e.:

𝐻𝑠 =
1
2
𝑐11,𝑠𝑆

2
1 (A.7)

Developing the integral (A.6), it is possible to write:

=∫

𝐿

0

⎧

⎪

⎨

⎪

⎩

�̂�1

(

𝜕2𝑢3
𝜕𝑥21

)2

+ 1
3
�̂�2

(

𝜕2𝑢3
𝜕𝑥21

)3

sgn

(

𝜕2𝑢3
𝜕𝑥21

)

−

[

2�̂�1
𝜕2𝑢3
𝜕𝑥21

+

+ �̂�2

(

𝜕2𝑢3
𝜕𝑥21

)2

sgn

(

𝜕2𝑢3
𝜕𝑥21

)

⎤

⎥

⎥

⎦

𝑣

⎫

⎪

⎬

⎪

𝑑𝑥1 −
1
2
𝐶𝑣2

(A.8)
⎭
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𝑊

𝑅

where the coefficients in Eq. (A.8) are defined below. �̂�1 is the dis-
tributed linear stiffness:

�̂�1 =
1
12

𝑐11,𝑠𝑏ℎ𝑠 +
1
6
𝑐11,𝑝𝑏ℎ𝑝

(

4ℎ2𝑝 + 6ℎ𝑝ℎ𝑠 + 3ℎ2𝑠
)

(A.9)

and �̂�2 is the distributed nonlinear stiffness:

�̂�2 =
1
2
𝑐111,𝑝𝑏ℎ𝑝

(

2ℎ3𝑝 + 4ℎ2𝑝ℎ𝑠 + 3ℎ𝑝ℎ2𝑠 + ℎ3𝑠
)

(A.10)

In Eq. (A.10) the nonlinear contribution is only provided by the
iezoelectric material through the coefficient 𝑐111,𝑝. In the case of a

series connection of electrodes of the layers, the distributed linear and
nonlinear electromechanical coefficients �̂�1 and �̂�2 are respectively:

̂1 =
1
2
𝑒31𝑏

(

ℎ𝑝 + ℎ𝑠
)

(A.11)

̂2 =
1
12

𝑒311𝑏
(

4ℎ2𝑝 + 6ℎ𝑝ℎ𝑠 + 3ℎ2𝑠
)

(A.12)

The internal capacitance is:

=
𝑏𝐿∗𝜀33
2ℎ𝑝

(A.13)

where 𝐿∗ is the effective total length of the beam. The overhanging
cantilever length 𝐿 is lower than 𝐿∗ because a small portion of the
length must be inserted among suitable plates to realize the clamp.

Coefficients of the equations of motion. By applying Hamilton’s principle
in the form:

∫

𝑡1

𝑡0

(

𝛿 + 𝛿𝑊𝑛𝑐
)

𝑑𝑡 = 0 (A.14)

it is possible to derive the system of nonlinear ODEs (4). In Eq. (A.14),
 is the Lagrangian function which is defined as the difference between
the kinetic and the total potential energy  . The total potential energy
is then defined as the difference between the internal energy  and the
external work  . The nonconservative virtual work 𝛿𝑊𝑛𝑐 is assumed
equal to [25]:

𝛿𝑊𝑛𝑐 = −∫

𝐿

0

[

�̂�1𝑢3 sgn(𝑢3) + �̂�2𝑢
2
3
]

sgn(�̇�3)𝛿𝑢3 𝑑𝑥 − 𝑣
𝑅
𝛿𝜆 (A.15)

where 𝜆 is the flux linkage coordinate. Details on the mathematical
derivation are extensively reported in [25]. According to the Euler–
Bernoulli beam theory, the axial deformation is:

𝑆1 = −𝑥3𝑢′′3 (𝑥1, 𝑡) (A.16)

where 𝑢3 is the displacement of the beam in the orthogonal direction
with respect to its axis 𝑥1 (see Fig. 1). ()′ means partial derivative with
respect to 𝑥1. The Galerkin’s discretization with one dof is:

𝑢3(𝑥1, 𝑡) = 𝜙(𝑥1)𝑢(𝑡) (A.17)

where the tip displacement of the cantilever 𝑢(𝑡) is the Lagrangian
coordinate (or dof), and 𝜙(𝑥1) is the first mode shape of a purely
mechanical Euler–Bernoulli cantilever beam [25]. where the shape
function of the Euler–Bernoulli beam 𝜙(𝑥1) is:

𝜙(𝑥1) =
1
2

{

cosh
(

𝛽𝑥1
𝑙

)

− cos
(

𝛽𝑥1
𝑙

)

− 𝜎
[

sinh
(

𝛽𝑥1
𝑙

)

− sin
(

𝛽𝑥1
𝑙

)]}

(A.18)

with 𝛽 = 1.8751 and 𝜎 = 0.7341. The model for the electric field 𝐸3,
that has been assumed in case of series connection of the piezoelectric
layer [8] is:

𝐸3 = − 𝑣
2ℎ𝑝

(A.19)

where ℎ𝑝 is the thickness of the piezoelectric layer, and 𝑣 is the voltage
across the electrodes. The computed coefficients for the equations of
motions are the following:

𝑚 = �̂�
𝐿
𝜙2 𝑑𝑥1 (A.20)
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∫0
𝑏1 = �̂�1 ∫

𝐿

0
𝜙2 𝑑𝑥1 (A.21)

𝑏2 = �̂�2 ∫

𝐿

0
𝜙3 sgn (𝜙) 𝑑𝑥1 (A.22)

1 = �̂�1 ∫

𝐿

0

𝜕4𝜙
𝜕𝑥41

𝜙𝑑𝑥1 (A.23)

𝑘2 = �̂�2 ∫

𝐿

0

⎡

⎢

⎢

⎣

𝜕2𝜙
𝜕𝑥21

𝜕4𝜙
𝜕𝑥41

+

(

𝜕3𝜙
𝜕𝑥31

)2
⎤

⎥

⎥

⎦

𝜙 sgn

(

𝜕2𝜙
𝜕𝑥21

)

𝑑𝑥1 (A.24)

1 = �̂�1

(

𝜕𝜙
𝜕𝑥1

)

𝑥1=𝐿
(A.25)

2 = �̂�2 ∫

𝐿

0

𝜕4𝜙
𝜕𝑥41

𝜙 sgn

(

𝜕2𝜙
𝜕𝑥21

)

𝑑𝑥1 (A.26)

ppendix B. Magnetic force

By considering Fig. 2, one Cartesian reference system is associated
o each magnet. 𝛼, 𝛽 and 𝛾 are the vector components of the distance
etween the centers O and O′ of the reference systems, and 𝑎, 𝑏, 𝑐, 𝐴,
, 𝐶 are the half-lengths of the sides of the magnets. The coefficients

hat appear in Eq. (5) are the following:

𝑥(𝑈𝑚𝑛, 𝑉𝑝𝑞 ,𝑊𝑟𝑠, 𝑅) =
𝑉 2
𝑝𝑞 −𝑊 2

𝑟𝑠

2
𝑙𝑛(𝑅 − 𝑈𝑚𝑛) + 𝑈𝑚𝑛𝑉𝑝𝑞𝑙𝑛(𝑅 − 𝑉𝑝𝑞)+

𝑉𝑝𝑞𝑊𝑟𝑠 arctan
(𝑈𝑚𝑛𝑉𝑝𝑞

𝑊𝑟𝑠𝑅

)

+ 1
2
𝑈𝑚𝑛𝑅

(B.1)

𝜙𝑦(𝑈𝑚𝑛, 𝑉𝑝𝑞 ,𝑊𝑟𝑠, 𝑅) =
𝑈2
𝑚𝑛 −𝑊 2

𝑟𝑠
2

𝑙𝑛(𝑅 − 𝑉𝑝𝑞) + 𝑈𝑚𝑛𝑉𝑝𝑞𝑙𝑛(𝑅 − 𝑈𝑚𝑛)+

𝑈𝑚𝑛𝑊𝑟𝑠 arctan
(𝑈𝑚𝑛𝑉𝑝𝑞

𝑊𝑟𝑠𝑅

)

+ 1
2
𝑉𝑝𝑞𝑅

(B.2)

𝜙𝑧(𝑈𝑚𝑛, 𝑉𝑝𝑞 ,𝑊𝑟𝑠, 𝑅) = −𝑈𝑚𝑛𝑊𝑟𝑠𝑙𝑛(𝑅 − 𝑈𝑚𝑛) − 𝑉𝑝𝑞𝑊𝑟𝑠𝑙𝑛(𝑅 − 𝑉𝑝𝑞)+

𝑚𝑛𝑉𝑝𝑞 arctan
(𝑈𝑚𝑛𝑉𝑝𝑞

𝑊𝑟𝑠𝑅

)

−𝑊𝑟𝑠𝑅
(B.3)

The coefficients 𝑈𝑚𝑛, 𝑉𝑝𝑞 , 𝑊𝑟𝑠, 𝑅 that appear in Eqs. (B.1)–(B.3) are
efined as:

𝑚𝑛 = 𝛼 + 𝐴(−1)𝑛 − 𝑎(−1)𝑚 (B.4)

𝑝𝑞 = 𝛽 + 𝐵(−1)𝑞 − 𝑏(−1)𝑝 (B.5)

𝑟𝑠 = 𝛾 + 𝐶(−1)𝑠 − 𝑐(−1)𝑟 (B.6)

=
√

𝑈2
𝑚𝑛 + 𝑉 2

𝑝𝑞 +𝑊 2
𝑟𝑠 (B.7)

and they have dimensions of lengths.
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