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A B S T R A C T

Hybrid Data Assimilation (HDA) methods are a class of numerical methods that aim at integrating Model Order
Reduction (MOR) techniques into a Data Assimilation (DA) framework, thus combining mathematical models
and experimental data. The objective is to reduce the solution time using MOR algorithms whilst keeping
the accuracy of the models at the desired level using observations, which serve as an update to the a priori
prediction of the model. This two-part work investigated HDA techniques by applying them to two classes of
problems: numerical benchmark cases (part 1) and experimental facilities (part 2). In particular, this paper
discusses the former, focusing on the numerical formulation of the methodologies and on the effect of noisy
data. Indeed, real-world experimental data are always polluted by errors and uncertainties; therefore, it is
critical to first assess the performance of these techniques on numerical benchmark cases with the artificial
introduction of random noise before applying them to real-world experimental facilities. As such, this paper
applies the Generalised Empirical Interpolation Method (GEIM) and the Parameterised-Background Data-Weak
(PBDW) formulation to a non-adiabatic airflow over the classical computational fluid-dynamics benchmark of
the 3D Backward Facing Step (BFS). Results show how both algorithms are valuable tools to reconstruct the
state of the system when measurements are available, whilst assessing the effect of noise on the available data;
in particular, the GEIM is a bit better than the PBDW since a lower reconstruction error is achieved with fewer
sensors.
1. Introduction

The latest achievements in numerical analysis and scientific com-
puting have led numerical simulations in engineering and applied
sciences to gain more importance for investigating physical phenom-
ena. Typically, such an analysis relies on solving parameterised Partial
Differential Equations (PDEs), commonly referred to as the Full Order
Model (FOM) or the high-fidelity model. Since a direct analytical solu-
tion is rarely available, especially for complex problems, their solution
must use standard numerical methods, such as finite elements, finite
volumes or spectral methods. Despite the recent developments both
regarding computational hardware power and numerical software ac-
curacy, typical engineering problems have a size of (106–109) degrees
of freedom, which results in several hours (or even days) of CPU
time to numerically solve the system, even on large hardware parallel
architectures.

Despite parameterised PDEs being used, for example, for the design
and optimisation phase for physical systems (Schilders et al., 2008;
Versteeg and Malalasekera, 2007), they are not suited for large systems
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because of the associated computational cost, especially when quick
repetitive solutions are required; in this context, Model Order Reduc-
tion (MOR) is a promising tool. In literature, this expression identifies
any approach aimed to replace the high-fidelity problem with one
featuring a much lower complexity (Quarteroni et al., 2015; Hesthaven
et al., 2016). This set of techniques, developed originally for control
theory, aims to study a dynamical system while preserving its input–
output behaviour as much as possible. As the name suggests, MOR tries
to reduce the dimension of the model to perform faster simulations
while ensuring the preservation of the essential features of the physical
phenomena. However, these methods cannot have results as accurate
as the FOMs, which can be a critical issue in some applications, for
instance, when they require the safe operation of the physical system
at all times.

In the last few years, there have also been many improvements in
Data Assimilation (DA) (Brunton and Kutz, 2019; Carrassi et al., 2018),
which is a mathematical discipline that deals with the combination of
theoretical modelling and experimental observations. Nowadays, most
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of these methods use Bayesian techniques or machine learning, which
requires training a surrogate model using some a priori knowledge. With
this approach, the training data from experiments or numerical models
feed the surrogate model. For instance, an application of this kind of
meta-modelling has been used for uncertainty quantification, by means
of techniques based on Gaussian processes (Rasmussen and Williams,
2006; Wu et al., 2018a), in thermal-hydraulics systems (Wu et al.,
2018b; Wang et al., 2019). Even though this approach can provide
accurate predictions, the mathematical background of the model is
lost completely. MOR methods, instead, preserve the theoretical struc-
ture, for instance, intrusive approaches require the knowledge of the
governing equations during the Online phase. However, models are
usually limited by their accuracy (due to simplifying hypotheses or
uncertainties on the parameters), thus, the combination between MOR
and experimental data is of interest as the latter can introduce new
information not considered by the model whilst the former keeps the
mathematical framework.

Of particular interest are Hybrid Data Assimilation (HDA) methods,
in which a theoretical prediction, approximated via MOR, is corrected
or updated by experimental evaluations of some fields (e.g., the mea-
sure of the temperature in a pipe or the neutron flux in a nuclear
reactor). This possibility is of interest in several engineering fields,
especially in nuclear reactors, which require the control and safety
of the system at all times during operation. These are rather com-
plex systems that involve more than one physics (thermal hydraulics,
neutronics, thermo-mechanics, chemistry), making a Full Order multi-
physics model not feasible for real-time applications; in fact, these
high-fidelity models usually are very demanding from the computa-
tional point of view, even when using high-performance computers.
Furthermore, the HDA approach allows the introduction of evaluations
of fields with experimental measurements, which can complete the
information of the model itself. The availability of the values of the
quantities of interest at critical points of the system is an essential
requirement for the safe operation of the system itself. These meth-
ods can also perform uncertainty quantification on the parameters
characterising the system.

In addition, a critical concern is the correct positioning of exper-
imental sensors to maximise the amount of information extracted by
the physical system. MOR methods in a DA framework can address this
problem; specifically, this hybrid approach can select a set of points,
which typically represent the most critical ones in the system. The
correct selection of locations is of great importance for safety, as the
experimental measures can provide a direct evaluation at the most
critical points (from the point of view of safety).

Among the different classes of MOR methods, reduced basis meth-
ods (Quarteroni et al., 2015; Maday and Patera, 2020) are the most
widespread. Proper Orthogonal Decomposition (POD) is the state-of-
the-art for reduced basis techniques, especially in fluid dynamics (Sta-
bile et al., 2017; Berkooz et al., 1993; Lorenzi et al., 2016) and nu-
clear applications, due to its superior performance in building reduced
spaces. For instance, it has been applied for thermal hydraulics mod-
elling (Vergari et al., 2020), Lead-cooled Fast Reactor analysis (Gen-
eration IV International Forum, 2014; Lorenzi et al., 2017) and fuel-
burnup calculations (Castagna et al., 2020).

However, the POD-based projection method alone cannot include
experimental data; hence, its accuracy is limited by the accuracy of
the mathematical model itself, even though some hybrid approaches
exist, such as Gappy-POD (Everson and Sirovich, 1995; Willcox, 2006),
Fast Field reconstruction (Gong et al., 2021) or a combination with
Introini et al. (2018), Kalman (1960), Introini (2021). Other pro-
posed approaches aim at overcoming the limitations of the POD pro-
jection (Farhat et al., 2020), such as using techniques able to treat
non-affine parametric dependence (Grepl et al., 2007). The Empirical
Interpolation Method (EIM) (Maday et al., 2008) is a greedy algorithm
introduced for state estimation and sensor positioning in thermal hy-
2

draulics systems for both scalar and vector fields (Silva et al., 2021). t
However, this technique relies on point-wise measurements, which
are not always a realistic representation of the data: therefore, the
Generalised Empirical Interpolation Method (GEIM) (Maday and Mula,
2013; Maday et al., 2015b, 2016) has been developed to consider
a better description of the experimental acquisition. It is a reliable
technique already tested on rather complex systems, such as the TRIGA
reactor (Fouquet et al., 2003; Introini, 2021).

GEIM belongs to a broader class of HDA methods, for which, in
the last years, a more general theory has been developed, resulting in
the Parameterised-Backward Data-Weak (PBDW) formulation (Maday
et al., 2014; Gong et al., 2019; Maday et al., 2015a; Maday and Taddei,
2019). This theory claims to theoretically describe the mathematical
background of HDA methods, aiming at being related to various tech-
niques such as GEIM or Gappy-POD, according to particular choices
in the algorithm. This formulation defines a proper representation of
the functional spaces of the reduced basis and the experimental update
(Section 3).

Every hybrid data assimilation method aims at combining theoreti-
cal predictions and experimental observation. Indeed, the mathematical
model represents the starting point and the primary source of informa-
tion (Fig. 1) to generate the reduced space and select the experimental
sensors; the experimental data take the role of an update.

In literature, not many works apply GEIM and PBDW to complex
system, even few tackles their application to experimental facilities
with real-world data (Taddei, 2016; Gong, 2018). Due to the complex-
ity of the real problems, this first part is dedicated to assessing the
reliability and the main limitations of GEIM and PBDW when applied to
numerical cases, especially considering noisy data: in fact, the former
is known to be unstable (Argaud et al., 2017), making necessary the
use of stabilisation techniques. In this work, the approach based on the
Tikhonov regularisation, proposed in Introini et al. (2023a), is used: the
application of this technique to 3D systems is one of the most important
outcomes of these work.

Therefore, it is crucial to assess the efficiency of these methods on
a numerical case before moving to a real system, to be aware of their
main advantages and limitations. In this work, it has been chosen to
compare two of the most famous techniques, the GEIM and the PBDW,
on the Backward Facing Step with a non-adiabatic flow. As such, the
paper is as follows: Sections 2 and 3 present the theoretical background
for GEIM and PBDW; then, Section 4 show their results for a relatively
simple numerical benchmark case; finally, Section 5 draws the main
conclusions along with some hints on future works.

2. Generalised Empirical Interpolation Method (GEIM)

This technique is the natural extension of the EIM, introduced
in Grepl et al. (2007) and Maday et al. (2008). Let  ⊂ 𝐻1(𝛺) be
a Hilbert Space endowed with an inner product and induced norm,
usually referred to as the solution manifold. In this context, any specific
problem can be studied and modelled by a parameterised PDE as

 (𝑢(𝐱);𝜇) = 0 𝐱 ∈ 𝛺 ⊂ R𝑑 , 𝑑 = {2, 3}, (1)

where  is a differential operator and 𝜇 is a parameter (or a set of
parameters)2 sampled in the domain  ⊆ R𝑝 (𝑝 ≥ 1). This differential
roblem will be sometimes referred to as the best-knowledge problem,

whose solution lies in  .
Assuming the solution of (1) to be a function of a suitable Banach

Space with an associated ‖⋅‖𝐿∞(𝛺) norm and the Kolmogorov 𝑛−width3

2 The time 𝑡 is usually a pseudo-parameter and therefore it is included in
.

3 When dealing with MOR methods, a primary role is played by this
uantity. It measures to what extent a Banach space can be approximated by
𝑛-dimensional subspace. The notion of Kolmogorov 𝑛−width allows seeing
o what extent the Reduced Basis approximation is good.
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Fig. 1. General idea behind reduced basis methods in a data assimilation framework, used in this paper.
o decrease rapidly with 𝑛 (Bachmayr and Cohen, 2016; Quarteroni
t al., 2015), a proper reduced basis can be created, and accordingly,
he solution can be approximated by the interpolant 𝑀

𝑢(𝐱;𝜇) ≃ 𝑀 [𝑢](𝐱) =
𝑀
∑

𝑚=1
𝛽𝑚(𝜇) ⋅ 𝑞𝑚(𝐱), (2)

where
{

𝑞𝑚(𝐱)
}𝑀
𝑚=1 are called magic functions, whereas the reduced

basis coefficients
{

𝛽𝑚(𝜇)
}𝑀
𝑚=1 can be found by solving an interpolation

roblem.
The Generalised Empirical Interpolation Method (GEIM), firstly in-

roduced in Maday and Mula (2013) and further studied in Maday et al.
2015b) and Maday et al. (2016), aims at building hierarchical spaces4

y using a greedy procedure and by exploiting 𝛶 ⊂  ′, a library
f available sensors5 𝑣 ∶  → R, typically dependent on two free
arameters: 𝐱𝑘 ∈ 𝛺 and 𝑠 ∈ R+, usually referred to as the centre of
ass and the point spread, respectively.

GEIM can be reduced to EIM considering a particular kind of
ensors, namely 𝑣 ≡ 𝛿: if the functional is a Dirac’s delta, the evaluation
f the field is point-wise. At the end of both methods, a subset of
oints or sensors will be generated: those are called in literature magic
oints or magic sensors (respectively for EIM and GEIM) making both
lgorithms useful for sensor positioning.

.1. GEIM greedy algorithm

The main ingredients for the GEIM greedy algorithm are the solution
anifold  of functions 𝑢, the parameter space  of 𝜇 and the library
of sensors 𝑣. The method exploits an iterative procedure where, at

ach step 𝑀 , a reduced space 𝑍𝑀 is generated. As already mentioned,
hese spaces are hierarchical; this assures that, the more magic sensors
nd magic functions are considered, the wider the space becomes.

4 The greedy procedure can build larger and larger spaces at each iteration,
.e.

1 ⊂ 𝑋2 ⊂ 𝑋3 ⊂⋯ ⊂ 𝑋𝑀𝑚𝑎𝑥
⊂  ,

iven 𝑋𝑘 be a Banach space defined at iteration 𝑘.
5  ′ is the dual space of  , where the continuous linear functionals
∶  → R on  live.
3

2.1.1. Offline phase
The iterative procedure aims at defining the magic functions and

the magic sensors in a greedy manner, by minimising step by step the
interpolation error. The complete procedure can be found in Maday
et al. (2015b) and it is summarised in Algorithm 1.

Algorithm 1: GEIM continuous version (Offline Stage)
Input

Maximum number of iterations 𝑀𝑚𝑎𝑥;
Tolerance 𝑡𝑜𝑙𝐺𝐸𝐼𝑀 ;
Parametric domain ;

Output
Basis functions {𝑞1(𝐱), ..., 𝑞𝑀 (𝐱)};
Linear functionals {𝑣1, ..., 𝑣𝑀};

Initialisation
𝑀 = 1, 𝐸1 = 𝑡𝑜𝑙𝐺𝐸𝐼𝑀 + 1;

First iteration
𝑢1 = argmax

𝑢∈
||𝑢||𝐿2(𝛺);

𝑣1 = argmax
𝑣∈𝛶

|

|

𝑣(𝑢1(𝐱); 𝐱𝑘, 𝑠)||;

𝑞1(𝐱) =
𝑢1(𝐱)
𝑣1(𝑢(𝐱))

;
while (𝑀 < 𝑀𝑚𝑎𝑥 & 𝑡𝑜𝑙𝐺𝐸𝐼𝑀 > 𝐸𝑀−1) do

𝑀 =𝑀 + 1;
𝑢𝑀 (𝐱) = argmax

𝑢∈
‖

‖

𝑢(𝐱;𝜇) − 𝑀−1[𝑢](𝐱;𝜇)‖‖𝐿2(𝛺);

given 𝐼𝑀−1[𝑢] =
∑𝑀
𝑚=1 𝛽𝑚(𝜇) ⋅ 𝑞𝑚(𝐱);

and 𝐵𝑖𝑗𝛽𝑗 = 𝑣𝑖(𝑢); 𝐵𝑖𝑗 = 𝑣𝑖(𝑞𝑗 ); 𝑖, 𝑗 = 1,…𝑀 ;
𝑣𝑀 = argmax

𝑣∈𝛶
|

|

𝑣(𝑢𝑀 − 𝑀−1[𝑢𝑀 ]; 𝐱𝑘, 𝑠)||;

𝑞𝑀 (𝐱) =
𝑢𝑀 (𝐱) − 𝑀−1[𝑢𝑀 ](𝐱)
𝑣𝑀 (𝑢𝑀 − 𝑀−1[𝑢𝑀 ])

;

𝐸𝑀 = argmax
𝑢∈

‖

‖

𝑢(𝐱;𝜇) − 𝑀 [𝑢](𝐱;𝜇)‖
‖𝐿2(𝛺);

2.1.2. Online stage
Once the magic functions and the magic sensors have been defined,

online monitoring of the system can be performed. The first task con-
sists in collecting the experimental data, i.e. {𝑦𝑚 = 𝑣𝑚(𝑢𝑡𝑟𝑢𝑒(𝐱); 𝑠)}𝑀𝑚=1,
where 𝑀 represents the maximum number of available sensors, 𝑢𝑡𝑟𝑢𝑒
is the true field to be reconstructed and 𝑣 (𝑢(𝐱); 𝑠) ≡ 𝑣(𝑢(𝐱); 𝐱 , 𝑠)
𝑚 𝑚
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represents the evaluation of field 𝑢(𝐱) through the functional 𝑣𝑚. It is
mportant to underline the fact that in real-world applications the data
s rarely a perfect measurement since it is usually polluted by random
oise. Once the data are collected, the coefficients

{

𝛽𝑚
}𝑀
𝑚=1 can be

etermined by solving the following linear system of small dimensions

𝜷 = 𝐲 ⟷

𝑀
∑

𝑚=1
𝐵𝑚𝑛𝛽𝑚 = 𝑦𝑛 𝑛 = 1,… ,𝑀, (3)

in which 𝐵𝑚𝑛 = 𝑣𝑛(𝑞𝑚) is the GEIM system matrix. The complete
procedure is summarised in Algorithm 2.

For what concerns the computational cost of the online stage, a
linear system of size 𝑀 ×𝑀 has to be solved, which requires (𝑀2)
operations since the matrix is lower triangular (Maday and Mula,
2013); moreover, the estimation of the state requires (ℎ) operations,
given ℎ the dimension of the numerical mesh.

Algorithm 2: GEIM continuous version (Online Stage)
Input

Magic functions {𝑞1(𝐱), ..., 𝑞𝑀 (𝐱)};
Magic sensors {𝑣1, ..., 𝑣𝑀};

Output
State Estimation 𝑀 [𝑢𝑡𝑟𝑢𝑒](𝐱);

Acquisition of Experimental Data
{

𝑦𝑚 = 𝑣𝑚(𝑢𝑡𝑟𝑢𝑒(𝐱); 𝑠)
}𝑀
𝑚=1;

nline Estimation
Solve the interpolation problem
𝐵𝜷 = 𝐲;

Estimate the state of the system
𝑢𝑡𝑟𝑢𝑒(𝐱) ≃ 𝑀 [𝑢𝑡𝑟𝑢𝑒](𝐱) =

∑𝑀
𝑚=1 𝛽𝑚 ⋅ 𝑞𝑚(𝐱)

2.2. Well-posedness analysis

Since the matrix 𝐵 is lower triangular (hence invertible), the GEIM
rocedure is well-posed, namely, the interpolant exists and it is unique.
n estimate for the interpolation error can be derived (Maday et al.,
016) and it can be shown that the error is dependent on the Lebesgue
onstant 𝛬𝑀 (Quarteroni et al., 2007) in the ‖⋅‖𝐿2(𝛺) norm, i.e.

‖

‖

𝑢 − 𝑀−1[𝑢]‖‖𝐿∞(𝛺) ≤
(

1 + 𝛬𝑀
)

inf
𝜓𝑀∈𝑍𝑀

‖

‖

𝑢 − 𝜓𝑀‖

‖𝐿∞(𝛺) . (4)

The Lebesgue constant always enters the interpolation problem and
it can be proved to be unbounded (Maday et al., 2008; Quarteroni
et al., 2007), indeed this fact represents one of the main drawbacks of
interpolation procedures. For this particular case, it can be computed
as Maday et al. (2015b). The result in (4) shows that the higher
the Lebesgue constant the worst the reconstruction will be and un-
fortunately 𝛬𝑀 cannot be bounded and it increases with 𝑀 . This
theoretical result implies that adding a lot of sensors can worsen the
GEIM reconstruction, showing that the error is not bounded and that
the interpolant does not converge to the true solution with an infinite
number of sensors.

2.3. GEIM-stabilisation in presence of random noise

In the previous analysis, the experimental data were considered
perfect, meaning that they are not polluted by any kind of disturbance;
however, in real-world applications, this is not true. It is common
practice to decompose the experimental data as

𝑦𝑚 = 𝑣𝑚(𝑢𝑡𝑟𝑢𝑒) + 𝜀𝑚 𝑚 = 1,… ,𝑀 (5)

where 𝜀𝑚 can represent different kind of disturbances, usually modelled
by an uncorrelated zero-mean Gaussian random variable 𝜀𝑚 ∼  (0, 𝜎2)
with variance 𝜎2. Under these conditions, it can be seen that the
4

interpolation error bound changes as proved in Argaud et al. (2017)

𝐸
[

max
𝜇∈

‖

‖

𝑢 − 𝑀−1[𝑢]‖‖𝐿∞(𝛺)

]

≤
(

1 + 𝛬𝑀
)

⋅
(

inf
𝜓𝑀∈𝑍𝑀

‖

‖

𝑢 − 𝜓𝑀‖

‖𝐿∞(𝛺)

)

+
(

1 + 𝛬𝑀
)

⋅ 𝜎
√

𝑀,
(6)

where 𝐸[⋅] is the expected value operator, since the interpolant is now
a random variable.

The immediate consequence is that the GEIM is not asymptotically
robust in presence of noise, because the error is no more properly
bounded and it will increase as more magic functions are added. In
the previous section, it has been stated that the Lebesgue constant in-
creases as 𝑀 increases; moreover, there is a new contribution ∝ 𝜎

√

𝑀 ,
which makes the error unbounded. Therefore, stabilisation methods are
necessary to asymptotically bring the interpolation error down to the
noise level 𝜎.

Some stabilisation techniques have been proposed in Argaud et al.
(2017), Gong et al. (2022) and Introini et al. (2023a); in this work,
the last approach will be used, based on the Tikhonov regularisa-
tion (Tikhonov and Arsenin, 1979). The GEIM interpolation problem
will be weakened as a least squares minimisation by introducing a
penalisation term and later converted into the following linear system:

(

𝐵𝑇𝐵 + 𝜆𝑇 𝑇 𝑇
)

𝜷 = 𝐵𝑇 𝐲 + 𝜆𝑇 𝑇 𝑇 ⟨𝜷⟩, (7)

where 𝜆 ∈ R+ is a regularisation parameter to be suitably calibrated,6
𝑇 is the regularisation matrix and ⟨𝜷⟩ is the sample mean of the
oefficients of the train set (𝛯𝑡𝑟𝑎𝑖𝑛 ⊂ ), defined as7

𝑇𝑖𝑗 =
𝑀
∑

𝑘=1

1
|𝜎𝛽𝑘 |

𝛿𝑖𝑗𝑘 =

⎧

⎪

⎨

⎪

⎩

1
|𝜎𝛽𝑖 |

if 𝑖 = 𝑗

0 if 𝑖 ≠ 𝑗
𝑖, 𝑗 = 1,… ,𝑀,

𝜎𝛽𝑖 =
√

1
dim(𝛯𝑡𝑟𝑎𝑖𝑛) − 1

∑

𝜇∈𝛯𝑡𝑟𝑎𝑖𝑛

(

𝛽𝑖(𝜇) − ⟨𝛽𝑖⟩
)2 𝑖 = 1,… ,𝑀,

⟨𝛽𝑖⟩ =
1

dim(𝛯𝑡𝑟𝑎𝑖𝑛)
∑

𝜇∈𝛯𝑡𝑟𝑎𝑖𝑛

𝛽𝑖(𝜇) 𝑖 = 1,… ,𝑀,

(8)

iven 𝛿𝑖𝑗𝑘 the Kronecker third-order tensor and 𝜎𝜷 the standard devia-
ion of the coefficients.

Both the system matrix and the right-hand side, Eq. (7), have been
odified compared to Eq. (3): in particular, the former is no longer

ower triangular, and hence the solution requires (𝑀3) operations.
he standard method can be easily retrieved by making the limit for
→ 0+. This version of the GEIM algorithm will be referred to as

R-GEIM.

. Parameterised-background data-weak (PBDW) formulation

In order to estimate the true state 𝑢𝑡𝑟𝑢𝑒 ∈  of a system over the
omain 𝛺, two main ingredients are considered: a best-knowledge math-
matical model, like Eq. (1), and a set of experimental observations
𝑜𝑏𝑠 ∈ R𝑀 , generally decomposed as in Eq. (5). To estimate the true
tate of the system, the following statement is presented (Carrassi et al.,
018)

⋆
𝜉 = argmin

𝑢∈
𝜉 ‖‖
‖

𝑢 − 𝑢𝑏𝑘‖‖
‖

2

𝐿2(𝛺)
+ 1
𝑀

𝑀
∑

𝑚=1

(

𝑣𝑚(𝑢) − 𝑦𝑜𝑏𝑠𝑚
)2 (9)

where 𝑢𝑏𝑘 is the solution of the best-knowledge model and 𝜉 is called
regularising parameter, whose job consists in weighting the relative
importance of the background (mathematical model) with respect to
the experimental data. Such a minimisation problem would require

6 If the noise level 𝜎 is known, the optimal value of 𝜆 is 𝜎 itself.
7 There is no unique definition for the matrix 𝑇 , other options are

available (Introini et al., 2023a; Introini, 2021).
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solving the mathematical model several times, which is not feasible
due to its high computational cost. Therefore, a model order reduction
via the reduced basis approach is used, and the 𝑁−rank approximation
𝑍𝑁 = 𝑠𝑝𝑎𝑛{𝜁1,… , 𝜁𝑁} of  is introduced. Then, the state estimation 𝑢⋆𝜉
is decomposed as 𝑢⋆𝜉 = 𝑧⋆𝜉 + 𝛾⋆𝜉 and accordingly statement (9) can be
rewritten as
(

𝑧⋆𝜉 , 𝛾
⋆
𝜉

)

= argmin
(𝑧,𝛾)∈𝑍𝑁×

𝜉 ‖𝛾‖2
𝐿2(𝛺)

+ 1
𝑀

𝑀
∑

𝑚=1

[

𝑣𝑚 (𝑧 + 𝛾) − 𝑦𝑜𝑏𝑠𝑚
]2 (10)

where 𝑧⋆𝜉 is the approximation of 𝑢𝑏𝑘 in 𝑍𝑁 .
Eq. (10) is known as the PBDW statement (Maday et al., 2015a;

addei, 2016; Maday and Taddei, 2019), and the parameter 𝜉 should be
alibrated according to the accuracy of the background space and to the
agnitude of the disturbance 𝜀𝑚; this may require the implementation

f an adaptive procedure.
The components of the state estimation have a clear interpretation:

⋆
𝜉 is known as the deduced background, and it represents the informa-
ion coming from the mathematical model (along with its modelling
rror), whereas 𝛾⋆𝜉 is the update that accommodates unanticipated
nformation or non-parametric uncertainty. This formulation is the
ost general one since it has been designed to consider imperfect
easurements. The PBDW was firstly introduced in Maday et al. (2014)

or noise-free data

𝑧⋆, 𝛾⋆
)

= argmin
(𝑧,𝛾)∈𝑍𝑁×

‖𝛾‖2
𝐿2(𝛺)

subject to
{

𝑣𝑚 (𝑧 + 𝛾) = 𝑦𝑜𝑏𝑠𝑚
}𝑀
𝑚=1

(11)

t can be proved that the two formulations are equivalent when 𝜉 → 0+,
s shown in Taddei (2016). In the following, it will be highlighted that
he effect of 𝜉 is an improvement in the convergence properties of the
ethod.

.1. Well-posedness and a-priori error analysis

Let 𝑅 ∶  ′ →  be the Riesz operator from the dual space  ′

o the solution space  , defined such that (𝑅 𝑣, 𝑢) = 𝑣(𝑢) for any
∈  and 𝑣 ∈  ′; hence, the 𝑀−dimensional update space 𝑀 can
e characterised as

𝑀 = 𝑠𝑝𝑎𝑛
{

𝑔𝑚 ≜ 𝑅 𝑣𝑚
}𝑀
𝑚=1

here
{

𝑔𝑚
}𝑀
𝑚=1 is a basis for the space itself. Moreover, the follow-

ng definition is necessary to prove the well-posedness of the PBDW
tatement:

𝑁,𝑀 = inf
𝑧∈𝑍𝑁

sup
𝑞∈𝑀

(𝑧, 𝑞)𝐿2(𝛺)

‖𝑧‖𝐿2(𝛺) ⋅ ‖𝑞‖𝐿2(𝛺)
, (12)

hat is, the inf-sup constant, which comes with a very important prop-
rty: it is a non-decreasing function of 𝑁 and a non-increasing function
f 𝑀 ; furthermore, 𝛽𝑁,𝑀 = 0 if 𝑁 > 𝑀 . This fact imposes a constraint
n the choice of 𝑁 and 𝑀 , specifically the number of sensors 𝑀 must
ot be always lower than the dimension of the reduced space 𝑁 ; if
his condition is respected, 𝛽𝑁,𝑀 > 0 and the PBDW statement (10)
dmits unique solution (Maday et al., 2014). A complete explanation
n the role of the inf-sup constant in the estimation error can be found
n Maday et al. (2014) and Taddei (2016).

In the end, the structure of the PBDW formulation enables the use of
alerkin error analysis (Quarteroni, 2016) to develop a proper a priori
rror theory (Maday et al., 2014; Taddei, 2016; Maday and Taddei,
019). Furthermore, it can be proved that (𝑧⋆𝜉 , 𝛾

⋆
𝜉 ) is a solution to the

ollowing saddle point problem

𝜉(𝛾⋆𝜉 , 𝑞)𝐿2(𝛺) +
1
𝑀

𝑀
∑

𝑚=1

[

𝑣𝑚(𝑧⋆𝜉 + 𝛾⋆𝜉 ) − 𝑦
𝑜𝑏𝑠
𝑚

]

𝑣𝑚(𝑞) = 0 ∀𝑞 ∈ 𝑀

(𝛾⋆𝜉 , 𝑝)𝐿2(𝛺) = 0 ∀𝑝 ∈ 𝑍𝑁

(13)
5

L

This result allows the derivation of a rather simple algebraic for-
mulation. Let 𝐴 ∈ R𝑀×𝑀 and 𝐾 ∈ R𝑀×𝑁 matrices, defined as

𝐴𝑚𝑚′ =
(

𝑔𝑚, 𝑔𝑚′
)

𝐿2(𝛺) 𝑚,𝑚′ = 1,…𝑀,

𝐾𝑚𝑛 =
(

𝑔𝑚, 𝜁𝑛
)

𝐿2(𝛺) = 𝑣𝑚(𝜁𝑛) 𝑚 = 1,…𝑀 𝑛 = 1,… , 𝑁.
(14)

Since the state estimation 𝑢⋆𝜉 has been decomposed as 𝛾⋆𝜉 +𝑧⋆𝜉 and each
term can be expanded onto its basis, i.e.

𝑢⋆𝜉 (𝐱) =
𝑀
∑

𝑚=1
𝛾𝑚 ⋅ 𝑔𝑚(𝐱) +

𝑁
∑

𝑛=1
𝑧𝑛 ⋅ 𝜁𝑛(𝐱), (15)

and it is the solution of the PBDW statement (10). The coefficient
vectors 𝜸⋆𝜉 = [𝛾1,… , 𝛾𝑀 ]𝑇 ∈ R𝑀 and 𝐳⋆𝜉 = [𝑧1,… , 𝑧𝑁 ]𝑇 ∈ R𝑁 are the
solution of the following linear system (Taddei, 2016)

⎡

⎢

⎢

⎣

𝜉𝑀𝐼 + 𝐴 𝐾

𝐾𝑇 0

⎤

⎥

⎥

⎦

⋅

⎡

⎢

⎢

⎢

⎣

𝜸⋆𝜉

𝐳⋆𝜉

⎤

⎥

⎥

⎥

⎦

=
⎡

⎢

⎢

⎣

𝐲𝑜𝑏𝑠

𝟎

⎤

⎥

⎥

⎦

(16)

where 𝐼 ∈ R𝑀×𝑀 is the identity matrix. As already mentioned during
the previous subsection, the condition that 𝛽𝑁,𝑀 > 0 is necessary and
it can be guaranteed if rank(𝐾) = 𝑁 . Moreover, this constant can
be computed as the square root of the minimum eigenvalue of the
following problem (Taddei, 2016)

𝐾𝑇𝐴−1𝐾𝐳𝑛 = 𝜆𝑛𝑍𝐳𝑛 𝑛 = 1,…𝑁 (17)

where 𝑍 ∈ R𝑁×𝑁 is defined as 𝑍𝑛𝑛′ =
(

𝜁𝑛, 𝜁𝑛′
)

𝐿2(𝛺).

3.2. Offline–online decomposition

As typically occurs in HDA or MOR methods, the PBDW procedure
is divided into an offline (more demanding from a computational point
of view) and an online stage (rather fast). The former includes the
construction of the reduced space 𝑍𝑁 , the selection of the sensors and
the assembly of the matrices, whereas the latter involves the acquisition
of the experimental data, the selection of the regularising weight 𝜉, the
solution of the linear system and the state estimation (see Algorithm
3).

In this work, the Weak Greedy Algorithm (Prud’homme et al., 2002)
will be used to build the reduced space8 𝑍𝑁 , this choice ensures a
nearly optimal space in ‖⋅‖𝐿2 comparable to the one generated by
POD (Hesthaven et al., 2016). Once this space has been generated, the
update space has to be defined with a suitable procedure based on some
criteria (Maday et al., 2014). In this work, the approximation error
is minimised, thus any element outside 𝑍𝑁 is well approximated by
the elements of the updated space. This procedure is nothing but the
minimisation of the Lebesgue error constant,9 namely the GEIM greedy
algorithm.

For what concerns the computational costs in the online stage, the
linear system has dimension (𝑀 + 𝑁) × (𝑀 + 𝑁) with a saddle point
structure, which implies that the number of operations required to solve
the problem is ((𝑀 +𝑁)3).

In the end, Table 1 shows a brief comparison between the different
methods investigated in this work. In addition to this, it is worth
highlight the fact that the PBDW can be seen as the mathematical gener-
alisation of GEIM: indeed, it is defined to accommodate different HDA
methods and a more general error theory can be developed (Taddei,
2016; Maday et al., 2014).

8 The size of the reduced space 𝑍𝑁 is quite important for two main reasons:
he best fit error (between the best-knowledge solution and the reconstructed
ne) should be low enough, which implies that 𝑁 has to be sufficiently ′′high′′;
n the other hand, 𝑁 should be lower than the number of observations 𝑀 for
he sake of the stability of the PBDW formulation.

9 Maday et al. (2015b) and Gong et al. (2019) stated that minimising the

ebesgue constant is equivalent to maximise the inf-sup constant, given 𝜉 = 0.
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Algorithm 3: PBDW Computational Procedure
Offline Stage

Choose the space  and a proper norm ‖⋅‖;
Generation of 𝑍𝑁
{

𝜁𝑛
}𝑁
𝑛=1 = WeakGreedy( , 𝑁);

Selection of sensors
{

𝑣𝑚
}𝑀
𝑚=1;

Compute the matrices of (14);

nline Stage
Acquisition of experimental data 𝐲𝑜𝑏𝑠;
Solve linear system (16) for 𝜸⋆𝜉 and 𝐳⋆𝜉 ;
Evaluate the state of the system as
𝑢⋆𝜉 (𝐱) =

∑𝑀
𝑚=1 𝛾𝑚 ⋅ 𝑔𝑚(𝐱) +

∑𝑁
𝑛=1 𝑧𝑛 ⋅ 𝜁𝑛(𝐱);

Table 1
Comparison between the different HDA methods in terms of spectral properties of the
matrix, behaviour against random noise and algorithms used to build the reduced and
update space.

GEIM TR-GEIM PBDW

Matrix structure Lower Triangular Full Saddle Point
Matrix size 𝑀 ×𝑀 𝑀 ×𝑀 (𝑀 +𝑁) × (𝑀 +𝑁)
Random noise Unstable Stable Stable
Reduced space Greedy Greedy WeakGreedy
Update space Greedy Greedy Greedy

4. Numerical benchmark case: Backward facing step

It is important to compare and assess the reliability of GEIM and
PBDW on a numerical case, in which the model is assumed to be
perfect, ignoring and considering noisy measurements. This is why, a
typical benchmark for CFD codes, with simple geometry, but charac-
terised at the same time by a rather complex flow, has been chosen:
the Backward Facing Step (BFS).

4.1. Description of the test case

The benchmark test case will be a 3D model of airflow over a
BFS, considering non-adiabatic flow. The geometry is rather simple,
nevertheless, the fluid flow shows separation regions and many studies
in the literature have addressed this phenomenon (e.g., Armaly et al.,
1983; Nadge and Govardhan, 2014; Le et al., 1997).

For the sake of simplicity, a steady state simulation will be per-
formed and the varying parameter will be the inlet velocity; in particu-
lar, the following Reynolds number will be used as a reference quantity

𝑅𝑒 =
‖

‖

𝐮𝑖𝑛‖‖2 ⋅ ℎ
𝜈

, (18)

here ℎ = 49 mm is the height of the step, 𝜈 [𝑚
2

𝑠 ] is the kinematic
viscosity and 𝐮𝑖𝑛 = [𝑢𝑖𝑛, 0, 0] is the inlet velocity. The parameter domain
is defined as 𝑅𝑒 ∈  = [20, 20 000] and the train and test set can be
selected as

𝛯𝑡𝑟𝑎𝑖𝑛 = [20 ∶ 100.4 ∶ 20 000] dim(𝛯𝑡𝑟𝑎𝑖𝑛) = 200,
𝛯𝑡𝑒𝑠𝑡 = [70 ∶ 100.5 ∶ 20 000] dim(𝛯𝑡𝑒𝑠𝑡) = 199.

(19)

Different types of flows will be studied, from laminar to turbulent:
in fact, as stated in Nadge and Govardhan (2014), for this problem
the flow can be considered laminar if 𝑅𝑒 ≤ 300 and fully-turbulent if
𝑅𝑒 ≥ 5000; in the middle, a transitional flow is established.

Fig. 2 shows the geometry of the system on the 𝑥𝑦 plane. As already
mentioned, the working fluid is air and the governing equations are the
Navier–Stokes equations under the Boussinesq approximation and the
6

energy equation (Ferziger and Peric, 2002)

⎧

⎪

⎨

⎪

⎩

∇ ⋅ 𝐮 = 0 𝐱 ∈ 𝛺
(𝐮 ⋅ ∇)𝐮 = 𝜈𝛥𝐮 − ∇𝑝𝑟𝑔ℎ − 𝛽𝐠(𝑇 − 𝑇𝑟𝑒𝑓 ) 𝐱 ∈ 𝛺
𝐮 ⋅ ∇𝑇 = 𝛼𝛥𝑇 𝐱 ∈ 𝛺

(20)

here 𝛼 is the thermal diffusivity, 𝛽 the thermal expansion coefficient,
𝑟𝑔ℎ a pressure10 defined as 𝑝 − 𝐠 ⋅ 𝐞𝑧 (whose dimensions are pressure
ver density) and 𝛺 is the domain. The turbulence treatment, when
equired, will be carried out using a RANS approach, where the velocity
s decomposed into an average and a fluctuating field (Davidson, 2015);
he problem will be closed using two equations models, in particular,
he 𝑘𝜔 − 𝑆𝑆𝑇 is considered.

The boundary 𝜕𝛺 is given by the inlet 𝛤𝑖𝑛, the outlet 𝛤𝑜𝑢𝑡 and the
alls 𝛤𝑤, and the boundary conditions are imposed as follows

𝐮 = 𝐮𝑖𝑛 on 𝛤𝑖𝑛
𝜕𝑝
𝜕𝐧

= 0 on 𝛤𝑖𝑛

𝑇 = 𝑇𝑖𝑛 on 𝛤𝑖𝑛

⎧

⎪

⎪

⎨

⎪

⎪

⎩

𝐮 = 𝟎 on 𝛤𝑤
𝜕𝑝
𝜕𝐧

= 0 on 𝛤𝑤

𝑇 = 𝑇𝑤 on 𝛤𝑤

⎧

⎪

⎪

⎨

⎪

⎪

⎩

𝜕𝐮
𝜕𝐧

= 𝟎 on 𝛤𝑜𝑢𝑡

𝑝 = 0 on 𝛤𝑜𝑢𝑡
𝜕𝑇
𝜕𝐧

= 0 on 𝛤𝑜𝑢𝑡

(21)

where 𝑇𝑖𝑛 > 𝑇𝑤; in particular, 𝑇𝑖𝑛 = 320K and 𝑇𝑤 = 300K. The
turbulence quantities have to be defined on the boundary as well: at
the outlet, a zeroGradient condition is imposed

(

𝜕
𝜕𝐧 = 0

)

, at the wall
suitable wall functions are implemented and at the inlet, they are
defined as follows

𝜈𝑡 =
√

3
2
𝑢𝑖𝑛 ⋅ 𝐼 𝑙𝑡, 𝑘 = 3

2
⋅
(

𝑢𝑖𝑛 𝐼
)2 , 𝜔 =

√

𝑘
𝑙𝑡
, (22)

where 𝜈𝑡 is the turbulent viscosity, 𝑘 the turbulent kinetic energy, 𝜔 the
urbulence dissipation rate, 𝐼 is the turbulence intensity11 and 𝑙𝑡 is the
urbulence length scale (estimated as 0.07ℎ).

.1.1. Numerical discretisation
The governing Eqs. (20) have been solved with the open-source

V solver OpenFOAM (Weller et al., 1998). The mesh contains ℎ =
75 000 cells, with maximum skewness of 0.034 and maximum non-
rthogonality of 0.804.

The problem is not time-dependent, hence a steady-state solver
s used, namely buoyantBoussinesqSimpleFoam. The turbulence treat-
ent is activated if the Reynolds number reaches values higher than
00 (Nadge and Govardhan, 2014; Introini, 2021). The HDA algorithms
ave been implemented in the OpenFOAM version 6.x environment.

.2. Offline stage

The GEIM and the PBDW have been applied only to the temperature
ield12 𝑇 ∈  ⊂ 𝐿2(𝛺), the library of functionals 𝛶 =

{

𝑣(⋅; 𝐱𝑘, 𝑠)
}ℎ
𝑘=1 is

10 Its actual dimension are
[

Pressure∕Density
]

, when incompressible flu-
ids are considered the pressure acts as a constraint from a mathematical
standpoint.

11 This quantity is defined as the ratio between the fluctuating part of the
velocity and its average and it can be estimated using the following correlation

𝐼 = 0.16 ⋅ 𝑅𝑒−1∕8

provided in ANSYS, Inc. (2016).
12 The choice of this particular is not limiting, since both GEIM and PBDW

can be extended to deal with vector quantities, as 𝐮 with a proper definition
of the sensors (Silva et al., 2021).
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Fig. 2. 𝑥𝑦 view of the Backward Facing Step (the dimensions are metres).
defined as

𝑣𝑘 = 𝑣(𝑇 (𝐱); 𝐱𝑘, 𝑠) = ∫𝛺
𝑇 (𝐱) ⋅ 𝑔𝑘 𝑑𝛺 ∀𝑇 ∈  ,

𝑔𝑘 = 𝑔(𝐱 − 𝐱𝑘; 𝑠) =
𝑒−

‖𝐱−𝐱𝑘‖
2
2

2𝑠2

∫𝛺
𝑒−

‖𝐱−𝐱𝑘‖
2
2

2𝑠2 𝑑𝛺

∀𝐱𝑘 ∈ 𝛺.
(23)

Different values of the point spread can be used; if 𝑠2 < 106, the spread
is lower than the size of the numerical grid, the GEIM algorithm reduces
to EIM (since the functional reduces to a Dirac’s distribution) because
the measurements become point-wise.

To let the GEIM work at the best of its capability, it is suggested not
to introduce any constraints for the sensors selection (Introini et al.,
2023b). Nevertheless, if the mesh is too large, the RAM installed on
the machine might not be sufficient to save all the sensor functions 𝑔𝑘,
because the algorithm generates a function per cell and stores them in
the memory. In this case, it has been decided to reduce the required
memory by sampling only some cells (still keeping a good coverage of
the domain): thus, the reduced domain 𝛺∗ is introduced, so that

𝛺∗ ⊂ 𝛺  ∗
ℎ = dim(𝛺∗) < dim(𝛺) = ℎ (24)

The available locations are thus all 𝐱𝑘 ∈ 𝛺∗, given that  ∗
ℎ is much

larger than 𝑀𝑚𝑎𝑥 (the maximum number of sensors selected). Even
though this has been presented as a computational constraint, it mirrors
reality: in fact, in real facilities, there are some locations in which
sensors cannot be placed.

Error notation. Both in the offline and online stage it is important to see
how the selected field is reconstructed via HDA, this is done by using
the following definitions. Let 𝜖(𝐱;𝑀,𝜇) be the relative error associated
to the field 𝑢𝑡𝑟𝑢𝑒(𝐱;𝜇), defined as

𝜖(𝐱;𝑀,𝜇) =
𝑢𝑡𝑟𝑢𝑒(𝐱;𝜇) − 𝑀 [𝑢𝑡𝑟𝑢𝑒(⋅;𝜇)](𝐱)

‖𝑢𝑡𝑟𝑢𝑒(𝐱;𝜇)‖𝐿2(𝛺)
, (25)

where 𝑀 [𝑢𝑡𝑟𝑢𝑒(⋅;𝜇)](𝐱) is an operator which takes as input the true field
and returns the reconstructed field using 𝑀 sensors/basis.13

4.2.1. Comparison of the reduced spaces
By focusing on the reduced space, the GEIM and WeakGreedy

algorithms will be compared in terms of the relative error defined
above. The point-spread 𝑠2 used for the GEIM algorithm will be equal
to 10−5 for reasons that will be better explained in the next subsection.

Fig. 3 shows the comparison between the two reduced spaces with
the one built using POD, which is nearly optimal in 𝐿2−sense (Hes-
thaven et al., 2016). The WeakGreedy is very close to the POD, and
the errors decrease substantially by increasing the dimension of the
reduced space 𝑍𝑁 . The GEIM performance is very good as well since a
few basis functions can be used to suitably reconstruct the snapshots of
the train set: 𝑁 ≃ 15 means a relative error lower than 0.1%. Another
remark must be done on the calculation of the coefficients for the
linear expansion: indeed, GEIM relies on interpolation, thus it is local

13 For GEIM the number of sensors used and basis number employed is the
same, but for PBDW, in the online stage, the dimension of the adopted basis is
usually fixed (𝑁) and the varying parameter is the dimension of the updated
space  .
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𝑀

algorithm from this point of view, whereas POD and WeakGreedy relies
on the projection, which includes the computation of integrals, making
them global. This may explain why WeakGreedy seems better when
measuring the error in ‖⋅‖𝐿2(𝛺). Still, both GEIM and WeakGreedy can
be used to create reduced spaces.

4.2.2. Analysis of different point-spread values for the sensors
When dealing with the GEIM, it is important to correctly select the

point-spread of the functionals: if a real sensor is used, some infor-
mation can be extracted from the characteristics of the measurement
system; however, for this numerical case, its value should be discussed
properly, as no a priori information.

The analysis of the Lebesgue constant at different values of 𝑠, which
has a direct impact on the error performed by the method itself, can be
used to make a proper decision.

As the value of 𝑠 increases (Fig. 4), the slope14 increases as well,
in particular for 𝑠2 = 10−3 the growth is quite rapid: indeed, the
unboundedness of 𝛬𝑀 is a well-known issue of interpolation prob-
lems (Quarteroni et al., 2007). Accordingly, if the point spread value is
high, it is not recommended to increase too much the number of magic
functions, because the obtained result will be less and less meaningful.

Therefore, 𝑠2 will be taken as 10−5, since at this value the behaviour
of the Lebesgue constant is almost steady; furthermore, lower values
may be too small and similar to cell size, thus the Gaussian functionals
may reduce to Dirac distributions, resulting in the reduction from GEIM
to EIM. In real cases, this calibration of value of 𝑠2 is not performed,
since the sensitivity of the sensors fixes 𝑠2.

4.2.3. Analysis of the inf-sup stability constant for the PBDW
The inf-sup constant plays a very similar role for the PBDW as

the Lebesgue constant does for the GEIM. Once the positions of the
sensors have been selected with the GEIM greedy algorithm, Eq. (17)
can be exploited to find the inf-sup stability constant, which involves
the calculation of the matrices 𝐴 and 𝐾 (𝑍 is the identity matrix, if the
basis of the reduced space is orthonormal).

The eigenvalue problem has been solved in MATLAB (The Math-
works, Inc., 2021), which is a more suitable environment when dealing
with matrices. The results are displayed in Fig. 5, where different values
of 𝑁 are considered.

In Section 3.1 it has been stated that 𝛽𝑁,𝑀 is a non-decreasing
function of 𝑀 and a non-increasing function of 𝑁 , the numerical results
confirm this statement. Moreover, Fig. 5 highlights the fact that taking
a large value of 𝑁 is not recommended since it would result in a low
inf-sup constant, providing a less bounded error for the reconstruction.
Thus, given a good approximation of the train set, the lower 𝑁 the
better the PBDW performs since the inf-sup constant is higher. Finally,
the numerical results confirm that, for 𝑀 < 𝑁 , the inf-sup constant is
null; this explains why the number of sensors 𝑀 must always be larger
than the number of basis functions 𝑁 .

14 The 𝑦-axis is in logarithmic scale.
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Fig. 3. Maximum relative error measured in ‖⋅‖𝐿2 (𝛺).
Fig. 4. Lebesgue Constant 𝛬𝑀 as a function of the number of sensors/magic functions at different point-spread levels.
Fig. 5. Inf-sup stability constant 𝛽𝑁,𝑀 .
4.3. Online stage

These algorithms are suited to integrate models with real experi-
mental data since they claim to be able to reconstruct a certain field
(e.g., the temperature) with few sensors along with the information
coming from the reduced space. Before diving into this task, it is
important to check the performance of the methods against synthetic
data, coming from simulations with different parameter values: this is
8

why a test set has been defined in Eq. (19). In the following, the data are
assumed to be noise-free or polluted by random disturbance, described
from a mathematical standpoint by a zero-mean Gaussian distribution,
namely 𝜀 ∼  (0, 𝜎2).

In the noise-free case, the impact of the dimension of the reduced
space 𝑁 for the PBDW (with 𝜉 = 0) will be investigated, then with
noisy data a sensitivity analysis on the regularising parameter 𝜉 will be
performed to determine its effect.
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Fig. 6. Maximum and average relative reconstruction error measured in ‖⋅‖𝐿2 (𝛺), for the noise free case.
4.3.1. Synthetic data: noise free
Even though in real applications accessing the true solution is not

possible, when synthetic data are used the knowledge coming from the
simulations can be further exploited by defining a test set as in Eq. (19).
Using the definition of relative error, as in Eq. (25), the maximum and
average relative reconstruction error can be analysed.

In Fig. 6, the reconstruction performed by the HDA is plotted and
compared with the best possible solution given by the POD.15 The GEIM
algorithm (with point spread 𝑠2 = 10−5) produces good estimations, in
fact with only 10 magic functions the average relative error is brought
below 0.1%, even though it shows some oscillatory behaviour as 𝑀
increases. For what concerns the PBDW, different dimensions of the
reduced space have been considered, in particular 𝑁 = [10, 30, 50].

The PBDW seems to be more reliable, if the number of sensors is
very high, since the error tends better to 0, on the other hand, the GEIM
algorithm can bring the error below a certain threshold by employing
fewer magic functions/sensors, this is important for real systems in
which the number of sensors is typically limited, thus it is necessary
to reduce the generalisation error with few sensors.

4.3.2. Synthetic data affected by random noise and impact of the regular-
ising parameter

The behaviour with noisy data is now going to be analysed: at first,
the standard algorithms are going to be used, then the Tikhonov regu-
larisation for GEIM and the introduction of the regularising parameter
𝜉 for PBDW are studied. Different values of noises will be investigated,
in particular 𝜎 = [0.05, 0.1, 0.5, 1]. For the reduced space in the PBDW
formulation, it has been chosen to use 𝑁 = 30 since the reconstruction
with noise-free data is very good (Fig. 6).

Fig. 7 shows how random disturbance can affect the average rela-
tive reconstruction error; in particular, the unstable behaviour of the
GEIM stands out and adding magic functions worsens a lot the estima-
tion. This trend has been theoretically proved in Argaud et al. (2017)
and demonstrated in Introini et al. (2023a), Gong (2018) and Gong
et al. (2022): the interpolation error increases with the basis number

15 The coefficients of the reduced basis are obtained, through a projection
onto the reduced space.
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(Eq. (6)). Furthermore, the slope is much affected by the value of
random noise, and the turning point for the instability becomes lower
as the noise level increases. These effects must be taken into account
when dealing with a system with a high level of disturbance.

On the other hand, the PBDW formulation does not suffer from
instabilities and a very interesting behaviour occurs, namely, the con-
vergence rate (i.e., the slope) is not a function of the noise level. As
depicted in Fig. 7, the black-dashed lines are almost parallel to one
another, in particular, they can be represented by a power-law 𝑀−𝛿 .

It is then clear that some regularisation must be introduced for
the GEIM algorithm to retrieve optimality in the reconstruction. Fig. 8
proves again the reliability of TR-GEIM (Introini et al., 2023a) as a
regularisation method: in fact, for the different values of 𝜎, the average
relative reconstruction error has been stabilised and adding more magic
functions implies a better estimation of the state. Accordingly, this
technique has been once again proved to be reliable also on 3D cases,
even though an important hypothesis of this analysis is the knowledge
of the noise level to calibrate the parameter 𝜆, which may not be trivial
when dealing with real-world applications.

Previously, it has been stated that the PBDW formulation is not
highly affected by random noise for what concerns instabilities; nev-
ertheless, Fig. 7 shows that the higher the noise level is the higher
the average level of the reconstruction error is. In Maday and Taddei
(2019), a slightly different formulation has been introduced, which
weakens the original PBDW statement (Eq. (11)) with the introduction
of the regularising parameter 𝜉, able to ′′measure′′ the importance of
the background space compared to the updated one. In the following,
the influence of 𝜉 on the reconstruction (i.e., on the error) will be anal-
ysed; in this preliminary analysis, a very simple trial&error procedure
is used to determine the magnitude of this parameter.

Fig. 9 shows the numerical results,16: for each noise level, the effect
of the parameter 𝜉 is similar, namely the convergence rate changes with
𝜉. In this case, as the value of the regularising parameter increases,
the error tends to better decrease, thus adding more sensors improves

16 As mentioned in Section 3.1 the value of the parameter 𝜉 may tend to be
very large if the model is sufficiently accurate, moreover, if the true solution
lies in the reduced space 𝑍 , it is recommended to pick high values of 𝜉.
𝑁
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Fig. 7. Average relative reconstruction error with noisy data without regularisation.
Fig. 8. Average relative reconstruction error using Tikhonov regularisation for the GEIM algorithm at different noise level.
the state estimation. Furthermore, this effect seems to present a sort
of ′′saturation′′, considering that the case with 𝜎 = 0.1 taking 𝜉 = 105

or 𝜉 = 106 produces almost identical results. The improvement in the
convergence rate is more evident for large values of the random noise,
for instance by taking 𝜎 = 0.05 the effect of the regularising parameter
is almost negligible, instead for the case with 𝜎 = 1 the slope changes
more.
10
The numerical results of the different methods have been plotted
for the noise level 𝜎 = 0.1.17 Fig. 10 shows the superiority of TR-
GEIM compared to the others, since with 15 magic functions the

17 This value has been chosen since it is usually encountered in thermal
hydraulics systems.
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Fig. 9. Average relative reconstruction error using PBDW for different values of 𝜉 at different noise level.
Fig. 10. Comparison of the different HDA methods with noise level 𝜎 = 0.1.
average relative reconstruction error is ∼ 0.06%. The PBDW formulation
provides the same results by introducing about 40 sensors because
there is a lower limit given by 𝑁 , the dimension of the reduced space.
Furthermore, the introduction of the regularising parameter improves
the convergence properties: indeed, the slope of the orange markers is
less horizontal than the blue ones.

In the end, Fig. 11 shows a contour plot of the true temperature field
compared to the reconstructed one, with 𝑅𝑒 = 16 000. The TR-GEIM
shows again its superiority with respect to the others, on the other hand
the PBDW seems to suffer a bit near the re-circulation region, this is
related to the choice of the WeakGreedy algorithm to build the reduced
space.
11
5. Conclusions

In this work, both the Generalised Empirical Interpolation Method
and the Parameterised-Backward Data-Weak formulation have been
compared on a numerical case, i.e. the Backward Facing Step, with a
non-adiabatic flow, both in the absence and presence of noisy data.
These methods are hybrid data assimilation techniques, conceived to
combine theoretical modelling and experimental observations, in which
Model Order Reduction is coupled with Data Assimilation. They aim at
updating the knowledge of the model with the real evaluation of the
fields.
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Fig. 11. Contour plots of the temperature field for 𝑅𝑒 = 16 000, with 𝑀 = 60 and 𝑁 = 30.
For what concerns the efficiency of the techniques, after ensuring
the reducibility of the problem, the reconstruction error, in the absence
and presence of random noise, can be observed. Considering noise-
free data, the GEIM algorithm can reconstruct the field with only 10
magic functions, given an average relative reconstruction error ∼ 0.1%,
whereas the PBDW formulation has been investigated with 3 different
values for the dimension of the reduced space, namely 𝑁 = [10, 30, 50]:
all of them can give very good reconstruction; the main downside is
the requirement that 𝑀 > 𝑁 which may be a problem, because a lot
of sensors may be required, which is not always possible to have at
disposal, especially for real systems.

Then, random noise has been introduced into the system with
4 different levels 𝜎 = [0.05, 0.1, 0.5, 1], the standard version of the
GEIM presents instabilities: in fact, adding magic functions worsens
the reconstruction, therefore the Tikhonov regularisation (TR-GEIM)
has been implemented. By considering this new version, the results are
very good since the optimality has been retrieved. For what concerns
the PBDW, the behaviour is quite different: in fact, this method does
not suffer instabilities and the reconstruction error decreases at the
same rate for all noise levels considered. In the end, different values
of the regularising parameter 𝜉, whose job consists in weighting the
importance of the model compared to the data, have been investigated
and its main effect results in improving the convergence rate.

This work can be considered as a benchmark for the performance
of these two methods, the GEIM algorithm has once again been proved
a very useful tool to be employed in data assimilation problems, espe-
cially the TR-GEIM version, on the other hand, the PBDW formulation
has shown its superiority in terms of convergence rates and presence of
noisy data, nevertheless, it is important to underline that it requires, in
general, more sensors to give comparable results with GEIM. Accord-
ingly, the PBDW formulation can be a useful tool, given the reduced
space to be small enough.

Finally, the next important step will be to assess the performance of
these methods when real experimental data are considered and when a
certain model is not perfect, this is the main purpose of the second part.
Moreover, an extension of these methods to vector fields and an in-
depth comparison of TR-GEIM with the novel regularisation technique
by Gong et al. (2022) will be a matter of future development.
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List of symbols

Acronyms

BFS Backward Facing Step

CFD Computational Fluid Dynamics

DA Data Assimilation

EIM Empirical Interpolation Method

FOM Full Order Model

GEIM Generalised Empirical Interpolation Method

HDA Hybrid Data Assimilation

LFR Lead-cooled Fast Reactor

MOR Model Order Reduction

PBDW Parameterised-Background Data-Weak

PDE Partial Differential Equation

POD Proper Orthogonal Decomposition

RANS Reynolds Averaged Navier–Stokes

TR-GEIM Tikhonov Regularised-Generalised Empirical Interpolation
Method

Greek Symbols

𝛽 GEIM coefficients

𝛽𝑁,𝑀 Inf-sup constant with 𝑍𝑁 and 𝑀 in PBDW

𝜖 Relative reconstruction error

𝜀 Random noise
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𝛤

𝛬

𝛺

𝛶

𝛯

L

𝑔

𝑞

𝑠

𝑢

𝑣

𝑧

𝐴

𝐵

𝐸

𝐾

𝑀

𝑁

𝑅

𝑇

𝑍

𝐠

𝐧

𝐮

𝐱

𝐲

















𝛾 Coefficients for the update space in PBDW

𝜆 Eigenvalue, Weight of the Tikhonov regularisation

𝜇 Parameter

𝜎 Standard deviation for random noise

𝜉 Regularising parameter for PBDW

𝜁 Reduced basis function in PBDW

Boundary of the physical domain

Lebesgue Constant

Physical domain

Sensors library

Sampled space on 

atin symbols

Riesz representation of functional

Magic Function

Point spread of the functional

Generic Snapshot

Continuous Linear Functional/Experimental sensor

Coefficients of PBDW for the background space

Square Matrix of PBDW algebraic problem

Matrix of GEIM interpolation problem

Residual field measured in 𝐿2(𝛺)

Rectangular Matrix of PBDW algebraic problem

Number of sensors/magic functions

Dimension of the reduced space

𝑒 Reynolds Number

Tikhonov matrix for the GEIM regularisation, Temperature Field

Reduced space

Gravity acceleration

Normal vector

Velocity field

Space vector

Measurement vector

Parameter Space

Generic differential operator a PDE

GEIM interpolant

Gaussian probability distribution

ℎ Size of the numerical mesh

MOR operator, whose output is the reconstruction

Solution manifold

Update space in PBDW
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