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ABSTRACT
In our brain, information is exchanged among neurons in the form of spikes where both the space (which neuron fires) and time (when
the neuron fires) contain relevant information. Every neuron is connected to other neurons by synapses, which are continuously cre-
ated, updated, and stimulated to enable information processing and learning. Realizing the brain-like neuron/synapse network in silicon
would enable artificial autonomous agents capable of learning, adaptation, and interaction with the environment. Toward this aim, the
conventional microelectronic technology, which is based on complementary metal–oxide–semiconductor transistors and the von Neu-
mann computing architecture, does not provide the desired energy efficiency and scaling potential. A generation of emerging memory
devices, including resistive switching random access memory (RRAM) also known as the memristor, can offer a wealth of physics-enabled
processing capabilities, including multiplication, integration, potentiation, depression, and time-decaying stimulation, which are suitable
to recreate some of the fundamental phenomena of the human brain in silico. This work provides an overview about the status and
the most recent updates on brain-inspired neuromorphic computing devices. After introducing the RRAM device technologies, we dis-
cuss the main computing functionalities of the human brain, including neuron integration and fire, dendritic filtering, and short- and
long-term synaptic plasticity. For each of these processing functions, we discuss their proposed implementation in terms of materials,
device structure, and brain-like characteristics. The rich device physics, the nano-scale integration, the tolerance to stochastic variations,
and the ability to process information in situ make the emerging memory devices a promising technology for future brain-like hardware
intelligence.

© 2021 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license
(http://creativecommons.org/licenses/by/4.0/). https://doi.org/10.1063/5.0047641

I. INTRODUCTION

The human brain is one of the most complex objects in the
universe. It is capable of executing high-level cognitive tasks, such
as abstraction, generalization, prediction, decision making, recog-
nition, and navigation in a continuously changing environment.
Such high cognitive capability of the brain comes at the expense
of an extremely low power consumption of only 20 W. There are
mainly two reasons for the high energy efficiency of the brain: First,
information exchange and processing are event driven; therefore,

spiking energy is consumed only when and where it is needed.
Second, neurons and synapses are co-located within the same,
highly interconnected neural network, where each neuron is con-
nected to other 104 neurons, on the average. Neuron/synapse co-
location means that data processing, consisting of synaptic exci-
tation and neuron firing, and memory, consisting of the synaptic
weight and the neuron threshold, share the same location within the
brain.1

Many research efforts aim at mimicking the type of computa-
tion of the human brain to achieve its outstanding energy efficiency.
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This is the objective of neuromorphic engineering, where spik-
ing neural networks (SNNs) are developed with artificial neurons
and synapses. SNNs generally adopt the same fully connected (FC)
architecture of the conventional perceptron networks pioneered by
Rosenblatt and Minsky.2,3 In a SNN, however, neurons and synapses
usually display a time-dependent response to the applied spikes,
such as integration and fire in a neuron and excitatory post-synaptic
current (EPSC) across a synapse. This is different from the conven-
tional artificial neural networks (ANNs) used in artificial intelligence
(AI) accelerators for computer vision and speech recognition, where
the information is synchronous and based on the amplitude of the
signal, instead of its time.4

Most SNNs generally rely on the complementary
metal–oxide–semiconductor (CMOS) technology, with two
main significant advantages: First, the CMOS technology is widely
available in the semiconductor industry ecosystem, including
design, fabrication, and qualification, therefore creating the condi-
tions to make CMOS-based neuromorphic engineering a mature
topic. Second, the CMOS transistor can scale down according to
Moore’s law, where a reduction of the lithography feature size
allows for a larger density and a better performance of the circuit.
On the other hand, there are significant limitations in CMOS
technology. For instance, time-dependent functions such as spike
integration in an artificial neuron generally require large capacitors
in CMOS technology, therefore limiting the cost effectiveness of
neuromorphic circuits.5 Synaptic weights are generally stored in
static random access memory (SRAM), which are volatile, i.e., all
synaptic values are lost when the circuit is switched off.6 In addition,
SRAM devices are large and binary, i.e., they can only store 0 and 1;
thus, they are not suitable for gradual potentiation and depression
that are typical of synaptic plasticity phenomena.7–9

To overcome these limitations, neuromorphic materials and
devices are intensively explored to complement CMOS technol-
ogy. The aim of this new wave of research is to reproduce bio-
neurological phenomena typical of the human brain with device
physics. For instance, phase change materials have been shown
to accumulate applied voltage spikes and consequently change
their resistivity, which can be used as the physical mechanism for
integrate-and-fire (I-and-F) neurons without capacitors.10–12 The
fire process of the typical I-and-F neuron can be reproduced in a
nanoelectronics device by abrupt current switching at the onset of
the negative differential resistance (NDR) region, such as the elec-
tronic threshold switching in ovonic threshold switch (OTS) ele-
ments13 or ferroelectric transition in HfO2.14 Similarly, all other key
mechanisms in the biological neural network can be emulated by
specifically engineered devices through their physics. The objective
is the recreation of a brain-like circuit system with extremely low
power consumption and compact, scalable architecture.

This work provides an overview about the status on the devel-
opment of neuromorphic devices that emulate biological neural
processes by device physics. The work will focus on the resistive
switching random access memory (RRAM) as the device technology
for the implementation of various neuromorphic functions, includ-
ing artificial synapses, neurons, and dendrites. Circuits demonstrat-
ing the full neuromorphic function, such as unsupervised learn-
ing and pattern recognition, will also be presented. The rest of
this paper is organized as follows: Sec. II will illustrate the major
categories of RRAM devices in terms of the switching mechanism

and device structure. Section III will provide an overview of the neu-
romorphic processes and their implementation in RRAM devices.
Section IV will deal with artificial neurons with integration, fire,
oscillations, and dendritic filtering capability. Finally, Sec. V will
focus on artificial synapses including learning functions via plasticity
and sensing/computation via short-term memory (STM).

II. RESISTIVE SWITCHING DEVICES
Urged by the scaling limitation of CMOS-based memories, var-

ious types of emerging memory devices have been proposed in the
last 20 years. These include phase change memory (PCM),15 mag-
netic random access memory (MRAM),16,17 ferroelectric random
access memory (FERAM),18,19 and RRAM.20–22 These memories
have the ability to change their resistance state by a permanent mod-
ification of the active material, thus serving as scalable nonvolatile
device for standalone and embedded memories.23–25

Among the novel emerging memory technologies, RRAM has
attracted strong research interest partly due to the simple structure
that allows for a relatively straightforward fabrication in academic
laboratories and integration within the industrial CMOS process.
RRAM has been recognized as a potential technology for synaptic
connections in ANNs and SNNs, thanks to the small size, easy inte-
gration, and scalability that allow for high connectivity within the
neural network.26 The high synaptic density is further supported by
the ability of 3D integration by array stacking27 of vertical struc-
tures.28–32 The programming energy of RRAM is generally low, thus
enabling energy-efficient computation and reconfiguration of the
neural network.31

A. Two-terminal devices
Figure 1 shows a schematic illustration of the two-terminal

RRAM device, including a filamentary switching RRAM (a) and a
uniform switching RRAM (b). While both devices are based on a
metal–insulator–metal (MIM) structure with a top electrode (TE),
a bottom electrode (BE), and at least one dielectric layer,
the switching mechanisms are fundamentally different. In the

FIG. 1. Illustration of two-terminal resistive switching memory (RRAM) devices for
neuromorphic computing. (a) Filamentary RRAM, where the device resistance is
changed due to the formation and modulation of a conductive filament across a
high resistance dielectric layer. The filament can connect the top electrode (TE)
and the bottom electrode (BE) in the low-resistance state (LRS), whereas the fila-
ment is disconnected between TE and BE in the high-resistance state (HRS). (b)
Uniform switching RRAM, where the device resistance is controlled by a switching
layer, usually a metal oxide, which shows a high resistance, due to a low concen-
tration of defects, in the HRS, or a low resistance, due to high concentration of
defects, in the LRS.
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filamentary structure, a forming process is first applied by apply-
ing a relatively large voltage that leads to soft breakdown of the
MIM.22 The breakdown spot, consisting of a filamentary path
with low resistivity, is then subjected to set/reset processes by the
application of voltage pulses. Typically, the RRAM device shows
a bipolar switching characteristic, where the applied electric field
across the conductive filament causes ionic migration and a con-
sequent change in resistance.33 For instance, a negative voltage
applied to the TE leads to the migration of positively ionized
defects toward the TE, thus resulting in depletion of defects at
the BE side with an increase in resistance, or reset transition.34

A positive voltage applied to the TE results in migration of the
defects toward the BE, thus refilling the depleted gap and causing
a decrease in resistance, or set transition.34 Filamentary set tran-
sition is generally abrupt due to the positive feedback in the gap
filling process: As the defects start to migrate toward the gap, the
electric field increases, thus causing an acceleration of the
ionic migration. To avoid uncontrolled filament growth during
the abrupt set transition, usually a transistor is added in series with
the RRAM device to enable current limitation below a certain com-
pliance current IC.35 Figure 2(a) shows typical I–V characteristics for
a HfO2 RRAM device with a 1T1R structure.36 As IC increases, the
device conductance in the low-resistance state (LRS) increases, thus
indicating a larger size of the conductive filament. The reset current
correspondingly increases as a result of the larger filament size. The
adoption of the one-transistor/one-resistor (1T1R) structure of the
RRAM device thus allows for low current operation and tight control
of the device conductance, which is beneficial for analog in-memory
computing.36

Depending on the electrode materials, the conductive fila-
ment can be stable for long time even at high temperature37 or be
metastable due to defect diffusion after the set transition.38–44 In
particular, RRAM with Ag TE generally tends to display this type
of volatile behavior due to the spontaneous diffusion of Ag from
the filament location. This was attributed to surface diffusion of

Ag to minimize the total energy of the filament by minimizing the
surface to volume ratio.45 Figure 2(b) shows the typical pulsed pro-
gramming characteristics for the Ag/SiO2 RRAM device.44 Under a
triangular pulsed of applied voltage, the device shows a set transi-
tion, marked by the abrupt rise of current to the IC level. After the
pulse, the read current remains active for a finite retention time tR
of about 1.5 ms, thus revealing the spontaneous decay of the con-
ductive filament diameter ϕ [see simulation results at the bottom of
Fig. 2(b)].44 Such a volatile behavior has been proposed for selec-
tor elements in a crosspoint device,46 thanks to the steep switching
slope and extremely large on/off ratio exceeding 10 orders of mag-
nitude.42 However, due to the relatively long retention time in the
range between 1 μs and several ms, the device is most suitable as
a physics-based neuromorphic device to implement transient bio-
logical phenomena, such as short-term memory47 and spike-timing
dependent plasticity (STDP).41

The filamentary set/reset process causes intrinsic variability
issues due to individual defect diffusion and instability.48–51 Varia-
tions include cycle-to-cycle changes of conductance, due to the vari-
ability in filament shape and volume,48 and device-to-device vari-
ations due to the difference in the structure and geometry among
various RRAM devices.49 Generally, device-to-device variation plays
the key role in technology reliability due to the sensitivity to the local
defect concentration, dielectric film microstructure, interface rough-
ness, and filament shape originating from the breakdown event at
forming.50 In addition to programming variations, read variation
causes the device resistance to vary even after the device has under-
gone the set/reset process. The resistance can, in fact, display time-
dependent fluctuations such as random telegraph noise (RTN) and
random walk due to defect instability.51 The conductance variations
can cause a degradation of neural network accuracy,52,53 although
some stochastic computing algorithms may take advantage from
noise.54–59

Note that variations are not intrinsic to filamentary switch-
ing, rather they arise generally in most types of memory

FIG. 2. Filamentary RRAM characteristics. (a) Measured I–V characteristics of a filamentary RRAM device with a 1T1R structure and HfO2 switching layer. As the compliance
current IC increases, the filament conductance increases due to the increased size. (b) Pulsed characteristic of a volatile RRAM device, including applied voltage (top),
response current (center), and calculated filament diameter (bottom). After the set transition at time 0, the filament spontaneously retracts to the electrodes, thus resulting
in a fast drop of conductance within a retention time tR of about 1.5 ms. Reprinted with permission from Sun et al., IEEE Trans. Electron Devices 67, 1466 (2020). Copyright
2020 IEEE and Wang et al., IEEE Trans. Electron Devices 66, 3802 (2019). Copyright 2019 IEEE.
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FIG. 3. Uniform switching RRAM structure and characteristics. [(a) and (b)] Device structure, including vertical Ta TE, TaOx/TiO2 stack as switching/dielectric layers and
horizontal Ti BE. The TE and oxide bi-layer are deposited on the side wall of a stack of multiple BE/SiO2 layers for a cost-effective vertical RRAM structure.30 (c) I–V curves
of uniform switching for top and bottom cells.30 From Hsu et al., IEEE International Electron Devices Meeting (IEDM), pp. 10.4.1–10.4.4. Copyright 2013 IEEE. Reprinted
with permission from IEEE.

technologies. For instance, PCM displays programming variations
due to the stochastic nature of nucleation and growth in the crystal-
lization process.60 Similarly, FERAM shows variations in the mul-
tilevel conductance due to the stochastic switching of individual
ferroelectric domains.61 However, filamentary RRAM is more crit-
ically affected by post-programming fluctuations of the resistance,
as a result of the localized conduction at atomically thin channels,
where trapping, detrapping, and atomic relaxation can induce a
strong variation in the device resistance.62 To mitigate the cycle-
to-cycle variations, a new concept of filamentary switching RRAM
was developed, where the conductive path originates from threading
dislocations within epitaxially grown SiGe layers on Si substrates.63

The material-based approach to induce switching at predetermined
channels is extremely promising for reducing the programming
variations, although post-programming variations at the dislocation
filament may still be a concern for reliability.

The conductance variations and their impact on the neural net-
work accuracy can be mitigated by the uniform switching RRAM in
Fig. 1(b). The conductance in this device changes as a result of oxy-
gen vacancy exchange at the interface between two oxide layers, the
dielectric layer and the switching layer.64 For instance, the switch-
ing layer can consist of an interfacial oxide layer between an active
electrode, e.g., Sm, and a relatively high conductive oxide layer, such
as La0.7Ca0.3MnO3 (LCMO).65 Figure 3 shows a possible implemen-
tation of a uniform switching device with a vertical structure.30 The
device stack includes a Ta TE, TaOx, TiO2, and Ti BE. The bipolar
switching takes place by the oxygen exchange between the TaOx and
TiO2 layers. Figure 3(c) shows the I–V curves of the uniform switch-
ing device, indicating a smooth and gradual change of resistance.30

Thanks to the gradual set/reset dynamics, the uniform switching is
suitable to perform pulsed potentiation/depression for analog arti-
ficial synapses.30,66 In addition, the low conductance around 100 nS
in uniform switching allows for an extremely low energy per spike
below 10 fA.31

B. Three-terminal devices
The need for analog conductance, low variation, and low energy

in neuromorphic circuits has stimulated the study of advanced
three-terminal devices based on ionic migration. Figure 4(a) shows a

three-terminal device called electro-chemical random access mem-
ory (ECRAM).67 The ECRAM displays a transistor structure with
gate, source, and drain contacts, where the read path is from the
source to drain, while the programming takes place by gate pulses.
Application of positive/negative gate pulses results in the migration
of ionized defects from a reservoir, close to the gate terminal, to the
channel between the source and the drain. Defects can be either Li+

impurities68–70 or H+71,72 or oxygen ions/vacancies.73,74 Li+ inter-
calation and oxygen exchange within the channel can change its
conductivity, thus resulting in weight potentiation or depression.
ECRAM devices, also referred to as redox transistors or ionic tran-
sistors, are characterized by extremely low conductance in the range
from few nS69 to few μS,73 thanks to the low mobility and low car-
rier concentration in the channel material, e.g., WO3. Such a low
conductance is essential to minimize the signal current within the
synaptic array, thus enabling low parasitic IR drop67 and small size
of the circuit periphery to handle the output current, including
select transistors and integrating capacitances. Most importantly, the
potentiation and depression characteristics are extremely gradual
and linear, thanks to the bulk conduction mechanism in the device74

and for accurate integration in I-and-F neurons. On the other hand,

FIG. 4. Illustration of three-terminal devices. (a) ECRAM, where the channel con-
ductance changes by the field-induced migration of ionized defects, such as Li+,
protons or oxygen vacancies. (b) Mem-transistor, where the conductance is con-
trolled by the migration of defects across a 2D semiconductor channel. Reprinted
with permission from D. Ielmini and G. Pedretti, Adv. Intell. Syst. 2, 2000040
(2020). Copyright 2020 John Wiley & Sons, Inc.
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the ECRAM technology usually requires selector devices to properly
execute program and read operations.72

Figure 4(b) shows the mem-transistor device, where the chan-
nel consists of a 2D semiconductor region with atomic thickness.75,76

The drain current of the device can be modulated by applying a suit-
able gate voltage, thanks to the semiconductor properties of transi-
tion metal dichalcogenides (TMDs) such as MoS2.77 In addition, the
application of a large drain bias can lead to a persistent modification
of the channel conductivity due to migration of defects such as grain
boundaries75,76 or Li+ impurities.78 The mem-transistor thus allows,
in principle, both the transistor effect (by gate stimulation) and
memory effect (by drain stimulation), which can support various
neuromorphic functions, such as synaptic potentiation/depression
and spike dependent plasticity.75

III. NEUROMORPHIC PROCESSES BY DEVICE PHYSICS
Memory devices allow to embody neurobiological processes

within a single device with extremely compact size and highly bio-
realistic properties. This is made possible by the rich physics of the
emerging memory devices, where the electric/magnetic polarization,
phase structure, and local chemical composition contribute to the
electrical conductance, which is, in turn, affected by atomic/ionic
drift/diffusion, electro-chemical redox reactions, phase transitions,
dielectric breakdown phenomena, and ferroelectric/ferromagnetic
transitions.

Figure 5 shows a summary of neurobiological features and
functions and their respective implementation in resistive memory
devices. Generally, neurons in the biological neural network of the
human brain consist of soma, dendrites, and an axon. The tem-
poral spikes containing the incoming information are collected by
dendrites and processed by the soma. Depending on the incoming
stimulation and the type of information processing, e.g., I-and-F

with a characteristic threshold, the neuron can fire, i.e., send an
output spike through the axon toward the receiving neurons. The
spike transmission from a neuron axon to other neuron dendrites
takes place via a synapse, called axo-dendritic synapse, each hav-
ing a specific weight and a corresponding weight update behav-
ior. The synaptic weight describes the efficacy of an input spike to
stimulate the receiving neuron. Synapses display synaptic plasticity,
namely, the ability to change their weight in response to the stim-
ulation. Although the synaptic plasticity mechanism is not yet fully
understood, several plasticity rules have been proposed, including
spike-timing dependent plasticity (STDP)7,9,79–81 and triplet-based
plasticity,8,82,83 where the timing of spikes, e.g., their respective
delay or relative frequency, dictates the potentiation or depres-
sion of the synapse. Synaptic plasticity controls learning within the
human brain; thus, it is of utmost importance in all neuromorphic
circuits.

To implement the individual elements of Fig. 5, several devices,
circuits, and their respective physics can be adopted. The summation
and integration functions of the soma can be implemented in hard-
ware by matrix vector multiplication (MVM) in crosspoint arrays
and integration in nanoscale memory devices. Time-dependent den-
drite filtering and synaptic plasticity effects can be described by the
switching properties of RRAM devices. The rich physics of mem-
ory devices and their combination can thus be used to reproduce
neuro-biological phenomena at the nanoscale, which benefits the
massive connectivity, high scalability, and low-cost of neuromorphic
circuits.

IV. HARDWARE NEURONS
The neuron soma can be described by the popular

McCulloch–Pitts model,84 where the neuron input is given by
the weighted summation of the incoming spike, while the output

FIG. 5. Illustration of various possible circuit/device implementations of neuro-biological processes. The neuron soma weighted summation can be reproduced by the matrix
vector multiplication (MVM) in crosspoint array circuits, while integration of I-and-F neurons is mimicked by pulse accumulation mechanisms in PCMs and RRAMs. The
filtering function of dendrites is described by the conductance change and relaxation of uniform switching RRAMs. Short- and long-term plasticity of biological synapses can
be implemented by set/reset dynamics of volatile/nonvolatile RRAMs or PCMs.
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signal is given by a suitable nonlinear activation function. This can
be expressed by the following formula:

yi = f
⎛

⎝
∑

j
wijxj
⎞

⎠

, (1)

where yi is the output of the post-synaptic neuron i, f is the acti-
vation function, wij are the weights of the synapses connecting
presynaptic neurons j with the postsynaptic neuron i, and xj is
the signal of the pre-synaptic neuron j. While other models, such
as the Hodgkin–Huxley (HH) model,85 are more accurate in the
description of the temporal shape of the spike and the bio-chemical
details of Ca and K ion transport, the McCulloch–Pitts model pro-
vides a simple mathematical description to elaborate the interaction
between presynaptic and postsynaptic neurons.

The weighted summation of the McCulloch–Pitts model can
be well described in hardware by the matrix vector multiplication
(MVM) in a crosspoint memory array, which is depicted in Fig. 6.
In the crosspoint array, each resistive memory device is prepro-
grammed with conductance Gij. The application of a voltage vector
Vj at the array columns thus results in the generation of currents
GijVj at the memory element with coordinates (i, j) via Ohm’s law.
All these currents are then collected at the array rows by Kirchhoff’s
law, thus yielding a total row current Ii given by

Ii =∑
j

GijVj, (2)

which is inline with the argument of the activation function in
Eq. (1). The output current is then typically converted into volt-
age by transimpedance amplifiers and passed through an activa-
tion function to fully emulate the neuronal information processing.
The significant advantage of the crosspoint array circuit is that it
allows us to accelerate MVM by simultaneous multiplication and
summation by physical laws, in contrast with the iterative multiply
accumulate (MAC) algorithm for MVM execution in digital pro-
cessing units.86–88 Another strong advantage is the ability to pro-
cess information within the memory, thus eliminating any data
transfer between the memory and the separate processing unit that

FIG. 6. Illustration of a crosspoint memory array to execute the MVM. The resistive
memory devices playing the role of synapses are preliminarily programmed to have
conductance Gij. A voltage vector Vj is applied to the array columns, thus resulting
in output currents Ii given by Eq. (2).

would be affected by the memory bottleneck of von Neumann archi-
tectures.89,90 On the other hand, in-memory MVM is executed in
the analog domain, which raises a number of concerns such as
electronic noise, limited precision of the conductance values Gij,
non-linear memory characteristics, and parasitic IR drop along the
row/column lines in the array circuit.67 Nonetheless, MVM has been
demonstrated in several applications, such as neural network accel-
eration,49,91–94 sparse coding,95 mixed-precision computing,96 com-
pressed sensing,97 solution of differential equations,98 and the solu-
tion of linear matrix problems such as matrix inversion99 and linear
regression.100

A. Neuron integration
Biological neurons are also known to have a memory effect,

where input spikes are integrated, instead of being summed simul-
taneously. The incoming signals from synapses cause the increase in
a local graded potential (LGP) in the dendritic membrane. The neu-
ron then generates an action potential if the LGP reaches a threshold;
otherwise, it relaxes to its resting state if the LGP is below the thresh-
old. The neuron can thus conduct the signal-processing functions
by information integration and the threshold firing.101 This func-
tionality of the biological neuron is expressed by the concept of
I-and-F neurons where spike integration causes the increase of an
internal state variable, generally named membrane potential Vm. As
the membrane potential reaches a given threshold Vth, then the neu-
ron responds with a fire, i.e., by sending an output spike.102,103 In
addition to this simple I-and-F concept, many other bio-plausible
models have been proposed to implement artificial neurons, such as
the leaky I-and-F model104 and the biophysical HH model.105,106 The
I-and-F neuron is usually implemented by relatively large CMOS
circuits containing tens of transistors6,107 and large integrating
capacitors.108 For instance, a memory capacitor Cmem with a capac-
itance of 432 fF was reported to have a layout area of 244 μm2 in
0.35 μm CMOS technology for injection currents of the order of tens
of picoamperes.108 A larger capacitance may be needed in the case
of larger synaptic currents, which might be the case for memory-
based neural networks.109–111 To reduce the circuit area for I-and-
F neurons, one can take advantage of device physics of memory
devices, typically in hybrid combination with CMOS transistors,
to fully realize integration, firing, and bursting modes of biological
neurons.

To reduce the area of the neuron integration circuit, it is possi-
ble to take advantage of pulse accumulation processes in nanoscale
memory elements. For instance, the application of voltage pulses
across a PCM can lead to incremental crystallization due to local
Joule heating and a consequent increase in conductance, which can
be used as an equivalent membrane potential.10–12 Similar pulse
accumulation processes in FERAM14 and RRAM112–115 can be used
for compact spike integration, thus allowing to minimize the neuron
area.

Figure 7 shows the implementation of I-and-F artificial neurons
by using a Pr0.7Ca0.3MnO3 (PCMO) RRAM, where the integration
function is performed due to the gradual conductance increase dur-
ing the set process.112 Figure 7(a) shows the structure of the PCMO
RRAM device, where the 70 nm-thick PCMO layer is inserted
between a Ti BE and a W TE. Figure 7(b) shows the measured
current in response to applied pulses of fixed width and increasing
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FIG. 7. I-and-F neuron based on PCMO RRAM. (a) Sketch of the RRAM device structure. (b) Time-dependent current during an applied pulse at increasing voltage
amplitude. As the voltage increases, the integration phase increases its slope and the time-to-fire decreases. (c) Results of the application of voltage spikes with constant
voltage. The gradual increase in current under the first four pulses indicates the integration function, while the abrupt conductance increase induced by the fifth pulse
represents the fire function. Reprinted with permission from Lashkare et al., IEEE Electron Device Lett. 39, 484 (2018). Copyright 2018 IEEE.

amplitude. In general, the current shows an initial gradual increase,
which can be understood as the integration phase, followed by a
steep rise, representing the fire response. The non-linear current
response is the result of the ion migration dynamics in PCMO,
where the field-driven defect migration leads to an increase in con-
ductance. Figure 7(c) shows the measured current in response to the
application of a sequence of five voltage spikes. The conductance
first gradually increases under the stimulations of repeated set pulses
(i.e., integration function), followed by an abrupt increase in spike
current once reaching a threshold (i.e., fire function). Subsequently,
a reset pulse is used to reset the RRAM device to the initial con-
ductance. The experimental results of current transient support the
feasibility of I-and-F neurons based on PCMO RRAM.112 Similarly,
the neuron integration function can be performed in a SrTiO3-based
memristor device with uniform switching.115

B. Neuron fire
In general, devices exhibiting intrinsic threshold switching

allow us to perform the fire function in a simple way, i.e., within a
nanosized device instead of using bulky comparators and pulse gen-
erators. In fact, firing, bursting, and oscillating functions of the neu-
rons have been reported by using threshold-switching devices based
on Mott transition116–118 and RRAM.119–123 Figure 8(a) illustrates a
typical implementation of an artificial I-and-F neuron, consisting of
a volatile RRAM device or diffusive memristor based on SiOxNy:Ag
and a parallel capacitor.120 In this figure, the diffusive memristor
with volatile behavior executes the fire function by threshold switch-
ing, while the capacitor conducts the integration function through
the charging process. Additionally, a resistor in series with the arti-
ficial neuron is adopted as an artificial synapse and to monitor the
output current vs time.

Figure 8(b) shows the experimental response of the artificial
neuron to a sequence of sub-threshold stimulations.120 By applying
the super-threshold pulse train on the I-and-F neuron, the capacitor
is charged with a typical time constant, resulting in the increase of
voltage across the diffusive memristor, thus serving as the LGP state

variable. This integration process results in a negligible current dur-
ing the first several pulses in the experimental data. Once the LGP
reaches the threshold after a certain number of pulses, the volatile
RRAM device switches to the high-conductance state, thus resulting
in a fire output signal with high current. The delay time between the
arrival of input spikes and the fire operation depends on the reser-
voir computing (RC) time constant and the internal Ag dynamics
of the memristor. After fire, the device spontaneously relaxes to a
low conductance state, corresponding to its resting state, as a result
of the discharge of the capacitor and the volatile behavior of the
RRAM device. The results in Fig. 8(b) support the feasibility of the

FIG. 8. The I-and-F artificial neuron comprising a SiOxNy:Ag diffusive memris-
tor and a parallel capacitor. (a) Schematic illustration of the I-and-F neuron. (b)
The experimental response of the artificial neuron. Reprinted with permission from
Wang et al., Nat. Electron. 1, 137 (2018). Copyright 2018 Springer Nature.
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artificial I-and-F neuron enabled by the volatile RRAM physics.
Similar I-and-F neuron implementations were reported by using a
vertical MoS2/graphene threshold switching memristor.124 In some
cases, RRAM devices with a capacitive effect, referred to as mem-
capacitors, are also used to replace the common capacitor to imple-
ment the I-and-F neurons.125–127 For instance, I-and-F neurons with
various neuron functions were reported using single RRAM devices
based on GaTa4Se8

128 and a stack of Ag/FeOx/Pt.129 The combi-
nation of I-and-F functions in nanoscale memory devices is most
promising to improve the scalability of artificial spiking neurons.

C. Oscillating neurons
Threshold switching in volatile RRAM devices provides the

basis for generating self-sustained oscillations, thus enabling bio-
plausible artificial neurons. Figure 9 illustrates an oscillating neuron
based on the Mott insulator NbO2.116 As shown in Fig. 9(a), the
application of a voltage close to a characteristic threshold voltage
VT causes the NbO2 layer to switch from a high-resistance (off)
state to a low-resistance (on) state, followed by a fast recovery of
the initial off state. This threshold switching effect was explained
due to internal Joule heating triggering a higher conductance due to
Poole Frenkel transport130–133 or insulator–metal transition typical
of Mott insulators134 or by a coexistence of these phenomena.135 To
describe the complex dynamics of Na+ and K+ ion channels in the
HH neuron model, two elements are used in the HH neuron circuit
of Fig. 9(b) each including a parallel combination of a NbO2 RRAM
device and a capacitor. These two ionic channels are stimulated by

pulses with opposite polarity bias and coupled to each other by the
load resistor RL2, while the load resistor RL1 serves as input resis-
tance. The parallel combination of the threshold switching device
and a capacitor is able to induce oscillatory spike trains with var-
ious shapes. Assuming a constant input current, a time-oscillating
response can be obtained by the HH circuit. Figure 9(c) shows exper-
imental results of the output of the HH neuron circuit, compared
to circuit simulations for a constant input current of 20 μA. The
inter-spike time interval can be controlled by the value of capaci-
tances C1 and C2. Similar oscillatory HH neurons have been devel-
oped based on other types of devices exhibiting threshold switching,
such as other Mott insulators VO2

136 and TaOx,137 and chalcogenide
glass GeSe.13 Oscillatory neurons have also been demonstrated by
using SiOxNy:Ag volatile RRAM, which is capable of controlling
the oscillation frequency by the conductance value.138 Threshold
switching in a HfO2 layer with the Pt/Ag nanodot top electrode and
Pt bottom electrode was reported to display low operation voltage
(<0.6 V) and ultralow power consumption (<1.8 μW), thus enabling
low voltage/low power oscillatory neurons.123

D. Dendritic filtering
In the biological nervous system, dendrites are important

components of neuronal units that extend from the cell body of
neurons and play a critical role in information processing.139–141

Dendrites are generally considered to be passive elements that
merely transmit synaptic currents to the soma. They can inte-
grate synaptic inputs and output signals nonlinearly and filter

FIG. 9. Implementation of an oscillatory
neuron using a HH model. (a) Schematic
of the HH neuron circuit comprising two
RRAM devices based on the Mott insu-
lator NbO2 (M1 and M2) and two par-
allel capacitors (C1 and C2). (b) The
I–V curve and the typical SEM image of
the NbO2 memristor. (c) Spike burst and
trains of the oscillatory neuron. Reprinted
with permission from M. D. Pickett, G.
Medeiros-Ribeiro, and R. S. Williams,
Nat. Mater. 12, 114 (2013). Copyright
2013 Springer Nature.
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out insignificant background information.142–144 Recently, several
CMOS-based circuits have been reported to emulate the dendrite
functions.145,146 Implementing the dendrite function in nanoscaled
devices is thus highly desirable for neuromorphic engineering. Den-
dritic integration was shown by using starch-based electrolyte-
gated oxide transistors.147 Spatiotemporal dendritic integration and
linear/superlinear dendritic algorithms were demonstrated within
transistor structures.148,149

Figure 10 illustrates the analogy between the ionic channel in a
biological synapse (a) and the two-terminal RRAM device (b), which

provides the foundation to implement the key dendritic functions.150

To implement dendritic nonlinear integration and filtering func-
tions, a volatile RRAM with Pt/TaOx/AlOδ/Al stack was proposed,
where a positive voltage stimulus leads to conductance increase fol-
lowed by a gradual relaxation to the initial high-resistance state as
the voltage bias is removed. Figure 10(c) shows the measured electric
characteristics of the artificial dendritic device, indicating a non-
linear current response to a linearly increasing voltage from 0 to
5 V, which is similar to that of N-methyl-d-aspartate (NMDA) chan-
nels in the biological dendrite. Figure 10(d) shows that the RRAM

FIG. 10. Illustration of artificial dendrites by RRAM devices. (a) Schematic of the membrane of a biological dendrite. (b) A metal–oxide-based dynamic memristor as an
artificial dendrite. (c) Measured nonlinear current response to the applied voltage on the fabricated artificial dendrite. The applied voltage ramped linearly from 0 to 5 V. (d)
Measured current response of the artificial dendrite device in the off and on states, exhibiting a nonlinear filtering and integration property. (e) Measured output current of
the neural network with artificial dendrites for different input patterns. (f) Measured output current of the neural network without artificial dendrites for different input patterns.
Reprinted with permission from Li et al., Nat. Nanotechnol. 15, 776 (2020). Copyright 2020 Springer Nature.
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device can filter out sub-threshold input signals smaller than the
threshold of 3 V and performs nonlinear integration of input sig-
nals larger than the threshold voltage, resulting in a continuously
increasing current response over time. The filtering effect can be
explained by the energy barrier for oxygen ion migration. Only the
input signals with amplitude larger than the threshold voltage can
induce the oxygen ion migration toward the Al electrode, resulting
in a decrease in the barrier height and an increasing current response
to the applied voltages. On the other hand, the sub-threshold input
signals are filtered out. Figures 10(e) and 10(f) shows the measured
current during the inference process of a neural network for various
input patterns with and without artificial dendrites, respectively. The
pattern recognition accuracy and power consumption are signifi-
cantly improved by including the dendritic devices into the neural
network, thanks to the filtering effect.

V. HARDWARE SYNAPSES
Synapses in the biological neural system are responsible for

the weighted transmission of spikes from a pre-synaptic neuron to
a post-synaptic neuron, as depicted in Fig. 11(a).151 Most impor-
tantly, the synaptic weight should be able to adjust depending on
the history of spiking stimulation, a phenomenon known as synap-
tic plasticity that is regarded as the basis for learning and mem-
ory functions. Synaptic plasticity can be realized in hardware via
the conductance change in memory device, such as the set and
reset processes in RRAM devices that have been widely devel-
oped to mimicking biological synapse.151–155 The close emulation
of synaptic functions is a critical step to achieve a neuromorphic
system with the ability to learn and adapt in response to environ-
mental changes. Generally, the synaptic plasticity can be catego-
rized into long-term plasticity and short-term plasticity depending
on the retention time, representing the permanent and tempo-
rary synaptic modification, respectively47,155,156 Various long- and
short-term synaptic functions have been demonstrated by utiliz-
ing memory devices, such as STDP, spike-rate-dependent plasticity

(SRDP), paired-pulse facilitation (PPF), and paired-pulse depression
(PPD).47,151–159

A. Long-term potentiation and depression
Long-term potentiation (LTP) and long-term depression

(LTD) consist of the permanent increase or decrease, respectively,
in the synaptic weight as a result of the spiking stimulation. LTP
and LTD are possible in nonvolatile memory devices by the pulse-
induced change of the conductance according to the input pulse
shape and number.155 Both digital (binary) and analog (multilevel)
conductance change are reported.160–162 Binary states are more suit-
able for memory storage due to the clear difference between high-
resistance state (HRS) and low-resistance state (LRS).163 On the
other hand, analog states are ideal for synaptic devices with incre-
mental weight update.151–155 In particular, analog-type conductance
states with linear and symmetric LTP/LTD are essential in hard-
ware accelerators of inference and training.49,93,94,164–166 Non-linear
and asymmetric LTP/LTD are commonly observed in most synap-
tic devices.67,94,167 Algorithmic and engineering methods should be
identified to compensate the intrinsic linearity of synaptic weight
update.

The linearity of the update characteristics can be improved
by optimization of the programming pulse,168 utilization of defects
engineering,169 and adoption of three terminal devices such as the
ECRAM.68,74 Figure 11(b) shows the LTP and LTD behaviors of a
Pr0.7Ca0.3MnO3 (PCMO) based memristor under the programming
spikes with different pulse schemes.168 The A-type behavior is a typi-
cal update characteristic with nonlinear LTP and abrupt LTD, which
was obtained by using spikes with constant voltage amplitude. The
update linearity of LTP/LTD can be clearly improved by adopting
spikes with incremental amplitude (type B) and pulse width (type C).
These results indicate that non-identical pulses are most effective
in controlling and improving the synaptic update linearity. This is
because the increasing amplitude/pulse-width compensates the typ-
ical saturating behavior of the conductance for constant pulses.94

However, note that the increasing amplitude and increasing width

FIG. 11. (a) Schematic illustration of a biological synapse.151 (b) LTP/LTD processes operated using different pulse spikes, namely, identical spikes and non-identical spikes
with incremental amplitude and pulse width.168 Reprinted with permission from Lin et al., NPG Asia Mater. 12, 64 (2020). Copyright 2020 Springer Nature and From Park
et al., IEEE International Electron Devices Meeting (IEDM), pp. 25.6.1–25.6.4. Copyright 2013 IEEE. Reprinted with permission from IEEE.
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methodologies are not compatible with the outer product scheme of
weight update, where the whole crosspoint array is updated simul-
taneously by applying voltage vectors at the rows and columns
with variable pulse widths.169 The increasing amplitude and width
thus results in more complicated updated schemes requiring longer
update time and larger energy consumption.

The LTP/LTD linearity can be also enhanced in ECRAM
devices, thanks to the bulk-type of switching and to the separation
between the programming path (between the gate and channel) and
the read path (across the channel between the source and drain).
This allows for better controllability of the device conductance by
field-induced migration of impurities, such as Li ions in inorganic
ECRAM68–70 or protons in organic ECRAM.71

B. Spike-timing-dependent plasticity (STDP)
STDP, namely, the weight modification relying on the tem-

poral order of pre- and post-synaptic spikes, is regarded as one of
the essential learning rules for unsupervised learning.7,9,154,155 Thus,
implementing STDP rules in hardware SNNs is a critical step toward
achieving neuromorphic systems capable of learning and adapta-
tion. For the typical STDP rule, the synaptic weight undergoes LTP
if a pre-synaptic spike occurs earlier than a post-synaptic spike, i.e.,
if the spike delay Δt = tpost − tpre between the post-synaptic spike
time tpost and the pre-synaptic spike time tpre is positive. Conversely,
LTD takes place for the case Δt < 0.154,155 To achieve the above STDP
function, the synaptic device usually needs to satisfy the require-
ment of gradual conductance change and fast response to individual
spikes.

Various STDP methods have been reported for both digital-
and analog-type memory devices.154,155,170–173 A typical approach for
STDP is the overlap method where the neuron spike is designed such
that the Δt-dependent overlap between pre- and post-synaptic spikes
leads to the desired LTP or LTD.154,172,173 Figure 12 shows typical
examples of overlap-type implementations of STDP for HfO2-based
RRAMs.173,174 The pre- and post-spikes can be designed as series
of six pulses, where the first negative pulse is followed by five pos-
itive pulses with decreasing amplitude, as shown in Fig. 12(a). An
important design principle is that each individual spike is unable
to induce a conductance change ΔG, i.e., all pulses should be below
the threshold for set/reset processes. However, the overlap between
the pre-spike applied at one electrode and the post-spike applied at
the other electrode causes a voltage drop across the memory device
that is large enough to change the conductance. As illustrated in
Fig. 12(a), when the pre-spike is applied earlier than the post-spike
(Δt > 0), the overlapping spikes result in a positive pulse with a
relatively large amplitude, hence LTP.173 On the other hand, for
Δt < 0, the overlapping spikes cause a negative pulse with large
amplitude, hence LTD. Most importantly, Δt controls the amplitude
of the resulting pulse amplitude, hence the degree of conductance
change ΔG. Figure 12(b) shows the measured ΔG as a function of the
spike timing, indicating that the amplitude of positive and negative
ΔG decreases for increasing delay ∣Δt∣, in agreement with the STDP
rule.173 Previous work suggests that the correlation between ΔG and
Δt can be tuned by adjusting the pulse shape and the programming
scheme.175 Various types of STDP curves were obtained by the over-
lap approach in various synaptic devices, including RRAM,176,177

PCM,178–180 MRAM,181 and FERAM.182

The overlap STDP scheme may suffer from a relatively large
variation of ΔG, since there is no compliance current to control
the growth of the conducting filament during the LTP process. To
overcome this issue, the two-transistor/one-resistor (2T1R) synaptic
circuit structure was proposed to implement the STDP function in
RRAM174 and PCM.183 As shown in Fig. 2, a series MOS transistor
can limit the current during the set transition for better controlling
the resistance in RRAM.35,184 The additional transistor also provides
a multiple-input control for handling the various synaptic functions,
i.e., spike transmission, LTP, and LTD. Figure 12(c) illustrates the
2T1R synapse, where the PRE spike is applied to the RRAM TE,
while the POST spike is applied to the fire gate (FG). Additionally, a
short positive pulse is given to the communication gate (CG) of the
second transistor for synaptic transmission. The coincidence of the
PRE spike with amplitude VTE and the POST spike with amplitude
of VFG can induce the set and reset transition of resistive switch-
ing memory, thus leading to LTP and LTD, respectively. Impor-
tantly, the filament growth is controlled by the VFG, which, in turn,
depends on the spike timing, thus enabling time-dependent potenti-
ation according to the STDP function. Figure 12(d) shows the result-
ing STDP characteristics, namely, the relative change of conductance
R0/R, where R0 is the resistance before the spike application and R is
the final resistance, for various initial states R0 obtained for various
IC. The results indicate LTD for Δt < 0 and LTP for Δt > 0, where
the change of conductance tends to vanish at increasing ∣Δt∣, which
is in line with the observed biological STDP.7 A simplified STDP
synaptic circuit was reported by adopting a one-transistor/one-
resistor (1T1R) structure with the RRAM synapse.111,185 This was
later extended to a four-transistor/one-resistor (4T1R) structure to
demonstrate the SRDP.186,187

Although the overlap method allows for the efficient STDP
function with local activity, it does not fully account for the observed
biological STDP, where overlapping spikes are generally not nec-
essary for weight update. To overcome this limitation, the second-
order memristor was proposed to execute LTP/LTD according to
the STDP rule without any overlap between pre- and post-spikes.188

The second-order memristor consists of a RRAM device where
the conductance change is not only determined by the first vari-
able, e.g., the filament size or interface barrier, but also by a sec-
ond variable, e.g., the local temperature or oxygen mobility, which
impacts the dynamics of the first variable.41,155,188,189 The second
variable usually displays a transient dynamics, such as a sponta-
neous decay after stimulation, which is similar to the Ca2+ dynamics
in the biological synapse. As a result, the second-order memris-
tor can display non-overlap, biorealistic emulation of STDP rule
and other synaptic learning functions.41,155,188,189 Figure 12(e) illus-
trates the pre-/post-spikes, including a programming pulse with
high amplitude and a heating pulse with long pulse width. By
applying the pre- and post-spikes at the TE and BE, the interac-
tion between the applied electric field and the local temperature
can lead to a Δt-dependent conductance change, as indicated by
the STDP characteristic for a Ta2O5−x/TaOy second-order mem-
ristor in Fig. 12(g). Similarly, a second-order memristor consisting
of a Pt/WO3−x/W stack was reported, where the two variables are
the Schottky barrier and the oxygen ion mobility.177 Second-order
memristors were experimentally demonstrated for various mate-
rial systems, such as InGaZnO,155 Ta2O5−x/TaOy,188 WO3−x,177,189

SrTiO3,190 SiOxNy:Ag,41 and TiO2:Ag.191
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FIG. 12. Schemes for the implementation of the STDP rule using the overlap approach and the 2T1R structure and the nonoverlap method in RRAM devices. [(a) and (b)]
The pulse design and measured STDP of the HfO2-based RRAM through overlapping the pre- and post-spikes.173 (c) The illustrative scheme for 2T1R synapse containing
a memristor and two transistors. (d) The tunable STDP curves with different initial conductance states obtained by setting the device under increasing IC from 25 to
170 μA.174 [(e) and (f)] The operation design and the realization of the STDP function using the nonoverlap spikes in a second-order Ta2O5−x/TaOy memristor.188 Reprinted
with permission from Yu et al., IEEE Trans. Electron Devices 58, 2729 (2011). Copyright 2011 IEEE; Wang et al., Front. Neurosci. 8, 438 (2015). Copyright 2015 Frontiers;
and Kim et al., Nano Lett. 15, 2203 (2015). Copyright 2015 ACS.

C. Spike-rate-dependent plasticity (SRDP)

In the human brain, there are two main types of informa-
tion coding, namely, time coding and rate coding. While STDP is
most suitable for learning in the presence of time coding, SRDP

can serve as the learning rule for rate coding.192 Frequency depen-
dent LTP/LTD have been extensively reported in memory devices
with dynamic effects, e.g., oxygen diffusion.193,194 SRDP generally
relies on the Bienenstock–Cooper–Munro (BCM) learning rule as
a high-order function of SRDP.195–197 According to the BCM rule,
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spike trains with a frequency larger than a certain threshold induce
LTP, while spike trains with a lower frequency lead to LTD. A
threshold slide effect has been reported, where the threshold fre-
quency changes depending on the learning experience, thus enabling
a history-dependent synaptic adaptation.83,198 Many efforts have
been made to realize the BCM rule by using the rate-based pre-
spikes in the second-order memristors.189,199 In these schemes, the

forgetting effect of the learning experiences and the potentiation
effect induced by the rate-based pre-spikes were compared, thus
achieving the BCM learning rule with the monotonic trend. The
effect of tunable forgetting rate on the BCM curve was studied for
SrTiO3-based RRAM devices.200 However, monotonic SRDP is not
consistent with the “tick” shape of the BCM rule in biological sys-
tems. In addition, the BCM rule should represent the long-term

FIG. 13. Bio-realistic demonstration of the BCM learning rule using a triplet-STDP scheme.199 (a) Scheme for the typical spike triplets of “post–pre–post” and “pre–post–pre.”
[(b) and (c)] The experimental results of triplet-STDP measured in the WO3−x memristor. It summarized the LTP and LTD using the sequences of “post–pre–post” and
“pre–post–pre” with various timing intervals. The degree of ΔG is indicated by both the symbol size and background color. (d) The dependence of ΔG on both the pre-spike
rate ρx and post-spike rate ρy. (e) The triplet-STDP based BCM rules with various learning experiences (i.e., different initial conductance G0). Reprinted with permission
from Wang et al., Nat. Commun. 11, 1510 (2020). Copyright 2020 Springer Nature.
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characteristics rather than the short-term modification implemented
in some studies.189,200

Compared to the standard STDP with paired spikes, a third
spike is introduced in the triplet-STDP, thus resulting in a triplet
of interacting spikes. The interaction of paired spikes with the
third spike leads to the multiplicative term to enable the BCM
rule. In biological systems, there are two types of triplet STDP,
namely, the first-spike-dominating rule and last-spike-dominating
rule. The former was demonstrated in a Pt/SrTiO3/Nb-STO stack
RRAM exhibiting synaptic suppression triplet-STDP.115 Last-spike-
dominating triplet-STDP was reported for a Pt/WO3−x/W second-
order memristor.199,201 This is shown in Fig. 13(a) reporting the
typical triplets of “post–pre–post” and “pre–post–pre” for stimu-
lating the WO3−x synaptic RRAM device. Figure 13(b) shows the
conductance change as a function of the first and the second spike
delay in the post–pre–post triplet, Δt1 and Δt2, respectively, while
Fig. 13(c) shows the same for the pre–post–pre triplet. Figure 13(d)
shows the measured ΔG as a function of Δt1 for increasing spik-
ing rate, indicating that plasticity depends on both the pre-spike
rate ρx and post-spike rate ρy. Based on these results, the BCM
learning rule can be implemented by designing a proper triplet-
STDP scheme. Figure 13(e) illustrates the triplet-based BCM learn-
ing rule by extracting the data from the diagonal line of quad-
rant II in Fig. 13(b) and defining the post-spike rate as given by
ρy = 1/(∣Δt1∣ + ∣Δt2∣). The experience-dependent sliding threshold
characteristic is also demonstrated by tuning the initial conductance
G0 in such BCM implementation, resulting in a close emulation of
the biological BCM curve.199

D. Short-term synaptic plasticity and memory
While long-term plasticity can last for the entire lifetime, short-

term plasticity or short-term memory (STM) in the human brain
can be as short as milliseconds to minutes.148–150 Several typical
types of STM have been realized in hardware memory devices,
including the excitatory postsynaptic current (EPSC), PPF/PPD, and
SRDP.47,155–157,193,194 Usually, STM is implemented by directly tak-
ing advantage of the inherent transient behavior of volatile memory
devices. For instance, Fig. 14 shows the analogy between the tran-
sient dynamics of the EPSC202 and the volatile nature of an Ag fil-
ament in an HfO2-based RRAM device.203 In a biological synapse
of Fig. 14(a), a pre-synaptic spiking stimulation induces the release

of a neurotransmitter from synaptic vesicles into the synaptic cleft.
The neurotransmitter, e.g., L-glutamate, then binds to the recep-
tor to activate an ion channel, thus triggering the ionic inflow of
Na+ and Ca2+ into the post-synaptic neuron, which is responsible
for the EPSC.202 The opening of the ion channels has limited dura-
tion in time, which accounts for the transient nature of the EPSC.
In a volatile RRAM, the electrical pulse results in the formation of
an Ag filament, which then serves as a conductive bridge for elec-
trons across the RRAM. Both the EPSC and the conductive filament
remain active for a short time, typically in the range from few ms to
several minutes. The physics of the volatile RRAM can thus serve as
a basis for replicating STM in hardware via a small-scale device, i.e.,
without the need for large capacitors to emulate relatively long time
constants.

Volatile memory effects have been used to naturally emulate the
EPSC in several two- and three-terminal memory devices.41,155,204–207

Similarly, volatile memory devices can also mimic the PPF induced
by paired spikes.204–207 In a biological PPF, the second spike can gen-
erate much larger change of synaptic weight than the first spike, thus
resulting in a strong spike interaction and correlation of spikes in
the Ca2+ dynamics. On the other hand, paired spikes may also cause
synaptic depression, hence PPD, which has been also mimicked in
several memory devices.157,208,209

According to our daily experience, it is known that STM is
capable to transition to long-term memory (LTM) by repeated train-
ing, as illustrated in Fig. 15(a).47 Ag2S-based volatile RRAM, also
called atomic switches, can replicate a similar function. Figure 15(b)
depicts a simplified memory model to implement the transition from
STM to LTM transition in a volatile RRAM synapse, where the
memorization level can increase from the sensory memory (SM)
to STM and LTM by increasing the number of stimulations, sim-
ilar to repeated rehearsals in the human experience. Figure 15(c)
shows that data retention is clearly enhanced by repeated stimu-
lations, supporting the transition from STM to LTM in the Ag2S
RRAM device. Similar to the Ag2S RRAM device, the transition from
STM to LTM has been extensively reported for various memory
devices.155,156,210,211

E. Cognitive computing functions enabled by STM
STM is an essential function in the human brain that is func-

tional for several sensing and recognition functions, such as the

FIG. 14. Analogy between EPSC in biological synapses and the diffusive Ag filament in volatile RRAM devices. (a) The pre-synaptic stimulation causes the release of a
neurotransmitter, which activates Ca2+ transport across the ionic channels at the basis of EPSC. (b) An Ag filament is formed by a voltage pulse via Ag ion migration. The
Ag filament then serves as a bridge for electron conduction across the Ag filament. Reprinted with permission from R. A. Lester and C. E. Jahr, J. Neurosci. 12, 635 (1992).
Copyright 1992 The Society for Neuroscience and Wang et al., Adv. Intell. Syst. 3, 2000224 (2020). Copyright 2020 Wiley.
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FIG. 15. Illustration of the transition from STM to LTM in volatile RRAM devices.47 (a) The psychological model of human memory and (b) the simplified memory model
for RRAM synapse. (c) The STM-to-LTM transition with repeated learning in the Ag2S-based atomic switching memristor. Reprinted with permission from Ohno et al., Nat.
Mater. 10, 591 (2011). Copyright 2011 Springer Nature.

recognition of speech, movement, and other types of dynamic infor-
mation. Figure 16 shows an example of the use of volatile RRAM
for the movement recognition and direction selectivity similar to the
human retina. The biological visual system is capable of fast motion
detection by direction-selective (DS) ganglion cells.212 As shown in
Fig. 16(a), the retina includes bipolar cells and starburst amacrine

cells (SACs) with receptive fields capable of stimulating the gan-
glion cells with excitatory and inhibitory inputs, respectively.203 The
combination of excitatory and inhibitory signals causes an EPSC
into the ganglion cells, which enables the recognition of various
moving directions under sight. Figure 16(b) shows receptive field
stimulated by a moving light bar, which first induces excitatory

FIG. 16. Illustration of movement recognition by volatile RRAM devices.203 (a) Structure of the direction-selective (DS) ganglion cell, comparing excitatory and inhibitory
EPSCs induced by light-stimulated photoreceptors [(b) and (c)] The movement of a light bar across the receptive field causes the activation of excitatory current spikes,
followed by inhibitory current spikes, which result in an EPSC with large positive current. [(d) and (e)] Comparison of excitatory and inhibitory currents from volatile RRAM
devices for the case of an image bar moving from left to right (preferred direction) and from right to left (non-preferred direction). Only the EPSC of the preferred direction
can exceed the threshold, thus being recognized. (f) Histogram of EPSC for preferred and non-preferred directions. [(g) and (h)] EPSC peak as a function of the movement
direction over the whole range of angles. Reprinted with permission from Wang et al., Adv. Intell. Syst. 3, 2000224 (2020). Copyright 2020 Wiley.
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current spikes, followed by inhibitory current spikes. The compar-
ison between the transient excitatory and inhibitory currents results
in an EPSC with large positive current, which exceeds a threshold,
thus triggering the detection of the preferred direction. The tran-
sient excitatory and inhibitory currents were replicated in hardware
by volatile RRAM with Ag TE and HfO2 as the switching mate-
rial.203 Figure 16(c) schematically shows the circuit with several
volatile RRAM to enable the averaging of stochastic excitatory and
inhibitory currents. The overall EPSC, obtained as the subtraction of
excitatory and inhibitory currents, shows a positive peak for the pre-
ferred direction [left to right, Fig. 16(d)] and negative peak for the
non-preferred direction [right to left, Fig. 16(e)]. Figure 16(f) shows
the distribution of preferred and non-preferred EPSCs, indicating
that the two directions can be efficiently discriminated by compar-
ing the EPSC to a threshold. The same concept can be extended to
the full range of movement directions [Figs. 16(g) and 16(h)], thus
enabling fast direction sensitivity by direct current sensing in the
analog domain.203

STM is also at the basis of reservoir computing (RC) sys-
tems,214,215 which are widely utilized to implement temporal and
sequential data processing. Generally, a RC system consists of
a reservoir network for mapping the input stimuli into a high-
dimensional feature space and a readout network for the analysis
of the response from the reservoir states and final inference. Volatile
memory devices with intrinsic STM behavior offer an ideal platform
for brain-inspired implementing RC systems. For instance, volatile
WOx-based RRAM with the STM dynamic effect was used to imple-
ment a RC network for image recognition.213 Figure 17 shows the
network architecture of the RC system for digit recognition using
five volatile RRAM devices. Each digit is mapped into 20 pixels, as
shown in Fig. 17(b) for the case of digit 2. The 20 pixels are divided
into five rows, each row stimulated with a sequence of four consec-
utive spikes applied to one of the five RRAM synapses. As a result,
each RRAM device is stimulated by a four-spike timeframe input
stream. The image is thus represented by a spatiotemporal coding,
i.e., not only using the spatial location in the rows but also the tem-
poral sequence of the stream. For the readout function, a fully con-
nected network with five input neurons and ten output neurons is
employed to measure the conductance states of the five memristors

in the reservoir network and recognize the digit. The recognition of
the ten digits is executed only using five memristors, which is far
less than the 200 weights in a conventional neural network. Simi-
lar spatiotemporal RC networks based on RRAM have been shown
for handwritten digit recognition,213 solution of second-order non-
linear tasks,213 spoken-digit recognition,214 and autonomous chaotic
time-series forecasting.214 Besides top-down memory devices fab-
ricated with conventional microelectronic technology, bottom-up
approaches have been proposed. For instance, volatile switching was
demonstrated in a network of switching nanowires capable of learn-
ing via homo-synaptic and hetero-synaptic plasticity.216 This con-
cept might pave the way for hardware implementation of unconven-
tional computing paradigms in self-organizing stochastic networks
of nanowires.

VI. TECHNOLOGICAL CHALLENGES
AND POTENTIAL SOLUTIONS

While RRAM devices offer a wealth of physical properties that
are attractive for neuromorphic computing primitives, there are sev-
eral technological challenges that currently prevent the widespread
adoption of RRAM for memory and computing.

A major technological limitation is given by the programming
and read variations that prevent repeatable, reliable storage of data.
This is a strong issue especially for multilevel storage where the drift
and fluctuation of the conductance cause time-dependent retention
failure.51 For instance, deep neural networks (DNNs) adopting mul-
tilevel weights for MVM are heavily affected by fluctuations and drift
that can cause a significant drop of accuracy during time.49,217 Pro-
gramming variations can be mitigated by accurate program-verify
algorithms based on voltage- or current-ramping during the set or
reset operation. In particular, current-based approaches appear most
promising, thanks to a relatively shallow programming character-
istics, compared to voltage-based techniques.218 Relaxation effects
might be mitigated by redundancy techniques, where averaging
among various devices allows for a better robustness toward individ-
ual fluctuations and noise.219 It has been observed that low-current
LRS is more affected by drift and variations after programming, as a
result of the smaller size of the conductive filament.220 Therefore,

FIG. 17. Illustration of reservoir computing enabled by STM. (a) Network for digit recognition based on the memristive reservoir computing system. (b) Image pattern for digit
“2,” based on five memristors each receiving a sequence of four spikes. Reprinted with permission from Du et al., Nat. Commun. 8, 2204 (2017). Copyright 2017 Springer
Nature.
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one may configure the network algorithm in such a way that the
number of intermediate weights is minimized, whereas the pres-
ence of HRS and full LRS with high stability is maximized.221 RRAM
technologies with higher stability, such as epitaxial63 and uniform
switching RRAM,64–66 might also improve the immunity to resis-
tance fluctuations for high precision in-memory computing. On the
other hand, neuromorphic computing appears less affected by varia-
tions and stochasticity, thanks to the self-adaptation and continuous
learning, where a change in the device parameters can be compen-
sated in real time. However, note that variability in neuromorphic
circuits does not only affect the synaptic weight but also all other
brain-inspired properties such as neuron integration and retention
time of short-term synapses.

Another key issue for RRAM is the excessive read current,
which is due to the filamentary conduction across a metallic path
with nanometric length in the active oxide. Typically, the LRS shows
a conductance in the range between 10 and 100 kΩ, which corre-
sponds to a synaptic current between 1 and 10 μA for a typical read
voltage of 0.1 V. While this current is reasonable for typical mem-
ory applications, aimed at fast read in the presence of large parasitic
capacitances within large arrays, it represents a critical limitation for
MVM implementations in DNNs and other neuromorphic applica-
tions. For instance, assuming a crosspoint array of size 128 × 128 in
Fig. 6 with an average synaptic current of Iread = 10 μA, the current in
an individual row/column would reach 640 μA, assuming 50% prob-
abilities of HRS and LRS, which requires a decoder transistor with
the proper channel size for sensing and amplification. In addition,
the large read current may lead to a significant voltage drop, also
known as IR drop, along the row/columns of the crosspoint array.
For instance, assuming a cell-to-cell wire resistance of r = 1 Ω in
the array columns/rows,222 the total voltage drop would be approx-
imately given by ΔV ≈ rIreadN2

/2, which gives ΔV ≈ 82 mV, thus
contributing to an error around 82% with respect to the applied volt-
age. Reducing the operating current in the device typically requires
LRS at a relatively small filament size, which is, in turn, less stable
with respect to drift and fluctuations. At the architecture level, the IR
drop issue is addressed by adopting crosspoint arrays, also referred
to as tiles, with a relatively small size, e.g., in the 32 × 32 range.223

Sparsity, which is typical of the human brain, hence of many hard-
ware neuromorphic circuits, can alleviate the IR-drop problem, as
it reduces the number of active synapses within the array. Alter-
native device concepts, such as uniform switching RRAM64–66 or
ECRAM67–74 characterized by bulk-type conduction, appear more
promising in reducing the read current, thus enabling a larger size
of the neuromorphic array.

More on the technological side, provided that synaptic
currents can be substantially reduced, a significant issue is the
development of a high density crosspoint array, possibly with 3D
integration. The brain is, in fact, characterized by a high con-
nectivity, where each neuron is connected, on average, to 10 000
neurons.224 Achieving such a large connectivity thus requires arrays
with extremely large numbers of rows and columns, which makes 3D
integration mandatory to fit the neuromorphic circuit within a sin-
gle chip. Recently, 3D crosspoint arrays with eight layers of RRAM
devices with vertically aligned electrode have been demonstrated for
DNN implementation,27 although the extension of this technology
to brain-inspired cognitive circuits has not been reported yet. In
this regard, a significant challenge is the RRAM selector, since the

3D integration of CMOS transistors is not straightforward. Several
non-linear selectors with the capability of 3D integration have been
reported, including Mott insulator,225–227 chalcogenide glasses,228,229

mixed ion-electron conduction (MIEC) devices,230 multilayer tun-
nel junctions,231 and threshold vacuum switches.232 The resulting
one-selector/one-resistor (1S1R) structure is extremely compact and
suitable for 3D integration, thus being very attractive for both mem-
ory233 and computing applications.67 3D-integrated, monolithic cir-
cuits capable of hetero-integration of various RRAM technologies,
each serving a different function for sensing, neurons and synapses,
would provide the ideal technology platform for the neuromorphic
system capable of paralleling the brain computing functionality via
device physics.

VII. CONCLUSIONS
Neuromorphic computing requires a set of ad hoc hardware

capable of harnessing device physics to recreate the neuron and
synapse functions in the human brain. RRAM offers a range of phys-
ical phenomena, arising from electrical transport, switching, and ion
migration, that can be used to approximate neuromorphic functions,
such as neuronal integration, fire, oscillations, dendritic filtering,
and synaptic plasticity according to various spike-time and spike-
rate learning rules experimentally observed in the brain. Ionic diffu-
sion allows for short-term plasticity and STM, which form the basis
of direction selectivity, RC, and other emerging cognitive computing
concepts. While many of these phenomena have individually been
demonstrated by proof of concept, their combination into full neu-
ral networks and their extension to alternative architectures, such as
multiterminal devices and bottom-up nanostructures, may further
develop this field of neuromorphic devices into a mature technology
for manufacturable cognitive computing hardware.
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