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ABSTRACT

The high non-linearity of the Cartesian equations of the orbital motion represents a limit for the
computational efficiency of high-fidelity numerical simulations. The implicitly straightforward in-
terface with physical forces and perturbing accelerations has made the Cartesian formulation the
most popular dynamics description in numerical simulations, allowing the accurate implementa-
tion of complex and high-precision force models. Yet, considering the trajectory propagation per
se, Cartesian coordinates are far from being the best dynamics formulation, either for accuracy
and computational efficiency. Element-based formulations that possibly include the regulariza-
tion of the equations of motion are widely considered the best strategies to compute orbits. The
lack of simplicity and the complex physical interpretation behind these techniques has perhaps
represented the major limitation in the adoption thereof. Hence, this work implements, interfaces,
and studies the performance of the Kustaanheimo-Stiefel (KS) formulation of the dynamics, in
direct application to uncertainty propagation and planetary protection tasks, implemented in the
CUDAjectory GPU software.

1 INTRODUCTION: THE KUSTAANHEIMO-STIEFEL FORMULATION

KS variables were created bringing together two concepts: the first, adding a fourth coordinate trying
to describe the Kepler problem as a four dimensional harmonic oscillator, originally presented by
Kustaanheimo [1], and the introduction of the time transformation of the Sundman type [2], operated
later with the contribution of Stiefel [3]. The key concept is about converting the integration inde-
pendent variable, switching from the physical time t to the fictitious time s. The generic Sundman
transformation [2]:

ds

dt
=

β

r
e
∫
Kdt (1)

In general, β is an arbitrary constant coefficient and K is an arbitrary function of position, velocity and
time. For instance, setting β = 1 makes the fictitious time s scale like the eccentric anomaly, whereas
β = 2 introduces a true anomaly-like fictitious time evolution. The transformation of the independent
variable from the physical time t to the fictitious time s is commonly called regularization of the
orbital dynamics.
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The Kustaanheimo-Stiefel (KS) formulation rewrites the two body problem as an isotropic1, four-
dimensional harmonic oscillator. The conservation of the orbital energy is also introduced, leading
to a simple linear ordinary differential equation. The first formulation was proposed indeed by Kus-
taanheimo and Stiefel [3], [4], and extended the usual Cartesian position vector r = {r1, r2, r3}T into
a four-vector, by adding the length r =

√
r · r as fourth coordinate. Using the initial formulation

proposed by Kustaanheimo, the physical coordinates are linked to the spinor regularized coordinates
u = {u1, u2, u3, u4}T through:

r1 = u2
1 − u2

2 − u2
3 + u2

4

r2 = 2
(
u1u2 − u3u4

)
r3 = 2

(
u1u3 + u2u4

)
r = u2

1 + u2
2 + u2

3 + u2
4

(2)

later re-arranged in matrix-vector product as

r = L(u)u (3)

which gives x = {r1, r2, r3, 0}T , with

L(u) =


u1 −u2 −u3 u4

u2 u1 −u4 −u3

u3 u4 u1 u2

u4 −u3 u2 −u1

 (4)

Setting β = 1 and K = 0 in Equation (1) to operate the time transformation, replacing r = L(u)u
and its derivatives, the KS transformation converts the Kepler two-body problem

r̈ = − µ

r3
r (5)

into
u′′ =

ϵ

2
u (6)

where (̈·) and (·)′′ stand for second t and s derivatives respectively, and ϵ denotes the two-body orbital
energy. Because the adopted Sundman regularization is of the first order, for unperturbed orbits the
new independent variable s follows the evolution of the eccentric anomaly. The achieved behavior
reflects a sort of slow motion movie for the near-pericenter part of the orbit, with smaller physical
time steps the closer the trajectory gets to the attractor.

1.1 Perturbed problem

Perturbing physical accelerations f are accounted for simply by an additional non-null term on the
right hand side of the equations of motion. The generic perturbed two-body problem in Cartesian
coordinates is

r̈ = − µ

r3
r + f(r, t) (7)

And following [5] the final expression in KS coordinates becomes

u′′ − ϵ

2
u =

r

2
L(u)f(r, t) (8)

with u = {u1,−u2,−u3,−u4}T .

1All the four components oscillate with the same frequency and phase.
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Since the physical time t can appear in f(r, t) either implicitly or explicitly, it should still be tracked,
even though its removal was necessary to reach a simpler form of the equations of motion. Closed
form expressions for t = t(s) cannot be found for the perturbed case, whereas s evolves like the
eccentric anomaly [5], up to a constant, in the unperturbed two-body problem. However, the relation
dt/ds = r can be used to add the physical time as another state element for numerical integrations
accounting for perturbations. The two-body energy ϵ can either be computed at each time step with

ϵ = −1

r

(
µ− 2|u′|2

)
(9)

or be added as another state element as well, and its derivatives are defined as:

ϵ′ = r′ · f(r, t)
ϵ̇ = ṙ · f(r, t)

(10)

1.2 Barycentric KS formulation

The original KS formulation of the orbital dynamics requires the reference frame to be centered in
one body, that serves both as regularization point and primary attractor for the computation of the
orbital energy. However, a more complex dynamics that does not necessarily follow a dominantly
two-body trajectory could not benefit from the KS regularization if it was kept in its standard form.
Moreover, the barycentric formulation of the dynamics builds a more efficient simulation already in
the Cartesian form, since tidal terms are not present [6]. With the purpose of building a simulation
setup that remains as general as possible in the cases it can efficiently tackle although still featuring
the core benefits of the KS formulation, a barycentric formulation of the KS equations of motion is
derived. For the sake of conciseness only the perturbing effects of the N bodies are presented.
Keeping the frame centered on one of the N-bodies brings:

u′′ − ϵ

2
u = −r

2

N∑
i=1
i ̸=ip

(
µi(r − ri)
|r − ri|3

+
µiri
|ri|3

)
u∗

(11)

with ip identifying the primary body, included in the definition of the two-body energy ϵ, ri and µi

position vector with respect to the primary and gravitational parameter of the i-th body, respectively.
A few modifications are required to write the dynamics centered in the barycenter of the N bodies
involved [6]. In general, through the regularization, smaller physical time steps are implicitly taken in
the proximity of the center of the reference frame. Its correspondence with the main attractor in the
Keplerian problem is not necessary, but becomes convenient when combined with the expression for
the orbital energy ϵ. In the barycentric case, the state r does not identify the position with respect to
the primary, therefore every single gravitational contribution must be included among the right hand
side terms. Equation (8) for the barycentric state becomes:

u′′ =
|u′|2

r
u − r

2

N∑
i=1

µi(r − ri)
|r − ri|3

u∗ (12)

2 CUDAJECTORY GENERAL ARCHITECTURE

CUDAjectory [7] is a GPU object-oriented software for massively parallel trajectory propagation,
using the Runge-Kutta-Fehlberg RKF78 integration method. As the name suggests, CUDAjectory is
written in CUDA® C++, making it thus suitable to be run with NVIDIA® graphics cards.
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CUDAjectory has been developed and is maintained by the Mission Analysis section at the European
Space Operations Centre (ESOC), at ESA, and is available to the general public by an ESA Com-
munity License. The first implementation follows the Master’s thesis work of Geda [8], including
most of the model features, including gravitational effects from the Solar System bodies, solar radi-
ation pressure, spherical harmonics perturbation for Earth orbits, and high-order perturbations based
on point mascons [8]. CUDAjectory manages ephemeris data in a unique way, with data written
in the CUBE (acronym for CUdajectory Binary Ephemeris) format and accessed from texture mem-
ory, improving the performance of the software. In this way, CUDA® threads can access ephemeris
data more efficienly than in lookup-based approaches (commonly adopted with SPICE’s spk files
[9]). More recent works have widened the force pool with an atmospheric model and aerodynamic
drag acceleration, as well as the capability of interrupting simulations based on the total radiation
absorption in the Jovian environment. Additionally, Inno [10] improved the efficiency of memory
management and event detection routines.
Figure 1 shows the overall software structure. Other than the pure command line interface, CUDAjec-
tory includes a PyBind® [11] interface, that exposes CUDAjectory’s simulators to Python programs
and Python Numpy®[12] input/output array types, providing Python users a simple interface to the
GPU parallelized tools. For the command line execution of CUDAjectory, input/output samples and
trajectories are given in csv format, while the only configuration file required can be written either
in json [13] or yml [14] format, for the Python library implementation as well.

Figure 1: CUDAjectory overall structure. Picture from [8].

Figure 2 shows instead the simulation approach implemented in ClusterSimulator. A limited
set of steps is taken on the GPU, then the simulation data are passed to the CPU for storage and
processing. The process is repeated in a while loop until the end of the simulation is reached.
This approach has the advantage of reducing the occupancy in the device memory, since, if the full
trajectories are stored, they are gradually stored on the CPU and keep the limited GPU memory
free. Additionally, the simulation samples can be sorted to maximize the software performance, for
instance gradually removing early-ending samples (e.g. in case of detection of impacts).

3 KS VARIABLES IN CUDAJECTORY

Following the just outlined requirements, CUDAjectory has been extended completely hiding KS
variables at the core of the software. All the Simulator classes in CUDAjectory have been extended
with a new method that runs KS variables, with the user interface with the software that remains
unchanged. In any case, CUDAjectory can still be run in the traditional Cartesian setup, with the

ESA GNC-ICATT 2023 – A. Masat 4



Figure 2: ClusterSimulator structure in CUDAjectory. Picture from [8].

usual evolve() method, while the KS run is launched with the ksevolve() routine. Figure 3
shows the conceptual extension that Simulator classes in CUDAjectory have undergone to run
with KS variables.

Figure 3: CUDAjectory overall extension logic.

Taking a closer look to the Simulator block, the transformation from KS to Cartesian coordinates
needs to be implemented also for the storage of intermediate simulation steps, as highlighted in red
in Figure 4. Internally in the ”Propagate N samples for m steps” block, the given force model is
interfaced with KS variables according to Equations (8) and (12). Events are instead computed by
retrieving the Cartesian states, at each step.

4 RESULTS AND PERFORMANCE

The proposed implementation of KS variables in CUDAjectory is tested with the propagation of the
dispersion of Ariane 5’s upper stage of launcher, for the JUICE [15] mission case. Boutonnet and
Rocchi used CUDAjectory [16] to assess the compliance of different possible launch scenarios with
space debris mitigation policies, computing the impact probability of this dispersion with Earth. The
initial dispersion data are given in terms of nominal interplanetary injection state and the related
covariance matrix, both covered by a non-disclosure agreement between the ESA and Arianespace.
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Figure 4: CUDAjectory Simulator extension logic. Picture modified from [8].

Nevertheless, the results of the CUDAjectory implementation can still be studied with a detailed
analysis of the output trajectories.
The proposed analysis focus on the achieved runtime reduction, validating the computation of both
evolve() and ksevolve() propagating the same initial conditions and comparing each sample
outcome against a higher precsion evolve() simulation. The test cases have been run in a Ubuntu®

Linux® 22.04 machine, equipped with two Intel® Xeon® Platinum 8352V (36 cores, 72 logical @ 2.1
GHz) and a Nvidia® RTX A6000 graphics card. Absolute and relative tolerances for the numerical
schemes have been set equal to 10-12, and the samples have been propagated 100 years forward in
time.
Tables 1 and 2 show the runtimes for the different CUDAjectory calls, with and without storage of the
full propagated trajectories, respectively. KS variables visibly improve the efficiency of the software,
which increases for increasing samples. In case of stored trajectory, the improvements become even
more relevant, achieving a runtime reduction of over 60% in the case of 20k propagated samples.
Other than the reduction of the steps taken presented in [6], the reason for this additional performance
enhancement is explained by the lower amount of states that CUDAjectory’s output handlers need to
manage, resulting in an overall reduced memory and output processing overhead. In fact, the runtime
reduction without trajectory storage remains consistently around the expected 40 %.

Table 1: CUDAjectory runtimes for different configurations, with trajectory storage. Average of 5 different
runs.

SAMPLES AND RUNTIME [S]
1 10 100 1k 2k 10k 20k

evolve() 3.03 3.33 4.93 5.44 7.17 29.00 68.56

ksevolve() 1.91 2.09 2.90 3.13 3.24 12.20 23.95

Reduction 36.9% 37.3% 41.3% 42.5% 54.9% 57.9% 65.1%

Table 3 shows the number of different sample outcomes between the different CUDAjectory calls,
against a higher precision evolve() call with 10-14 relative tolerance. The two simulation strategies
appear to be equivalent in terms of accuracy. While in general KS simulations are more precise
and numerically stable, as shown in [6], the low value of absolute tolerance may have allowed the
Cartesian simulation to bridge the accuracy gap with the KS variables, in this particular setup. In
any case, the lower runtime makes KS simulations the most suitable choice, given that the overall
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Table 2: CUDAjectory runtimes for different configurations, without trajectory storage. Average of 5 different
runs.

SAMPLES AND RUNTIME [S]
1 10 100 1k 2k 10k 20k

evolve() 2.97 3.22 4.69 5.01 5.12 6.10 8.60

ksevolve() 1.83 2.05 2.83 3.02 3.06 3.60 5.24

Reduction 38.5% 36.4% 39.7% 39.7% 40.2% 41.0% 39.0%

accuracy is preserved.

Table 3: CUDAjectory outcome difference against a 10-14 relative tolerance evolve() simulation.

SAMPLES

1 10 100 1k 2k 10k 20k
evolve() 0 0 0 0 0 2 6
ksevolve() 0 0 0 0 0 2 5

5 CONCLUSION

The implementation of KS variables successfully introduces notable performance improvements in
CUDAjectory. Future implementation works should mainly extend the software flexibility in KS
variables. Storing the full trajectories in KS variables would allow future researchers to benefit from
the renewed computational efficiency, while having a full KS output at their disposal.
CUDAjectory is a propagation-only related software, thereby limiting the extension possibility to im-
proved input/output management, propagation techniques, and other dynamical formulations. Nonethe-
less, CUDAjectory may become the simulator at the core of more advanced uncertainty software tools,
that may exploit the potential of GPU computing even beyond the trajectory propagation block.
While Tensor Cores represent a novel computational resource embedded in GPUs, the use thereof in
CUDAjectory is not straightforward. Tensor cores require a unique memory management strategy,
and are designed to perform 2× 2 matrix multiplications in one clock cycle [17]. Hence, unless new
APIs are developed by Nvidia® in the upcoming CUDA® release to efficiently manage Tensor Cores,
existing algorithms would need to be completely rewritten to exploit this computational resource.
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