
A Bird’s Eye View on Quantum Computing:
Current and Future Trends

Beatrice Branchini, Davide Conficconi, Francesco Peverelli, Donatella Sciuto, Marco D. Santambrogio
Dipartimento di Elettronica, Informatica e Bioingegneria, Politecnico di Milano, Milan, Italy

{beatrice.branchini, davide.conficconi, francesco.peverelli, donatella.sciuto, marco.santambrogio}@polimi.it

Abstract—Quantum computing is a potentially highly-
disruptive technology for several domains across the Computer
Science field. However, many technological challenges still pre-
vent the construction of a fault-tolerant and reliable quantum
computer. These challenges sparked enormous interest in the
scientific community, which led to the development of several
independent strands of research. Consequently, research in the
quantum computing domain is fragmented, making it highly
specialized. This can lead to missed opportunities in identifying
valuable research directions and contributions from neighboring
research areas. For these reasons, this paper provides an overview
of the current state of play in quantum computing for different
quantum research areas at different layers of the development
stack. Furthermore, for each of them, we highlight possible new
outlooks that could be pivotal in the near future.

Index Terms—quantum computing, review, future trends

I. INTRODUCTION AND MOTIVATION

The dusk of Moore’s Law and Dennard scaling contrasts
with the continuously growing demand for computational
power [1]. This gap between the need for computing power
and achievable performance forces the search for new archi-
tectural solutions by domain-specialized systems or new tech-
nologies [2]. In this scenario, quantum computing represents
a novel paradigm for which to strive. Quantum computing
promises to solve classes of problems that even massively-
parallel computing systems cannot handle in a reasonable
amount of time, more efficiently, and with higher precision [3].
This technology relies on the laws of quantum mechanics,
exploiting phenomena such as entanglement and superposition
to enable higher degrees of parallelism. However, at the
moment, we are far from physically implementing a reliable
quantum computer and proving quantum supremacy [4].

No theoretical proof exists that we cannot build a large,
fault-tolerant quantum computer [5]. Nevertheless, the tech-
nical challenges in building such a system are considerable
and involve many fields, from Computer Science to Physics
and Materials Science [5]. Therefore, many researchers started
exploring quantum phenomena and their potential.

In this work, we propose an overview of the quantum re-
search landscape from a Computer Science and Engineer-
ing perspective. We aim to provide an analysis of the current

DOI 10.1109/EUROCON56442.2023.10198957 © 2023 IEEE. Personal use
of this material is permitted. Permission from IEEE must be obtained for all
other uses, in any current or future media, including reprinting/republishing
this material for advertising or promotional purposes, creating new collective
works, for resale or redistribution to servers or lists, or reuse of any
copyrighted component of this work in other works.

State of the Art of quantum hardware and the most relevant
related tools used to develop quantum-accelerated applications.
We also highlight which, in light of our analysis, could be
new and promising research directions in the domain. With
these evaluations, on the one hand, we want to provide a way
for existing stakeholders to assess quantum research’s current
state of play. On the other hand, our evaluations can serve as
a guide for new players toward worthy research directions.

II. ELECTRONIC DESIGN AUTOMATION FOR QUANTUM

According to the universal gate-based computation model,
describing quantum algorithms translates into specifying a
high-level quantum circuit with a certain number of qubits.
The abstraction stack from a quantum circuit description to
its execution resembles the classical one [6] (Figure 1).

Firstly, compiling the circuit allows for obtaining an equiv-
alent representation in a quantum assembly language. Then, it
is necessary to synthesize the circuit to match the underlying
technology and ensure reversibility. Finally, the circuit is
mapped onto the available hardware resources [7]. We can
execute our quantum algorithms only after these three steps.

Quantum algorithms’ implementation relies on a quantum
circuit described through Quantum Programming Languages
(QPLs): some closer to the gate representation and others more
similar to high-level languages. We can divide QPLs into two
classes, imperative and functional [8]. The first class comprises
low–level imperative languages relying on OpenQASM [9]
(by extending or adapting it) and higher–level ones built
on Python. Instead, functional programming languages are
relatively new and often based on lambda calculus or Haskell.
In general, all the languages are agnostic on the fault tolerance
of the underlying hardware and assume that both qubits and
gate operations are perfect [7]. A QPL-based algorithm can
be compiled through a universal set of gates.

Then, a synthesis step translates the compiled algorithm
into an equivalent circuit featuring the gates belonging to the
target machine’s gate set. This set usually comprises a few
one-qubit gates with some additional simple two-qubit gates
(e.g., CNOT and SWAP gates) [7]. Therefore, given a quantum
control flow, different traces might exist depending on the
gate set [6]. Indeed, the synthesis procedure decomposes
the compiled circuit into simpler supported operations [10]
while adding some ancillary qubits to ensure the reversibility
of the computation (embedding) [11]. Thus, the synthesis
step can potentially apply optimizations to impact the qubits



H

H

H H

H

User Input Abstraction Stack

Compilation Synthesis Mapping

Quantum Hardware

Fig. 1. Overview of the flow from the user-defined quantum circuit to its execution on quantum hardware

number and the fault tolerance of the algorithm [7]. Quantum
logic synthesis algorithms are mainly split into functional and
structural classes [11]. Functional synthesis algorithms require
a pre-processing step to embed the non-reversible circuit into
a reversible counterpart. Then, actual synthesis applies to this
reversible circuit for qubit diminishing. Conversely, structural
algorithms build a reversible circuit by decomposing the input
structure into smaller elements, finding reversible circuits, and
then bring up together again. However, they generally yield
circuits with more qubits than functional synthesis [11].

Once synthesized, circuit mapping matches the components
to the underlining quantum machine, such as the correspon-
dence between logical and available physical qubits [10]. In
the case of non-error-corrected quantum computers, mapping
assigns a physical qubit to the logical qubit with a one-
to-one correspondence. Instead, if the architecture features
error correction, an ensemble of physical qubits composes
a logical one. This one-to-many correspondence between
logical and physical qubits is implemented through a series
of SWAP gates to respect coupling constraints imposed by
the device [11]. However, SWAPs are highly error-prone;
therefore, minimizing the number of these gates is necessary
to prevent the error from increasing [12]. Finally, we can
apply more optimizations, e.g., perform gate cancellations,
transformations, and commutations, and resynthesize circuit
parts to make the computation even more efficient [10].

In this context, the mapping stage’s optimization problems
represent the main challenge within the pipeline. Finding
the best resource mapping belongs to the NP-hard class of
optimization problems, making them particularly challenging
to solve [13]. They closely resemble classic Electronic Design
Automation (EDA) optimization problems, therefore suffering
from the same issues [14]. However, the expertise developed
in the classical domain can help advance the quantum coun-
terpart. We envision two paths where classical computing
solutions inspire novel heuristics for quantum mapping, or
knowledge in quantum will help in developing new EDA tools.
Moreover, we envision more hardware-software codesign ap-
proaches to improve the overall quantum abstraction stack
and push toward an increased abstraction level for quantum
programming. All these techniques are unexplored in the State
of the Art, but they embody exciting research directions.

III. QUANTUM CIRCUIT SIMULATION AND EMULATION

Quantum Circuit Simulation (QCS) embodies a crucial
component in the application development flow. It mimics

the behavior of a real quantum computer on a classical
device, considering the properties of the qubits and their
interactions. QCS is essential for algorithms’ formulation, as
the number of qubits might exceed the currently-available
quantum computer number. Moreover, QCS could validate
new circuits, help evaluate the scalability of future larger
quantum architectures [15], and overcome the issue of limited
available quantum computers for the scientific community. In-
deed, building and maintaining a quantum computer is costly,
and companies offer limited access to their quantum computer
or offer them as a pay-as-you-go service. In this context, QCS
constitutes a way for researchers to access quantum computers
only when necessary, considerably impacting the costs.

QCS mimics quantum mechanics properties (e.g., superpo-
sition and entanglement), making it remarkably memory- and
compute–intensive. Storing all the quantum states’ amplitudes
and manipulating them according to gates to apply requires
a significant computational power that general-purpose ar-
chitecture cannot deliver, resulting in long execution times,
scaling exponentially with the number of qubits [15]. For
these reasons, many research efforts focused on leveraging
heterogeneous architectures to speed up QCS.

The dense operations that act on qubits resemble tensor
products and vector-matrix multiplications; hence, exploiting
their intrinsic parallelism becomes paramount. Indeed, the re-
search either exploits Graphics Processing Units (GPUs)’ mas-
sively parallel structure or Field Programmable Gate Arrays
(FPGAs) reconfigurable spatial fabric. On the one hand, many
works propose to offload to GPUs the QCSs with promising
results [16], [17]. Recently, NVIDIA released cuQuantum
SDK [18], paving the way for the development of commercial-
level libraries for QCS using GPUs. This library represents
the backend for IBM’s Qiskit Aer high–performance simula-
tor [19], also providing multi-GPU support. Another valuable
strategy to leverage GPUs for QCS consists of building and
executing this task on a heterogeneous High-Performance
Computing system to combine GPUs’ computing power with
the more extensive memory resources provided by Central
Processing Unit (CPU)-based systems [20]. Instead, other
works focus on optimizing the computation by implementing
strategies to fully exploit the architecture’s parallelism and
increase GPU utilization [15]. However, memory requirements
to represent qubits’ states are still an issue in QCS on GPU.

On the other hand, FPGAs attain high performance by
leveraging the reconfigurable spatial fabric combined with
lower power consumption [21]–[25]. For this reason, the State



of the Art offers many simulators based on FPGAs. Existing
FPGA-based quantum hardware simulators can be broadly
divided into two categories: universal emulators [26], [27], and
circuit-specific emulators [28]. The former category proposes
implementing acceleration for generic quantum simulation
operations, supporting the application of any combination of
quantum gates. While this approach is more general and more
suitable for fast prototyping novel quantum algorithms, it loses
efficiency compared to circuit-specific hardware. The latter
category relies on optimizing the target circuit to the utmost
degree, leveraging algorithm-specific properties to reduce the
number of operations to be performed, and optimizing the use
of the memory bandwidth available on the device. While this
approach may achieve the best simulation performance for a
given circuit, the accelerator design effort limits this approach
to a few algorithms, such as the Quantum Fourier Transform.

However, despite the promising results, these works still
represent proof of concepts and not mature tools with support
and a community using them. Furthermore, they feature some
relevant drawbacks limiting practical usage. Resource avail-
ability represents the main constraint as it limits the maximum
number of qubits that can be simulated, reaching up to 30
qubits [28] in the case of simulators tailored for a specific
algorithm. In addition, data precision considerably impacts the
performance in terms of execution time and accuracy of the
provided solution. Based on the State of the Art presented,
the next Section describes our interpretation of potential future
research directions for Quantum Hardware Emulation (QHE).

A. Quantum Hardware Emulation from Ten-thousand Feet

The Quantum Strong Church-Turing Thesis states that
only quantum machines can efficiently emulate quantum cir-
cuits [29]. However, without accessible and reliable quantum
computers, researchers must find ways to emulate quantum
circuits. Therefore, the question arises of determining which
computer architecture represents the best candidate for QHE.

The problem of efficient QHE can be approached at different
levels. To manage this complexity, we propose reconducting
the problem of quantum circuit emulation to well-known fields
of study in Computer Science, namely compiler optimization,
Instruction Set Architecture (ISA) design, and emulation tech-
nology mapping1. The compiler optimizations targeting QHE
operate on an intermediate circuit representation and could
guide downstream decisions. For instance, supposing a very
sparse dataflow graph circuit, the superior flexibility of an
FPGA better emulates it. Conversely, if the graph is highly
dense, a GPU better fits with a matrix multiplication kernel.

Differently, research at ISA-level should identify an ex-
pressive enough complete set of quantum gate operations, ac-
counting for efficient hardware. This way, the compiler back-
end can focus on optimal gate selection. However, we also
envision researchers investigating a middle-ground approach
that offers a finite set of specialized gates as components of a

1Emulation technology mapping maps models of quantum gates to digital
circuits, fundamentally differing from quantum circuit technology mapping.

Quantum Data Plane
Q) How to efficiently control the qubit?

Control and Measurement Plane
Q) How to prevent decoherence?
Q) How to increase gate fidelity?

Control Processor Plane
Q) How to improve error mitigation?
Q) How to implement high-performance error correction?

Host Processor
Q) How to develop user-friendly quantum software?

Fig. 2. Open research question for each plane in a quantum computer

QHE library. In this context, the emulated circuit gates do not
necessarily correspond to the quantum gates modeled by the
compiler. Instead, they may be the result of fusing several
gates or decomposing them further, seeking to minimize
the implementation cost of the circuit. A possible approach
to realizing such a library is FPGA High-Level Synthesis
technology. However, since implementation efficiency remains
a primary concern, an HDL-based approach may be necessary.

Unlike implementing a more generic architecture, the main
drawback of this approach is that the circuit must be synthe-
sized from scratch whenever the circuit to emulate is changed.
However, if the performance is considerably better, this might
become negligible, and we propose also investigating miti-
gation approaches. For example, the reconfigurable fabric of
FPGAs enables the implementation of quantum circuits with
synthesis batches, and the time multiplexing would address
resource-limited availability. Given the current limitations of
quantum hardware, we envision interesting research opportu-
nities investigating each of these problems.

IV. QUANTUM HARDWARE STACK

Assembling a reliable and usable quantum computer still
represents the biggest challenge in quantum computing. Con-
sequently, quantum hardware embodies a flourishing area of
research, and noise mitigation represents a central topic due
to the impact it could have on the entire field [30].

A quantum computer is a heterogeneous system, integrating
classical hardware with the Quantum Processing Unit (QPU),
the heart of the computation. We can highlight a similar struc-
ture in every quantum computer, regardless of the technology,
and based on four layers, each with its challenges and open
research questions [5] (Figure 2). The bottom layer contains
the QPU, with its qubits and control logic. However, the
description of this layer is out of the scope of this work as it
is more related to physical science.

A. Host Processor

The Host Processor is a classical general-purpose com-
puter that provides quantum software development tools. This
component represents the interface enabling programmers to
describe and execute quantum algorithms on a QPU. In this
scenario, the State of the Art lacks integrated development



platform environments to ease the design of quantum ap-
plications. Furthermore, for the same reason, it is necessary
to enhance libraries’ usability and portability and expand
the abstractions in programming languages [8]. Consequently,
research efforts are directed in these directions to pave the way
for future widespread usage of quantum technologies.

B. Control Processor Plane

According to the quantum algorithm to run, this level iden-
tifies the succession of quantum operations and measurements
to execute the program and triggers it. This plane behaves
as a bridge between the system’s classical and quantum
components, offloading the execution to the QPU [5], and it
implements the error correction algorithm. Apart from readout
decoherence and gate operations, errors may originate from
different physical phenomena involving the qubit and its
interactions, e.g., qubit relaxation and crosstalk [31]. There
are different strategies to handle these sources of inaccuracies
for Noisy Intermediate-Scale Quantum (NISQ) architectures,
mainly divided into error mitigation [32] and correction
techniques [33], [34].

Error mitigation strictly depends on the qubit’s imple-
mentation and comprises a variety of approaches. The final
correction applied is, however, minimal and performed as post-
processing. In this scenario, research is currently focusing on
Machine Learning (ML)- or Deep Learning-based techniques
to help lower errors produced in NISQ devices, showing
promising results [35], [36]. In addition, it is worth exploring
the benefits of hardware acceleration for these approaches to
avoid increasing overhead to quantum computation [31], [37].

Conversely, error correction targets errors at the QPU level,
still involving, however, the Control Processor Plane. For
example, one of the most popular strategies relies on the
idea behind repetition codes [38]. A fabric of physical qubits
encodes a single logical qubit, coupled with some auxiliary
ones, called ancilla qubits. Ancilla qubits hold information
about the state of errors, such that measuring them allows
knowing which error affects which qubit. The Control Pro-
cessor Plane captures this information through a decoder
algorithm and adjusts the quantum computation accordingly
to minimize the resulting error. However, the time required by
the Control Processor for error decoding must not exceed a
certain threshold (in a scale of hundreds of nanoseconds [5]) in
order not to slow the next quantum operation. In this context,
research directs efforts to two complementary approaches: on
one side, the development of efficient decoding algorithms
with lower computational complexity [39] and, on the other
side, the acceleration of these algorithms through hardware
architectures, e.g., GPUs, FPGAs, and others [40]–[42].

C. Control and Measurement Plane

This layer handles the analog-to-digital conversion, and
vice versa, to enable communication between the classical
hardware and the QPU. In one direction, it converts the
digital signal indicating the operation to perform on the qubit
into its analog counterpart acting on the qubit, i.e., the gate.

In the other direction, it transforms the analog signal from
qubit measurements into digital classical binary information
(readout step), making it available for further processing.

The Control and Measurement Plane extensively uses
FPGAs as they enable a tailored qubit control, thanks to their
high flexibility [43]. Furthermore, FPGAs provide low latency,
which is mandatory when reading the qubit’s state to prevent
it from decoherence and avoid inaccuracies in the results [44].
Besides readout, also gate operations open up higher chances
for qubit’s decoherence when modifying its state. These
operations introduce errors during the computation, which
can accumulate during the quantum circuit’s execution [45].
Therefore, the result of the elaboration may significantly differ
from the ideal desired state, as the probability of getting the
correct results diminishes exponentially with the number of
applied gates [5]. In this context, gate fidelity is a widely-
used metric describing the behavior of a gate. It represents a
gate’s probability of modifying the qubits without introducing
error and is often below 99%, unlike classical gates [46].

Therefore, performing the readout in a short time is not
enough to prevent errors from occurring. High gate fidelity
is also key to ensuring a higher likelihood of getting the
correct result at the end of the computation. Also, it allows
more effective error handling in the subsequent processing
steps [46]. For these reasons, in this layer, the main research
questions address the issue of how to implement gates to
reduce inaccuracies. All the proposed solutions depend on the
specific underlying technology of the qubit and target single-
[47], [48] and multi-qubit [47], [49] gates. Further improving
gate fidelity would unlock the possibility of going beyond
NISQ architectures.

D. Quantum Random Access Memory

There is another research challenge that transcends the
layers previously described. Memory components are funda-
mental elements in each computing device, and the ability to
store data is essential. Therefore, also quantum architectures
should comprise quantum counterparts of memory elements,
such as a quantum Random Access Memory (qRAM). Some
preliminary attempts to build such a system exist in the State
of the Art, as it is crucial to achieving a practical quantum
advantage. Indeed, many algorithms proved the benefits of
quantum computing but only supposing the existence of a
qRAM [50]. Therefore, exploring such a system’s feasibility
is essential to fully exploit quantum computing’s potential.
Works in the literature model the qRAM with the same
structure as a classical RAM, but the address and the desti-
nation registers are qubits instead. Even in this case, physical
phenomena deteriorate the system’s performance. Therefore,
decoherence makes it necessary to consider implementing
error-handling mechanisms to ensure correctness [51]. Also,
sizing represents another issue, as large memories are not
feasible under current physical assumptions [50]. There are
different proposed strategies to tackle this last problem [50].
However, despite these first attempts, how to implement a
qRAM efficiently remains an open question.



V. QUANTUM COMPUTING APPLICATIONS

Despite still being in its infancy, quantum computing has
already proved to have the potential to revolutionize many big
data applications, dramatically reducing processing time.

Optimization problems represent a large segment of applica-
tions already leveraging quantum technologies, relying on the
annealing paradigm. Quantum annealing aims to solve clas-
sical combinatorial optimization problems, which generally
rely on a cost function’s minimization (or maximization). This
process returns a ground state, which represents the solution
to the optimization problem [52]. Numerous literature works
illustrate the use of this computational paradigm in real-life
scenarios [53], mainly reformulating NP-hard or NP-complete
original algorithms following the Quadratic Unconstrained
Binary Optimization (QUBO) formulation [54].

For what concerns more applicative domains, life sciences
represent one of the most promising fields to prove a quantum
advantage over traditional intensive computing methods [55].
The spreading of the COVID-19 pandemic again underlined
the urgency to provide fast genomic analyses. However,
genome analysis represents an intensive and time-consuming
computation. Besides using classical hardware to speed up
the process [56]–[58], quantum architectures appear to be a
valid approach to pave the way for faster computations. In
particular, some works in the literature have already success-
fully attempted to formulate the genome assembly problem
as an optimization problem, leveraging the QUBO formu-
lation and resorting to quantum annealing to perform the
computation [59]. Another scenario in which quantum com-
puting can have a considerable impact is sequence matching,
where Grover’s algorithm could substantially lower execution
time [60]. However, despite a few attempts, the application of
quantum computing in genomics still needs to be explored.

Drug design represents another exemplary use case for
quantum computing [61]. Its tasks’ computational complexity,
which grows with the number of considered atoms [61],
makes it untractable using classical architectures, slowing
down the entire development process. In this context, re-
searchers could leverage quantum computing to accelerate the
most compute-intensive workhorses in drug development (e.g.,
drug-receptor interactions, protein folding, and binding site
prediction), reaching even higher accuracy. Besides developing
advanced quantum algorithms [62], solutions in the State of
the Art exploit quantum ML-based techniques in heteroge-
neous frameworks to accelerate the drug design process [63].
However, the main issue is the available quantum hardware
which prevents a practical usage of the developed solutions.
Regardless of the specific application’s field, more advanced
hardware in memory and resources is necessary [55]. Indeed,
this problem affects all disciplines more broadly related to
molecular dynamics [64], which could substantially benefit
from quantum acceleration for the same reasons.

VI. CONCLUSIONS

This manuscript reviews the State of the Art in quantum
computing and identifies the most promising research topics.

We analyzed EDA applications, QCS, and the various layers
of quantum hardware, concluding with an overview of quan-
tum computing’s applications. We believe that this emerging
technology has the potential to revolutionize many aspects of
Computer Science. However, only cohesive research efforts
can unleash the full potential of quantum computing. We
provide exciting research topics on which unified efforts could
result in enormous breakthroughs in quantum computing.

ACKNOWLEDGMENTS

This work has financial support from ICSC – Centro
Nazionale di Ricerca in High Performance Computing, Big
Data and Quantum Computing, funded by European Union –
NextGenerationEU.

REFERENCES

[1] J. Shalf, “The future of computing beyond moore’s law,” Philosophical
Transactions of the Royal Society A, vol. 378, no. 2166, p. 20190061,
2020.

[2] J. L. Hennessy and D. A. Patterson, “A new golden age for computer
architecture,” Communications of the ACM, vol. 62, no. 2, pp. 48–60,
2019.

[3] M. Bozzo-Rey, J. Longbottom, and H. A. Müller, “Quantum comput-
ing: challenges and opportunities,” in Proceedings of the 29th annual
international conference on computer science and software engineering,
2019, pp. 393–394.

[4] F. Arute et al., “Quantum supremacy using a programmable supercon-
ducting processor,” Nature, vol. 574, no. 7779, pp. 505–510, 2019.

[5] N. A. of Sciences Engineering, Medicine et al., “Quantum computing:
progress and prospects,” 2019.

[6] G. De Micheli, J.-H. R. Jiang, R. Rand, K. Smith, and M. Soeken,
“Advances in quantum computation and quantum technologies: A design
automation perspective,” IEEE Journal on Emerging and Selected Topics
in Circuits and Systems, vol. 12, no. 3, pp. 584–601, 2022.

[7] C. G. Almudever et al., “The engineering challenges in quantum
computing,” in Design, Automation & Test in Europe Conference &
Exhibition (DATE), 2017. IEEE, 2017, pp. 836–845.

[8] M. A. Serrano, J. A. Cruz-Lemus, R. Pérez-Castillo, and M. Piattini,
“Quantum software components and platforms: Overview and quality
assessment,” ACM Computing Surveys, 2022.

[9] A. W. Cross, L. S. Bishop, J. A. Smolin, and J. M. Gambetta, “Open
quantum assembly language,” arXiv preprint arXiv:1707.03429, 2017.

[10] L. Burgholzer, R. Raymond, and R. Wille, “Verifying results of the ibm
qiskit quantum circuit compilation flow,” in 2020 IEEE International
Conference on Quantum Computing and Engineering (QCE). IEEE,
2020, pp. 356–365.

[11] A. Zulehner and R. Wille, Introducing Design Automation for Quantum
Computing. Springer, 2020, vol. 11.

[12] G. Li, A. Wu, Y. Shi, A. Javadi-Abhari, Y. Ding, and Y. Xie, “On the
co-design of quantum software and hardware,” in Proceedings of the
Eight Annual ACM International Conference on Nanoscale Computing
and Communication, 2021, pp. 1–7.

[13] S. Raghunathan and L. Stok, “Eda and quantum computing: a symbiotic
relationship?” IEEE Design & Test, vol. 37, no. 6, pp. 71–78, 2020.

[14] D. Paletti, F. Peverelli, and D. Conficconi, “Online learning rtl synthesis
for automated design space exploration,” in 2022 IEEE International
Parallel and Distributed Processing Symposium Workshops (IPDPSW).
IEEE, 2022, pp. 69–76.

[15] Y. Zhao et al., “Q-gpu: A recipe of optimizations for quantum circuit
simulation using gpus,” in 2022 IEEE International Symposium on High-
Performance Computer Architecture (HPCA). IEEE, 2022, pp. 726–
740.

[16] S. Efthymiou et al., “Qibo: a framework for quantum simulation with
hardware acceleration,” Quantum Science and Technology, vol. 7, no. 1,
p. 015018, 2021.

[17] D. Willsch, M. Willsch, F. Jin, K. Michielsen, and H. De Raedt, “Gpu-
accelerated simulations of quantum annealing and the quantum approx-
imate optimization algorithm,” Computer Physics Communications, vol.
278, p. 108411, 2022.



[18] S. Stanwyck, H. Bayraktar, and T. Costa, “cuquantum: Accelerating
quantum circuit simulation on gpus,” Bulletin of the American Physical
Society, 2022.

[19] (2021) Qiskit: An open-source framework for quantum computing.
[20] J. Doi, H. Takahashi, R. Raymond, T. Imamichi, and H. Horii, “Quantum

computing simulator on a heterogenous hpc system,” in Proceedings of
the 16th ACM International Conference on Computing Frontiers, 2019,
pp. 85–93.

[21] E. D’Arnese, D. Conficconi, E. Del Sozzo, L. Fusco, D. Sciuto, and
M. D. Santambrogio, “Faber: A hardware/software toolchain for image
registration,” IEEE Transactions on Parallel and Distributed Systems,
vol. 34, no. 1, pp. 291–303, 2022.

[22] D. Conficconi, E. Del Sozzo, F. Carloni, A. Comodi, A. Scolari, and
M. D. Santambrogio, “An energy-efficient domain-specific architecture
for regular expressions,” IEEE Transactions on Emerging Topics in
Computing, 2022.

[23] R. Berzoini, E. D’Arnese, and D. Conficconi, “On how to push efficient
medical semantic segmentation to the edge: the seneca approach,” in
2022 IEEE International Parallel and Distributed Processing Sympo-
sium Workshops (IPDPSW). IEEE, 2022, pp. 104–111.

[24] E. D. Sozzo, D. Conficconi, A. Zeni, M. Salaris, D. Sciuto, and M. D.
Santambrogio, “Pushing the level of abstraction of digital system design:
A survey on how to program fpgas,” ACM Computing Surveys, vol. 55,
no. 5, pp. 1–48, 2022.

[25] D. Parravicini, D. Conficconi, E. D. Sozzo, C. Pilato, and M. D.
Santambrogio, “Cicero: A domain-specific architecture for efficient reg-
ular expression matching,” ACM Transactions on Embedded Computing
Systems (TECS), vol. 20, no. 5s, pp. 1–24, 2021.

[26] M. Khalid, U. Mujahid, A. Jafri, H. Choi et al., “An fpga-based hardware
abstraction of quantum computing systems,” Journal of Computational
Electronics, vol. 20, no. 5, pp. 2001–2018, 2021.

[27] Y. Hong, S. Jeon, S. Park, and B.-S. Kim, “Quantum circuit simulator
based on fpga,” in 2022 13th International Conference on Information
and Communication Technology Convergence (ICTC). IEEE, 2022, pp.
1909–1911.

[28] H. M. Waidyasooriya, H. Oshiyama, Y. Kurebayashi, M. Hariyama, and
M. Ohzeki, “A scalable emulator for quantum fourier transform using
multiple-fpgas with high-bandwidth-memory,” IEEE Access, vol. 10, pp.
65 103–65 117, 2022.

[29] M. Kliesch, T. Barthel, C. Gogolin, M. Kastoryano, and J. Eisert,
“Dissipative quantum church-turing theorem,” Physical review letters,
vol. 107, no. 12, p. 120501, 2011.

[30] A. D. Córcoles et al., “Challenges and opportunities of near-term
quantum computing systems,” arXiv preprint arXiv:1910.02894, 2019.

[31] S. Maurya, C. N. Mude, W. D. Oliver, B. Lienhard, and S. Tannu, “Hard-
ware efficient neural network assisted qubit readout,” arXiv preprint
arXiv:2212.03895, 2022.

[32] Z. Cai et al., “Quantum error mitigation,” arXiv preprint
arXiv:2210.00921, 2022.

[33] J. Roffe, “Quantum error correction: an introductory guide,” Contempo-
rary Physics, vol. 60, no. 3, pp. 226–245, 2019.

[34] R. Raussendorf, “Key ideas in quantum error correction,” Philosophi-
cal Transactions of the Royal Society A: Mathematical, Physical and
Engineering Sciences, vol. 370, no. 1975, pp. 4541–4565, 2012.

[35] J. Kim, B. Oh, Y. Chong, E. Hwang, and D. K. Park, “Quantum readout
error mitigation via deep learning,” New Journal of Physics, vol. 24,
no. 7, p. 073009, 2022.

[36] D. F. Wise, J. J. Morton, and S. Dhomkar, “Using deep learning to
understand and mitigate the qubit noise environment,” PRX Quantum,
vol. 2, no. 1, p. 010316, 2021.

[37] P. Das, A. Locharla, and C. Jones, “Lilliput: a lightweight low-latency
lookup-table decoder for near-term quantum error correction,” in Pro-
ceedings of the 27th ACM International Conference on Architectural
Support for Programming Languages and Operating Systems, 2022, pp.
541–553.

[38] J. M. Günther, F. Tacchino, J. R. Wootton, I. Tavernelli, and P. K.
Barkoutsos, “Improving readout in quantum simulations with repetition
codes,” Quantum Science and Technology, vol. 7, no. 1, p. 015009, 2021.

[39] O. Higgott, “Pymatching: A python package for decoding quantum
codes with minimum-weight perfect matching,” ACM Transactions on
Quantum Computing, vol. 3, no. 3, pp. 1–16, 2022.

[40] Y. Ueno, M. Kondo, M. Tanaka, Y. Suzuki, and Y. Tabuchi, “Qecool:
On-line quantum error correction with a superconducting decoder for

surface code,” in 2021 58th ACM/IEEE Design Automation Conference
(DAC). IEEE, 2021, pp. 451–456.

[41] R. W. Overwater, M. Babaie, and F. Sebastiano, “Neural-network
decoders for quantum error correction using surface codes: A space
exploration of the hardware cost-performance tradeoffs,” IEEE Transac-
tions on Quantum Engineering, vol. 3, pp. 1–19, 2022.

[42] M. Hart, J. Mc Allister, L. Rogers, and C. Gillan, “An emulation of
quantum error-correction on an fpga device,” in 2021 31st International
Conference on Field-Programmable Logic and Applications (FPL).
IEEE, 2021, pp. 104–108.

[43] C. A. Ryan, B. R. Johnson, D. Ristè, B. Donovan, and T. A. Ohki,
“Hardware for dynamic quantum computing,” Review of Scientific In-
struments, vol. 88, no. 10, p. 104703, 2017.

[44] C. Guo et al., “Low-latency readout electronics for dynamic supercon-
ducting quantum computing,” AIP Advances, vol. 12, no. 4, p. 045024,
2022.

[45] J. Wang, G. Guo, and Z. Shan, “Sok: Benchmarking the performance
of a quantum computer,” Entropy, vol. 24, no. 10, p. 1467, 2022.

[46] S. Resch and U. R. Karpuzcu, “Quantum computing: an overview across
the system stack,” arXiv preprint arXiv:1905.07240, 2019.

[47] C. Zhang, T. Chen, S. Li, X. Wang, and Z.-Y. Xue, “High-fidelity
geometric gate for silicon-based spin qubits,” Physical Review A, vol.
101, no. 5, p. 052302, 2020.

[48] Y.-C. Yang, S. Coppersmith, and M. Friesen, “High-fidelity single-qubit
gates in a strongly driven quantum-dot hybrid qubit with 1/f charge
noise,” Physical Review A, vol. 100, no. 2, p. 022337, 2019.

[49] A. Kandala et al., “Demonstration of a high-fidelity cnot gate for fixed-
frequency transmons with engineered z z suppression,” Physical Review
Letters, vol. 127, no. 13, p. 130501, 2021.

[50] O. Di Matteo, V. Gheorghiu, and M. Mosca, “Fault-tolerant resource
estimation of quantum random-access memories,” IEEE Transactions
on Quantum Engineering, vol. 1, pp. 1–13, 2020.

[51] C. T. Hann, G. Lee, S. Girvin, and L. Jiang, “Resilience of quantum
random access memory to generic noise,” PRX Quantum, vol. 2, no. 2,
p. 020311, 2021.

[52] P. Hauke, H. G. Katzgraber, W. Lechner, H. Nishimori, and W. D. Oliver,
“Perspectives of quantum annealing: Methods and implementations,”
Reports on Progress in Physics, vol. 83, no. 5, p. 054401, 2020.

[53] S. Yarkoni, E. Raponi, T. Bäck, and S. Schmitt, “Quantum annealing
for industry applications: Introduction and review,” Reports on Progress
in Physics, 2022.

[54] F. Glover, G. Kochenberger, R. Hennig, and Y. Du, “Quantum bridge
analytics i: a tutorial on formulating and using qubo models,” Annals of
Operations Research, pp. 1–43, 2022.

[55] A. Fedorov and M. Gelfand, “Towards practical applications in quantum
computational biology,” Nature Computational Science, vol. 1, no. 2, pp.
114–119, 2021.

[56] B. Branchini, S. Breschi, A. Zeni, and M. D. Santambrogio, “Fast
genome analysis leveraging exact string matching,” in 2022 IEEE
International Parallel and Distributed Processing Symposium Workshops
(IPDPSW). IEEE, 2022, pp. 136–139.

[57] B. Branchini, G. Gerometta, L. Cicolini, A. Zeni, E. Del Sozzo, and
M. D. Santambrogio, “Surfing the wavefront of genome alignment,” in
2022 IEEE International Symposium on Circuits and Systems (ISCAS).
IEEE, 2022, pp. 1754–1758.

[58] L. Di Tucci, D. Conficconi, A. Comodi, S. Hofmeyr, D. Donofrio, and
M. D. Santambrogio, “A parallel, energy efficient hardware architecture
for the meraligner on fpga using chisel hcl,” in 2018 IEEE International
Parallel and Distributed Processing Symposium Workshops (IPDPSW).
IEEE, 2018, pp. 214–217.

[59] K. Nałecz-Charkiewicz and R. M. Nowak, “Algorithm for dna sequence
assembly by quantum annealing,” BMC bioinformatics, vol. 23, no. 1,
pp. 1–17, 2022.

[60] K. K. Soni and A. Rasool, “Pattern matching: a quantum oriented
approach,” Procedia Computer Science, vol. 167, pp. 1991–2002, 2020.

[61] M. Zinner, F. Dahlhausen, P. Boehme, J. Ehlers, L. Bieske, and
L. Fehring, “Quantum computing’s potential for drug discovery: Early
stage industry dynamics,” Drug Discovery Today, vol. 26, no. 7, pp.
1680–1688, 2021.

[62] B. Bauer, S. Bravyi, M. Motta, and G. K.-L. Chan, “Quantum algorithms
for quantum chemistry and quantum materials science,” Chemical Re-
views, vol. 120, no. 22, pp. 12 685–12 717, 2020.

[63] B. Lau et al., “Insights from incorporating quantum computing into drug
design workflows,” Bioinformatics, vol. 39, no. 1, p. btac789, 2023.



[64] F. Peverelli, D. Conficconi, D. B. Bartolini, A. Scolari, and M. D.
Santambrogio, “Characterizing molecular dynamics simulation on com-
modity platforms,” in 2022 IEEE International Symposium on Workload
Characterization (IISWC). IEEE, 2022, pp. 65–78.


