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ABSTRACT The increasing adoption of electric vehicles poses new problems for the electrical distribution
network. For this reason, proper electric vehicle forecasting will be of fundamental importance for a
predictive energy management system, which could greatly help the operation of the grid. This paper
proposes a comprehensive novel methodology to forecast single charging sessions of electric vehicle and
the resulting cumulative energy forecast of the charging infrastructure. Historical charging sessions are first
clustered on the basis of similar user characteristics and their respective probability density functions are
defined. From this, every charging session is predicted with a triplet of parameters, namely the arrival time,
the charging duration and the average power expected during the process. The proposed method has been
evaluated by considering a real case study. The results showed the ability to greatly improve the accuracy
with respect to the chosen benchmark, both in terms of energy required by the station and the predicted
number of charging sessions. The overall performance measured by Skill Score is 0.37 for the year 2019.

INDEX TERMS Electric vehicle, EV, forecast, clustering, Monte Carlo.

I. INTRODUCTION
The European government recently required a set of measures
aiming to decarbonize the transport sector [1]. Stronger
CO2 emissions standards for cars, vans and vehicles in
general, will accelerate the transition to zero-emission
mobility by requiring the average emissions of new cars to
reduce by 55% of 2021 levels in 2030, and by 100% in 2035.
As a result, all new cars registered in 2035 will be zero-
emission [2]. To ensure that Electric Vehicle (EV) drivers
can charge their vehicles at a reliable network across Europe,
adequate regulation will require Member States to expand
charging capacity in line with zero-emission car sales.

In the United States, the Advanced Clean Cars II (ACC II)
regulatory proposal [3] was recently approved by the
California Air Regulatory Board. It will gradually drive the
sales of Zero EmissionVehicles (ZEVs) in California, starting
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with the year 2026, up to 100% ZEVs by 2035, including
Battery Electric Vehicles (BEVs) and hydrogen fuel cell
electric vehicles (FCEV) and the cleanest-possible plug-
in hybrid-electric vehicles (PHEV), while reducing carbon
emissions from new internal combustion engine vehicles
(ICEVs). For these reasons, an accurate electric load forecast
of the power requested by EV charging stations is needed, and
thus the topic has gained more attention recently.

Electric load forecasting methods can be categorized
into statistical time series models and artificial intelligence
models [4]. At the very early stage in EV load forecast-
ing studies, statistical models [5] were the most suitable
choice as the lack of real, comprehensive data about EV
charging made it necessary to build plausible data scenarios
through computational algorithms [6]. However, these load
forecasting methods were unable to provide predictions with
sufficient accuracy. The recent growth in EV adoption has
precipitated publically available datasets, and therefore EV
load forecasting has moved from a purely probabilistic
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approach to a data-driven one. Here, for example, the daily
load data of the Beijing Olympic Games EV Charging
Station in 2010 are employed [7]. Recently the main direction
of the research in EV load forecasting is focused on
different types of Artificial Neural Networks (ANNs) and
ML models [8], [9].

In [4] a novel Long Short-Term Memory (LSTM)-based
model is established for forecasting EV charging station load.
Actual EV charging measurements are adopted for model
training and validation, an ultra-short-term load forecast
at two different time scales is investigated. The LSTM is
compared to a simpler ANN structure; numerical results
demonstrate that the LSTMmodel has better performance via
higher accuracy compared with the traditional ANN. In [10],
authors propose a machine learning ensemble model named
EnLSTM-WPEO based on a cluster of LSTMs to forecast
short-term traffic flow. Reference [11] is a performance
comparison of four deep learning-based methods: a Deep
Neural Network (DNN), a Recurrent Neural Network (RNN),
LSTM and Gated Recurrent Unit (GRU). Each is imple-
mented as an hourly forecast. At the end of the experimental
process, during which also the change in the number of
hidden layers was investigated, the one hidden layer GRU
model outperformed the other three models. Reference [12]
compared deep learning approaches for ultra-short-term
charging load forecasting of plug-in electric vehicles.

The aggregate results indicate that machine learning
models effectively forecast ultra-short-term PEV charging
load for providing accurate prediction curves in both cases.
Among the deep learning methods, the LSTM model is
superior to the other methods. It is meaningful to note that
[4], [11], [12] are basically adopting the same approach
applied to the same database (the data platform of a
company that has a large proportion of EV charging
stations in Shenzhen China), with different time horizons.
In [13] a model based on Wavenet is described and
evaluated through a comparison with state-of-the-art Neural
Networks such as ARIMA, LSTM, GRU, Multi Layer Per-
ceptron (MLP), causal 1D-Convolutional Neural Networks
(1D-CNN) and ConvLSTM (Encoder-Decoder). Wavenet,
originally designed for generating raw audio waveforms, uses
dilated causal convolutions and skip-connection to utilize
long-term information. It performs better than the other
architectures for 24-hour-ahead forecasting using the RTE
dataset of the whole country of France [14]. However, from
the bibliographic review, it’s understood that a uniquely
superior EV load forecasting method has not been identified.

In [15] authors present a long-term demand forecasting
Sequence to Sequence (Seq2Seq) model, which is partic-
ularly suited for the EV forecast as it takes into account
temporal correlation between historical records in different
time steps. The performance is evaluated after training the
model on two real-world datasets coming from the USA,
and the benchmark models are Historical Average, ARIMA,
Facebook Prophet, XGBoost, and LSTM. The researcher

demonstrated that the Seq2Seqmodel yielded the best results,
however, the sparsity of the data makes the superiority of
Machine Learning (ML) models less obvious.

Finally, in [16], authors propose a deep-learning-based
method for short-term (5-minute) probabilistic EV charging
demand prognostic. The model is based on Machine Theory
of Mind to forecast users’ behavior both in terms of
habits and temporary conditions, it is composed of three
networks: the habit net, the trend net, and the forecast
net. Both the habit net and trend net are built based on
LSTM networks, while the forecast net is a three-layer
fully-connected NN. The application of two case studies
on real EV charging demand improves upon the baseline
methods represented by quantile forecast models belonging
to either parametric or non-parametric families. However,
as these ML techniques strongly rely on data, it is evident
that researchers are struggling against two main problems.
First, the availability of sufficiently expansive datasets which
could be a statistically representative sample of the actual
EV charging station situation is missing. Second, as the
timing of the whole charging process may strongly differ
among the vehicles due to their different states of charge on
arrival at the EV station, the paradigm of the most accurate
forecasting method, aiming at modeling the expected values
of the electrical power load time series has recently moved
towards focusing on specific parameters of the EV charging
process. For instance, in [17] authors aimed at minimizing the
uncertainty of the duration of the charging and synchronizing
it with the typical schedule of the Electric Car Sharing
(ECS) operators. However some problems still are unsolved,
affecting traditional load forecast approaches: charing power
is curtailed due to the power capacity of the station, and the
related EV features are not deducible via commonly available
parameters. Consequently, the behavior of end users becomes
predominant and necessary to consider.

The main objective of the present work is to develop a
comprehensive and accurate EV charging session forecasting
method that completely represents the power required of the
charging station. Most of the works focus on the forecast
and reconstruction of the aggregated power profile. Here
the EV load forecast decomposes the aggregate load power
curve into a summation of the most likely individual EV
charging sessions to have resulted in that load power curve.
The individual EV charging sessions are determined by
clustering user behavior data, namely, the time charging
started and energy consumed over the charging period. This
resulting forecast (both in terms of load power curve and
EV charging sessions) is fundamental to overcoming the
traditional concept of unidirectional and noncontrollable load
(or ‘‘passive load’’) where the only control is given by
the enforcement of power availability constraints (i.e. load
curtailment). Instead, the poposed methodology allows the
shift to a new concept of controllable bidirectional load
through the active scheduling of energy requested from
individual EVs on the basis of available energy from the grid
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FIGURE 1. Workflow of the EV forecasting methodology. Above in the
green dashed area, the proposed feature engineering is based on users’
historical behaviour. Below in the orange dashed area is the forecasting
procedure.

and expected end-user needs, which could also be shared
by the EVs owners (‘‘active load’’). This enriched forecast
represents more valuable and complete foresight for the EV
charging station operators, rather than simply an aggregated
load power curve forecast. In fact, knowing the charging
session composition subdued by the power curve demand it is
possible to better support the Energy and Power Management
System in the optimization task. In fact, knowing the
charging duration time and total energy consumption for each
session permits the prioritization and optimization of session
charging power, subject to the infrastructure and economic
constraints [18].

The paper is organized as follows: in section II the
proposed novel methodology is explained and detailed; in
section III the implemented metrics are shown while in
section IV a comprehensive case study is presented. Finally,
in section V conclusions are drawn.

II. METHODOLOGY
In this section, a proposed comprehensive methodology is
detailed, providing an accurate forecast of the power trend
required in the following 24 hours by Electric Vehicles at
the EV charging station is here detailed. The methodology
workflow is fully depicted in Figure 1.
As depicted in the workflow, on the basis of historical

data, the procedure is divided in two main parts: the first
one, related to the dashed green box, is devoted to feature

extraction and feature engineering, and the second to the
actual forecast leveraging on the information previously
identified.

The first step of the proposed methodology is devoted to
the identification of recurring patterns through the clustering
process. From the historical session data recorded during
operation, the latest n days are extracted and used for the
generalization and characterization of the charging sessions.
Each of the EV clusters defined is further described in terms
of Probability Density Functions (PDFs) in the arrival and
power-duration spaces. This step can be addressed through
Gaussian-Kernel Density Estimator (KDE). The expected
number of occurrences (i.e. number of charging sessions)
per cluster must be carefully defined, due to the presence
of remaining outliers after the clustering algorithm. Order-
ing Points To Identify the Clustering Structure (OPTICS)
algorithm, in fact, automatically identifies some points in
the space as outliers. These, though not interesting for the
characterization and the definition of the arrival and power-
duration PDFs, contribute significantly to the overall amount
of power required by the station in the charging process.
To properly address this criticality, the outliers are associated
with the closest cluster for the sole definition of the number
of expected occurrences. Hence, the obtained cluster labels
are used in the training of a supervised classification process.
Following a sensitivity analysis, a random forest classifier
with 100 trees is used. Having associated each outlier with
the most similar cluster, a PDF representing the number of
expected occurrences can be computed.

The second step, on the other hand, leveraging the
previously engineered information, reconstructs the expected
power curve, through a Monte Carlo sampling approach.
In the following sections, the exploited methodologies are
presented and detailed.

As often mentioned in literature [19], comparison among
different methodologies is difficult since they are applied to
private data. To overcome this problem, this work will be
tested on a publicly available dataset and specific evaluation
metrics defined.

A. CLUSTER ANALYSIS
User behavior can be analyzed by clustering based on similar
characteristics. The clustering process is carried out consid-
ering a space defined by each user arrival time (ta) and the
time the vehicle is connected to the station (d). This identifies
the major similar characteristics among the charging sessions
in terms of user behaviors. To properly identify the clusters,
a density-based methodology is exploited. These algorithms
are very useful for data mining, detecting regions of the
space in which observations are denser and separating them
from regions with low density (noise). Moreover, they do not
require any prior assumptions regarding the points’ statistical
distribution.

In [20], a density-based clustering method is presented:
Density-Based Spatial Clustering of Applications with Noise
(DBSCAN). The concept is that for each point of a cluster,
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the neighborhood of a given radius (ε) has to contain at
least a minimum number of points (MinPts) where ε and
MinPts are input parameters. Though, an important property
of many real data sets is that their intrinsic cluster structure
cannot be characterized by global density parameters. Very
different local densities may be needed to reveal clusters in
different regions of the data space. To overcome this problem,
an extension of the DBSCAN algorithmwas presented in [21]
named OPTICS. For each point, two values are computed and
stored: the core distance and a reachability distance which
allows building a dendrogram called reachability plot.

B. PROBABILITY DENSITY FUNCTION DEFINITION
Through the clustering process, groups of similar character-
istics were found in the arrival time vs charging duration
space. Those clusters have to be then characterized in
terms of the main features enabling the reconstruction of
the overall station power curve, which are: arrival time,
duration of the charging process, the energy required and
the overall number of occurrences expected for each cluster.
In general, this is performed through the reconstruction of
the PDFs of those characteristics, in order to define an
underlying function describing the distribution. KDEs are
non-parametric estimations that do not require any explicit
parametric model to fit the data [22]. The kernel estimator
may be written compactly as:

f̂ (x) =
1
nh

n∑
i=1

K
(
x − xi
h

)
=

1
n

n∑
i=1

Kh (x − xi) (1)

where Kh(t) = K (t/h)/h and h the bandwidth or smoothing
parameter.

In a multivariate domain, the previous formulation can be
extended as

f̂H(x) =
1
n

n∑
i=1

KH (x − xi) (2)

whereH, as previously, is the bandwidth, defined as a square
matrix symmetric and positive definite.

Much of the first decade of theoretical work focused
on various aspects of estimation properties relating to the
characteristics of a kernel. The quality of a density estimate
is now widely recognized to be primarily determined by the
choice of smoothing parameter, and only in a minor way by
the choice of kernel. This is even more true in the multivariate
case. Several practical approaches aim at processing data
before applying the KDE. For example, common is to first
rescale the data to equalize sample variances across each
dimension (scaling). Alternatively, a linear transformation
can be applied to the data to obtain as a covariance matrix
the identity (sphering). In general, those approaches can be
detrimental. This is because the entries of the covariance
matrix are usually not able to take into account the curvature
in f and its orientation. [23]

For multivariate kernel density estimation, the bandwidth
matrix induces an orientation, not defined for 1D kernels.

Algorithm 1 Probabilistic EV Forecast

Data:MC: number of Monte Carlo simulations;
C : identified historical clusters;
Result:MC simulated list of expected charging

sessions
for All the mc ∈ [0,MC) do

Initialize an empy list of charging sessions csmc
for All the clusters c ∈ C do

Sample the number of occurrences PDF, nc;
for All the nc do

sample the arrival time PDF;
sample the power-duration PDF;
Add the sampled chargin session to csmc

end
end

end

This leads to the choice of the parametrization of this
bandwidth matrix. In general, three main parameterization
classes can be implemented, which include the adoption of
positive scalars multiplied by the identity matrix, a diagonal
matrix with positive values on the main diagonal, and a
symmetric positive definite matrix. In the current work,
Scott’s factor was implemented for the evaluation of the
kernel bandwidth, which is computed as a multiplication of
a scalar, dependent on the number of available samples, and
the covariance matrix.

C. MONTE CARLO SAMPLING AND CHARGING SESSION
RECONSTRUCTION
The previous cluster analysis and resultant PDF definitions
identify the most relevant user behaviour and charging
characteristics from the historically recorded data. Therefore,
to estimate the expected charging sessions in the forecast
horizon, the desired number of Monte Carlo simulations is
defined as MC and the PDFs are sampled according to what
is shown in Algorithm 1. For every cluster c ∈ C , where
C is the overall set of identified clusters, the expected number
of charging sessions nc is estimated. Then, the arrival time
average power and duration are sampled.

The number of Monte Carlo simulations run in the current
work is equal to 100, chosen as a trade-off between accuracy
and added computational burden.

The result is thenMC lists of charging sessions, each one of
them representative of a possible realization the station could
face in the future. In Figure 2, an exemplifying representation
of the result of the simulations is given. For every Monte
Carlo simulation, different charging sessions belonging to
different clusters are visible. Of great importance is that this
information can be greatly beneficial when dealing with the
optimal management of the station, having more information
with respect to the mere overall power profile.

From this, the cumulative power curve can be drawn.
Averaging all the Monte Carlo realizations, the expected

power draw at the station can be found. Furthermore, the
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FIGURE 2. Monte Carlo sampling and charging session definition.

closest single Monte Carlo realization to the average power
curve can be considered the most probable EV charging
composition.

III. EVALUATION
In order to systematically evaluate the obtained results,
different metrics are used and a comparisonwith a benchmark
methodology must be given. Hence, following an autocorre-
lation analysis, a seven-day horizon is set for the persistence
model, in this work used as a benchmark (Pt = Pt−7d ).
Moreover, a ML methodology is implemented and used

to further compare the obtained results and validate the
proposed methodology. In particular, a recurrent neural
network architecture based on an LSTM cell is implemented
as detailed in [24]. Following a tuning procedure, it presents
a single layer of 256 units. The input sequence is equal to
672 samples, equivalent to a full week.

The power forecast is evaluated considering the percentage
of energy error committed throughout the day as follows:

%e =
|Ef − EM |

EM
· 100 (3)

where Ef and EM stand for the energy forecast and measured
respectively.

Moreover, in order to evaluate the quality of the proposed
methodology over a longer time horizon, the Skill Score (SS)
is evaluated. This metric is defined as follows:

SS = 1 −
rmsef
rmseb

(4)

TABLE 1. Subsection of ACN data features.

where the rmsef stands for the Root Mean Squared Error
(rmse) computed for the proposed forecast methodology
while the rmseb is the rmse computed considering the
benchmark. This metric returns values comprised in the range
(−∞, 1], where 1 can be only achieved with the perfect
forecast. Furthermore, a value of 0 or negative is obtained
if the methodology under study is equivalent or worse with
respect to the benchmark model respectively.

Finally, the present methodology is evaluated by compar-
ing the forecast number of sessions with the actual number
seen throughout the day.

IV. CASE STUDY
The methodology described above is tested on real public
data available online at [25], where a full and comprehen-
sive description is available. Adaptive Charging Networks
(ACN)-Data were collected from JPL, California. It includes
52 EVSEs in a parking garage where access is restricted to
employees only. The JPL site is representative of workplace
charging. EV penetration is also quite high at JPL which
leads to high utilization of the EV charging infrastructure
further fostered by an ad-hoc program where drivers free the
charging spot as the charging is completed. Here, data about
each occurring charging session is collected. In Table 1 the
most relevant variables to the scope of the present work are
presented.

In Figure 3, the overall number of connections to the
EV charging station is shown. In particular, in blue the
connections are given with respect to the time they take
place, while, in orange, the same is provided for the
disconnection time. Being located at an office, most of
the users connect in the morning and later disconnect in the
afternoon, as expected.

In order to simulate a full year, only a portion of the
full database is considered, spanning from October 2018 to
December 31st 2019, for a total of 21259 charging sessions.
The considered months of 2018 are valuable since an initial
period is required to extrapolate information from the users.
In Figure 4 the number of sessions per day is visually given
for the first months of the simulation period. As visible, being
the EVSEs located at an office, a great disparity is visible
between the week and weekend days. A full description of
the data is given at [25].

Among other parameters, each charging record contains
the charging time (beginning and end) and the acquired
energy in kWh. In order to reproduce the power time
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FIGURE 3. Feature engineering period and forecast horizon.

FIGURE 4. Number of charging sessions per day for the period January
April 2019.

series with the desired granularity, the charging records are
converted to time series by uniformly dividing the energy
delivered to the vehicle by the time the vehicle was connected.
Raw data cannot be directly used in the forecasting process
and have to undergo processing. In particular, one important
step that must be performed is data imputation, which is
the process of providing the best guess for the missing
values [26]. This is particularly important when dealing with
time series since it may affect ordinal properties. Dealing
with aggregated data, sessions having erratic information
regarding arrival time, departure time and delivered energy
were discarded, having a marginal effect on the time series
values.

In order to account for a scenario where a), the adoption
of EVs is rapidly increasing and b), their use may change
throughout the year, historical data are selected with a rolling
horizon approach. Following a sensitivity analysis, only the
previous threemonths are used to generalize the user behavior
and the charging characteristics, as depicted in Figure 5.
If there is an abrupt change in the overall charging station
power demand and users’ behavior, the predictive ability
may be negatively impacted. This, though, is true for every
forecasting model, which may be affected by a rapid change
in trend. Moreover, the presence of impermanent changes of
behaviors (e.g. summer holidays) may affect the forecasting
ability and must be accounted for, for example not including
them in the feature engineering period In the present work all
the available days are included.

FIGURE 5. Feature engineering period and forecast horizon.

FIGURE 6. OPTICS clustering (a) and reachability plot (b).

The peak of the autocorrelation is at seven days. For
this reason, the forecast of a specific day will leverage the
historical information previously collected for that specific
day. For example, to forecast Monday 1st April 2019, the
algorithm will extrapolate information collected up to the
previous Monday. For this reason, the forecast horizon is
seven days. Simulations are performed on the year 2019.

A. RESULTS AND DISCUSSION
Once the data pre-processing is performed, sessions are
clustered [19]. The OPTICS algorithm is here implemented
that, differently from k-means, the number of clusters is
automatically detected and does not to be a priori specified.

In Figure 6, an example is provided. On the lower part
of the graph (a) the search space of the clustering process
is visible. On the x-axis, the EV arrival time is presented,
normalized between 0 and 5, where 0 represents Mondays
and 5 Fridays while on the y-axis, the duration in hours
is given. Above (b), the reachability plot, the output of
OPTICS algorithm is shown. Here on the x-axis is the core
distance and on the y-axis is the reachability distance. The
valleys, representative of the clusters and separated by points
with high reachability distance, identify the user behavior
cluster, each one shown in a different color. In black, the
automatically identified outliers are shown.

In Table 2, the number of clusters found for every day of
the week is given. Worth highlighting is that, having adopted
a rolling horizon approach, the number of clusters obtained is
not constant but changes throughout the year of simulation.
The values provided in Table 2 are hence an average value.
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TABLE 2. Number of clusters per day of the week.

FIGURE 7. Multimodal Power-Duration PDF.

Interestingly, not all weekdays have the same number of
clusters, implying different user behaviors on different week
days.

Each of the identified clusters can be further characterized
by two PDFs, namely the one associated with the time of
connection while the second one associated with the power
required during the session and the duration of the session.
In Figure 7, an example of the latter is provided. Clearly
the derived PDFs may have a multimodal and non trivial
distribution, different for every identified cluster [27].

The outlier charging sessions are not representative of
common user behavior the station faces but still, if merely
neglected, would result in a substantial underestimation of
the charging power forecast. For this reason, though not
considered in the composition of the arrival and power-
duration PDFs, theymust be considered to correct the number
of occurrences expected for every cluster. To the scope, the
labels provided by the clustering are used in a supervised
classification problem to bring back the outliers to the nearest
behavior. This process allows to properly estimate the PDFs
associated with the number of occurrences expected for every
cluster.

Once the clusters are properly defined and their relative
PDFs are retrieved through Monte Carlo sampling, the
parameters of a set of incoming vehicles and hence of
charging sessions can be simulated for the following day.
In particular, the number of expected incoming vehicles per
cluster can be sampled and, from this, all the other session
parameters can be evaluated. Hence, every different run of the
Monte Carlo procedure produces a different set of charging

FIGURE 8. Aggregated power forecast for the week from the 29th of April
2019 to the 5th of May 2019.

sessions for the desired day which finally leads to a different
aggregated power profile.

In Figure 8, a simulation for the week from the 29th of
April 2019 to the 5th of May 2019 is given. In particular,
the overall expected power estimated by every Monte Carlo
run can be seen in grey. In green, on the other hand, the
average of the different Monte Carlo profiles is shown.
Finally, In black, the actual measurements are depicted. As it
is possible to see, the green forecast profiles follow with great
accuracy the actual measurements.

This is confirmed by the results reported in Table 3, where
the energy forecast errors are provided compared with a
seven-day persistence model (Pers. in Table) and with theML
based algorithm (LSTM in Table). The forecast computed
according to the proposed methodology (Forec. in Table)
generally outperforms the two models. Worth noticing is
the inaccuracy shown by the three models for Friday, May
3rd . This day of the week is particularly hard to forecast
since the power significantly changes from one week to the
other without any significant correlation with the available
regressors. This is further confirmed by the difficulty that a
RNN based model such as the one implemented faces for
this particular day. Furthermore, the expected power during
weekends is particularly hard to estimate due to the small
number of connections and the impact that a single charging
session may have on the overall measured power. A single
missed profile tends to have a high overall impact on the
accuracy in these conditions.

In Figure 9 the single EV charging sessions forecast for the
previously mentioned days can be seen.

Those charging profiles are obtained considering the
closest single Monte Carlo trial, in terms of Mean Absolute
Error, to the average of all the computed Monte Carlo
trials which is the actual forecast curve (i.e. the green
line in Figure 8). Each different fill color represents a
different unique vehicle connected to the EV charging
station. The cumulative power is comparedwith themeasured
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TABLE 3. Energy forecast and error comparison for the analysed
methods. In bold the minimal error.

FIGURE 9. Forecast session composition for the week from the 29th of
April 2019 to the 5th of May 2019. In black the power measurements is
provided while in colours the single sessions are given.

TABLE 4. Number of charging sessions.

power at the station (i.e. the black curve). Interestingly, the
cluster composition largely varies on a daily basis. Worth
highlighting is that the inaccuracy seen every late afternoon
in Figure 9 can be mitigated by changing the definition of the
metric used to select the single Monte Carlo.

In Table 4 a comparison between the actual number of
charging sessions and the forecast one is given. As visible,
the proposed methodology tends to slightly underestimate the
expected number of sessions. In particular, this could be due
to the misallocation of the late afternoon sessions. Moreover,
for Friday May 3rd the overall power underestimation is here
explained by the highly imprecise number of sessions.

In order to highlight the generality of the proposed
approach throughout the simulated year, three more weeks
are presented in Figure 10. These weeks are chosen in
different periods of the year. As visible, thanks to the feature

TABLE 5. Energy forecast and error comparison for the analysed methods
for the three presented weeks. In bold the minimal error.

engineering and cluster analysis performed in the closest
3 months, the forecast is able to adapt to different behaviors
that may occur.

As visible, the forecast is more accurate during the
weekdays, since, due to the underlying methodology, it tends
to perform worst when a small fleet of incoming vehicle
is expected. In Table 5 numerical evidence of the previous
statements is given. Here the details of the error committed
in the three presented weeks are given. As visible, the
error committed by the proposed methodology is comparable
in terms of accuracy with the LSTM methodology. The
latter, though, do not provide any information concerning the
composition of the power curve in terms of single recharging
sessions.

In Figure 11 the single charging sessions composing the
overall load forecast are given for the three above-described
weeks, with great accuracy on weekdays. On the weekend,
though, some problematic behaviors are still observed,
deriving from the small number of occurring sessions.

The number of predicted charging sessions for the three
considered weeks is given in Table 6. From this the high
error values for the weekends can be explained. In fact, a
small mismatch and wrong forecast of the number of sessions
greatly impact the overall prediction.

In Figure 12 a particular situation is depicted. Moving
from the 30th of June, the model was able to predict with
a high level of accuracy the power curve, until the end of
the 2nd of July. From the 3rd of July, in fact, due to the
Independence Day holiday the connections to the station
and the following overall power required dropped. This
resulted in a great overestimation of the power produced. The
quantitative information is reported in Table 7.

Though not currently included (this information was not
a priori available to the authors), information regarding the
presence of scheduled holidays can be properly accounted
for considering a post process on the forecast data or proper
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FIGURE 10. Aggregated power forecast for three weeks of the year
chosen in different seasons. a) considers the week from the 1st to the 7th

of April. b) shows the results from the 17th to the 23rd of June. In c) the
week from the 23rd to the 29th of September is given.

feature engineering, for example increasing the number of
regressors.

FIGURE 11. Forecast session composition for three weeks of the year
chosen in different seasons. In black the power measurements is
provided while in colours the single sessions are given. a) considers the
week from the 1st to the 7th of April. b) shows the results from the 17th

to the 23rd of June. In c) the week from the 23rd to the 29th of
September is given.

Finally, the SS computed over thewhole year 2019 returned
a value of 0.37 on energy forecast. This value states that
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TABLE 6. Number of charging sessions for three weeks of the year,
chosen in different seasons.

FIGURE 12. Holiday related abnormal behaviour due to Independence
Day (week from the 30th of June to the 6th of July).

TABLE 7. Energy forecast and error comparison of the analysed methods
for the week from the 30th of June to the 6th of July 2019. In bold the
minimal error.

the presented methodology is proven to be beneficial with
respect to the implemented benchmark. Moreover, this
result is remarkable considering the seven-day time horizon
considered in the present work. A further comparison with

other works is not here provided since the adoption of
different databases or time horizons and resolution may
prejudice the evaluation. For what concerns the estimated
number of sessions, to the best of authors knowledge,
no comparable work is found in literature.

V. CONCLUSION
This research proposes a comprehensive and novel method-
ology to estimate the individual EV charging sessions
and forecast the resulting total charging load at an EV
charging station. In particular, user-behavior characteristics
are extracted from historical data through unsupervised
clustering analysis and, for every predicted charging session,
a triplet of parameters is determined: the arrival time, the
charging duration and the average power expected during
the process. This information is of fundamental importance
for a predictive EMS, which could then reallocate the power
delivered to each EV according to different optimization
strategies.

On the basis of actual data, the proposed methodology
achieved a SS of 0.37 with respect to the benchmark (the
seven-day naive persistence) in terms of estimated energy
with a seven-day forecast horizon. Moreover, it was able
to predict with great accuracy the number of expected
charging sessions. It must be highlighted that end-user
behavior is greatly affected by unpredicable behaviors due
to irregularities (i.e. National Holidays, weather conditions,
etc. . . ) which should be handled on a case-by-case basis.

Future steps and developments should include exogenous
inputs, both for the generalization of the user behavior and for
the forecast post-process, which are expected to be of great
benefit for the EVs charging sessions forecast accuracy.
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