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Abstract: In this article we investigate a mathematical model for a retinal prosthesis made of organic
polymer nanoparticles (NP) in the stationary regime. The model consists of a Drift-Diffusion system
to describe free charge transport in the NP bulk; a Poisson-Nernst-Planck system to describe ion
electrodiffusion in the solution surrounding the NP; and nonlinear transmission conditions at the
NP-solution interface. To solve the model we use an iteration procedure for which we prove the
existence and briefly comment the uniqueness of a fixed point under suitable smallness assumptions
on model parameters. For system discretization we use a stabilized finite element method to prevent
unphysical oscillations in the electric potential, carrier number densities and ion molar densities. Model
predictions describe the amount of active chemical molecule accumulating at the neuron surface and
highlight electrostatic effects induced by the sole presence of the nanoparticle. These results support
the use of mathematical modeling as a virtual laboratory for the optimal design of bio-hybrid systems,
whose investigation may be impervious due to experimental limits.

Keywords: multiscale and multiphysics modeling; nonlinear interface coupling; ion electrodiffusion;
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1. Introduction

Ocular pathologies represent a serious danger for the health and life quality of million individuals
worldwide because in extreme manifestations they may turn out into loss of eyesight. This is the case,
for instance, with Retinitis Pigmentosa (RP), a hereditary degeneration characterized by a progressive
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dysfunction of rod and cone photoreceptors [31], and Age-related Macular Degeneration (AMD), a
pathology of the macula, the small central area of the retina that controls vision acuity.

AMD is the main cause of blindness in subjects aged ≥55 years [7, 21]. Currently, 67 million
people are affected by AMD in the EU [15] and 11 million individuals are affected with AMD in the
U.S. [21], with a global prevalence of 170 million. The prevalence of AMD in the U.S. is anticipated
to increase to 22 million by the year 2050, and the global prevalence is expected to increase to 288
million by the year 2040 [7,21]. Existing noninvasive approaches for the cure of RP and AMD, such as
gene therapy, neuroprotection and pharmacology [19], can be effectively applied at early stages of the
disease, otherwise more invasive therapeutic interventions, such as injection of anti-VEGF drugs [11]
and/or photodynamic laser treatment [26], must be employed to treat late disease stages.

A valid alternative to the above mentioned medical cure for RP and AMD has been suggested in
recent years by the development of biocompatible implantable prostheses [8,22,32]. Retinal prostheses
have been shown to successfully stimulate the inner retinal network, but severe technical difficulties
and undesired side effects have strongly limited so far their efficacy in the application on individuals.
These limitations may have been overcome by the advent of a second generation of prosthetics based
on conjugated polymers [2] which has been translated into a functioning technology in [20] and [6]
where conjugated polymer nanoparticles (P3HT NPs) are subretinally injected in a rat model of RP and
shown to mediate light-evoked stimulation of retinal neurons and persistently rescue visual functions.

Despite P3HT NPs open up a wide potential in the application of retinal prosthetics to the cure of
pathologies secondary to photoreceptor death, the physical mechanisms underlying their function are
still poorly understood. For this reason, in this article we conduct a theoretical and numerical study of
a mathematical model, developed from that proposed in [4, 6], to describe the stationary function of a
bio-hybrid system constituted by: (i) a P3HT NP; (ii) a retinal neuron; (iii) an aqueous extracellular
region; and (iv) an interstitial cleft separating the NP from the retinal neuron. The theoretical model
translates into mathematical relations the chain of physical events that transform an external supply
of light stimulation into a depolarization of the retinal neuron upon mediation of the P3HT NP, and
consists of the Drift-Diffusion (DD) system [12,30] to describe light photoconversion into free charged
carriers in the NP bulk and the Poisson-Nernst-Planck (PNP) system [13, 14, 23, 27] to describe ion
electrodiffusion in the aqueous medium.

We solve the model in one spatial dimension with the Gummel Map, a functional iteration
customarily employed in inorganic semiconductor device simulation [10], for which we are able
to prove the existence of a fixed point, upon introducing suitable smallness limitations on model
parameters and coefficients. The Gummel Map reduces the nonlinear coupling between the DD
system and the PNP system into a sequence of spatially heterogenous, linearized balance equations for
electric potential (in both NP and aqueous medium), ion molar densities (in the sole aqueous medium)
and photogenerated carrier number densities (in the sole NP). For each considered balance equation,
interdomain connection is dealt with through transmission conditions expressing: (a) electron-driven
molecular oxygen reduction at the NP-solution interface; (b) electrostatic coupling between NP
and surrounding aqueous environment; and (c) ion electrodiffusion between extracellular bath and
interstitial cleft.

The sequence of linearized boundary value problems is discretized using the finite element method
with proper stabilization terms to prevent spurious unphysical oscillations in the electric potential and
ensure positivity of the carrier number densities and ion molar densities in their respective domains of
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definition [24, Chapters 22–23].
The above described computational model is then used to simulate the response of the bio-hybrid

system to given input sources. Simulations provide a physical picture of the mechanisms occurring
inside the NP when coupled with an electrolytic solution. In particular, model predictions seem
to suggest that the coupling between the neuron and the NP may affect cleft polarization due to
an electrostatic effect. Simulations also provide a quantitative estimate of the superoxide anion
concentration that reaches the neuron membrane at different light intensities. This information may
be biologically relevant because superoxide molecules may activate chemical pathways or induce
oxidative distress at the neuron cellular membrane.

An outline of the article is as follows. In Section 2 we introduce the geometric scheme of the
bio-hybrid system, the dependent variables of the problem and the scaling factors that are used to
adimensionalize the equation system. In Section 3 we write the boundary value problems (in scaled
form) which constitute the nonlinearly coupled differential model of the system. In Section 4 we
describe the various steps of the Gummel Map that is used to iteratively solve the nonlinearly coupled
model, while in Section 5 we describe the basic structure of the Gummel Map and state the theorem
of existence of a fixed point of the proposed solution map also commenting on its uniqueness. The
proof of the theorem is described in detail in Section 8. In Section 6 we illustrate the finite element
approximation of the boundary value problems constituting the Gummel Map while in Section 7 we
deal with the validation of the proposed model and algorithm and we illustrate the main results obtained
from our numerical formulation. We close the article with Section 9, in which we draw the principal
conclusions on the investigated bio-hybrid system and indicate future research directions.

2. Preliminaries

In Section 2.1 we describe the geometric representation of the bio-hybrid system under
investigation. Then, in Section 2.2 we introduce the dependent variables of the problem (electric
potential, ion molar densities and carrier number densities) together with their respective domain of
definition. Finally, in Section 2.3 we define the scaling factors which are used to write the model
equations in adimensional form.

2.1. Geometric representation of the bio-hybrid system

Figure 1 (left panel) shows a three-dimensional (3D) schematic representation of the bio-hybrid
system studied in the present work. The system is composed of (i) the cytoplasm of a retinal neuron
(indicated as “Neuron” in the left panel of Figure 1); (ii) the plasma membrane of the neuron (indicated
as “Plasma Membrane” in the left panel of Figure 1); (iii) a P3HT NP (indicated as “NP” in the left
panel of Figure 1); (iv) an aqueous extracellular region (indicated as “Extracellular Medium” in the
left panel of Figure 1); and (v) a porous interstitial cleft separating the NP from the retinal neuron
(indicated as “Interstitial Cleft” in the left panel of Figure 1). The yellow arrow represents the external
input light source. The rotational invariance of the system with respect to the z axis allows us to
reduce the 3D structure (in the cartesian reference system x-y-z) into the two-dimensional (2D) axial
symmetric structure depicted in the middle panel of Figure 1 (x-z axisymmetric coordinate system).
To further reduce model complexity, we introduce the one-dimensional (1D) open interval Ω = (0, L)
represented in the right panel of Figure 1. The origin x = 0 is set in correspondence of the interface
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between the cleft region and the neuron membrane. The cleft region is represented by the open interval
Ω1 = (0, R1). The NP is represented by the open interval Ω2 = (R1, R2). The extracellular region is
represented by the open interval Ω3 = (R2, L). The computational domain for the nonlinear differential
system is Ω = Ω1 ∪ Ω2 ∪ Ω3. We also set Ω1,3 := Ω1 ∪ Ω3. The nonlinear conductance GNL which
connects the points x = R1 and x = R2 is a lumped electric representation of ion motion from the
extracellular medium into the cleft in the 2D scheme in the middle panel of Figure 1.

Figure 1. Left panel: three-dimensional view of the bio-hybrid system. Middle panel: two-
dimensional axisymmetric scheme; Right panel: one-dimensional geometric reduction.

2.2. Dependent variables

To describe in mathematical terms the physical mechanisms occurring in each subdomain Ωi, i =

1, 2, 3; at the interfaces x = 0, x = R1, x = R2 and x = L; and across the nonlinear conductance GNL,
we need:

• the electric potential ψ (units: V);
• the chemical variables n and p representing the carrier number densities of electrons and holes

that are photogenerated in the NP (units: m−3);
• the chemical variables cα, α =

{
Na+, Cl−, K+}, representing the ion molar densities that passively

flow in the cleft and extracellular regions (units: mol m−3 = mM), where Na+, Cl− and K+ indicate
sodium, chlorine and potassium, respectively;
• the chemical variable c representing the ion molar density of superoxide O−2 (units: mM) that is

generated at the interfaces x = R1 and x = R2 between NP and surrounding medium, and that
subsequently flows by electrodiffusion in the extracellular medium and cleft.

We have:

ψ : Ω→ R, (2.1a)
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n, p : Ω2 → R
+, (2.1b)

cα : Ω1,3 → R
+, (2.1c)

c : Ω1,3 → R
+. (2.1d)

From the above definitions we see that n, p, cα and c are positive quantities. This property is a
consequence of the Maxwell-Boltzmann statistics:

n = nre f exp
(
ψ − ϕn

Vth

)
, (2.2a)

p = nre f exp
(
ϕp − ψ

Vth

)
, (2.2b)

cα = cre f exp
(
zα
ϕα − ψ

Vth

)
, (2.2c)

c = cre f exp
(
ψ − ϕ

Vth

)
, (2.2d)

where ϕn, ϕp, ϕα and ϕ are the electrochemical potentials of electrons, holes and ions (units: V), Vth is
the thermal voltage (units: V), nre f is the reference number density (units: m−3), cre f is the reference
molar density (units: mM) and zα is the chemical valence of each ion, with zα = +1 for Na+ and K+

and zα = −1 for Cl− and O−2 .
For further elaboration, it is useful to introduce the following set of alternative depedent variables:

un = nre f exp
(
−
ϕn

Vth

)
, (2.3a)

up = nre f exp
(
+
ϕp

Vth

)
, (2.3b)

uα = cre f exp
(
zα
ϕα
Vth

)
, (2.3c)

u = cre f exp
(
−
ϕ

Vth

)
. (2.3d)

The above dependent variables will be referred to henceforth as Slotboom variables in analogy with
the Drift-Diffusion model for semiconductor devices (see [29]). From (2.3), we see that un, up, uα and
u are strictly positive quantities and

n = un exp
(
+
ψ

Vth

)
, (2.4a)

p = up exp
(
−
ψ

Vth

)
, (2.4b)

cα = uα exp
(
−zα

ψ

Vth

)
, (2.4c)

c = u exp
(
ψ

Vth

)
. (2.4d)
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2.3. Scaling

In the remainder of the article every quantity will be scaled by an appropriate positive constant
referred to as “scaling factor”. Precisely, letU denote a variable whose units are U. Assume that U∗ is
a quantity whose units are U. Then, the scaled variable associated withU is defined as

Û =
U

U∗
. (2.5)

Table 1 summarizes the expressions and the values of the scaling factors for the model variables and
parameters. The symbol t represents the time coordinate.

Table 1. First column: variable; second column: scaling factor; third column: mathematical
expression; fourth column: units; fifth column: numerical value of the scaling factor.

Variable Scaling factor Expression Units Value
x x∗ L m 430 · 10−9

ψ, g ψ∗ Vth V 26.64 · 10−3

ϕn, ϕp ψ∗ Vth V 26.64 · 10−3

ϕα, ϕ ψ∗ Vth V 26.64 · 10−3

n, p, un, up n∗ nintr m−3 1012

cα, uα, u c∗ cre f mM = mol m−3 118
ρ j, j = 1, 3 ρ∗1,3 c∗NAv m−3 7.106 · 1025

ρ2 ρ∗2 n∗ m−3 1012

C0
m, Cm C∗m ε0/x∗ F m−2 2.059 · 10−5

Dα, D D∗ max
{
Dα, D, Dn, Dp

}
m2 s−1 2.03 · 10−9

Dn, Dp D∗ max
{
Dα, D, Dn, Dp

}
m2 s−1 2.03 · 10−9

t, τn, τp t∗ (x∗)2/D∗ s 9.108 · 10−5

G, R G∗ n∗/t∗ m−3 s−1 1.098 · 1016

Pα, P P∗ D∗/x∗ ms−1 4.721 · 10−3

kp k∗p P∗/n∗ m4s−1 4.721 · 10−15

kn k∗n k∗pc∗ mol m s−1 5.571 · 10−13

3. The mathematical model of the bio-hybrid system

In this section we illustrate the boundary value problems (in scaled form) that constitute the
nonlinearly coupled differential formulation of the bio-hybrid system. For reader’s ease we denote
each scaled variable with the same symbol used to represent the variable in its dimensional form.
Throughout the text we use (·)′ as a shorthand notation for ∂(·)/∂x.

3.1. The boundary value problem for the electric potential

The electric potential ψ is governed by the nonlinear Poisson equation (NLP)

−
∂

∂x

(
ε (x)

∂ψ

∂x

)
= λ−2 f

(
x, ψ, uα, u, un, up

)
in Ω. (3.1a)
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The piecewise constant function ε is the dielectric permittivity defined as

ε(x) =


ε1, x ∈ Ω1,

ε2, x ∈ Ω2,

ε3, x ∈ Ω3,

(3.1b)

ε j being the value of the relative dielectric permittivity in each subdomain Ω j, j = 1, 2, 3. The function
f is the space charge density defined as

f
(
x, ψ, uα, u, un, up

)
=



γ1

∑
α

zαuα exp (−zαψ) − u expψ + ρ1

 in Ω1

γ2

(
up exp (−ψ) − un expψ + ρ2

)
in Ω2

γ1

∑
α

zαuα exp (−zαψ) − u expψ + ρ3

 in Ω3.

(3.1c)

The quantities ρ j, j = 1, 2, 3, are given functions of x and physically represent the doping profile in
each region Ω j. The quantities γ1 and γ2 are dimensionless parameters defined as:

γ1 =
c∗NAv

N∗
≡

nre f

N∗
, (3.2)

γ2 =
n∗

N∗
=

nintr

N∗
, (3.3)

N∗ = max
{
nre f , n∗

}
, (3.4)

where NAv = 6.022 · 1023 is the Avogadro’s constant (units: mol−1). Based on the values of c∗ and n∗

(see Table 1), it turns out that N∗ = nre f = c∗NAv, so that γ1 = 1 and γ2 = 1.407 · 10−14.
Finally, the quantity λ has the following expression

λ =
λD

x∗
, (3.5)

λD being the Debye length (units: m) defined as

λD =

√
ε0ψ∗

qN∗
, (3.6)

where ε0 = 8.854 · 10−12 (units: F m−1) and q = 1.602 · 10−19 (units: C) are the dielectric permittivity
of vacuum and the electron charge, respectively.

Remark 3.1. The numerical value of λD is 1.4394 · 10−10 m and the value of the dimensionless
parameter λ2 is 1.1205 · 10−7. Since λ2 � 1, the NLP equation (3.1a) has a markedly singularly
perturbed nature. We refer to [18] for a detailed analysis of the singular perturbation property of the
NLP equation in the case of inorganic semiconductor devices.

The boundary conditions for (3.1a) are defined as follows.
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− ε1ψ
′ (0) + C0

mψ (0) = C0
mψN , (3.7a)

ε1ψ
′ (R−1 ) + Cmψ

(
R−1

)
= Cmψ

(
R+

1
)
, (3.7b)

− ε2ψ
′ (R+

1
)

+ Cmψ
(
R+

1
)

= Cmψ
(
R−1

)
, (3.7c)

+ ε2ψ
′ (R−2 ) + Cmψ

(
R−2

)
= Cmψ

(
R+

2
)
, (3.7d)

ε3ψ
′ (R+

2
)

+ Cmψ
(
R+

2
)

= Cmψ
(
R−2

)
, (3.7e)

ψ (1) = 0. (3.7f)

The expressions (3.7a)–(3.7e) are linear transmission conditions that physically represent the capacitive
coupling between neighbouring subdomains. C0

m and Cm denote the specific capacitance of the
neuron membrane and of the NP surface, respectively, and ψN is the neuron resting potential. The
expression (3.7f) is a Dirichlet boundary condition that fixes the electric potential to ground in
correspondence of a position (x = 1) in the extracellular medium that is sufficiently far from the
interface with the nanoparticle at x = R2.

Remark 3.2. The electric potential ψ is, in general, a discontinuous function over the domain Ω. In
particular, according to the transmission conditions(3.7a)–(3.7e), ψ has a jump at x = 0, x = R1 and
x = R2. We see that if C0

m → +∞ and Cm → +∞, then the capacitive coupling is so strong that the
electric potential becomes a continuous function over Ω. Conversely, if C0

m → 0+ and Cm → 0+, then
the capacitive coupling is so weak that the nanoparticle subdomain Ω2 becomes completely decoupled
from Ω1 and Ω3. In this case, the electric potential turns out to be defined up to an arbitrary constant
in both Ω1 and Ω2, and further compatibility conditions have to be enforced to determine the constant
in both subdomains.

3.2. The boundary value problems for the ions uα, α = Na+, Cl−, K+

The ion molar densities uα, α =
{
Na+, Cl−, K+}, are governed by the following continuity equation

−
∂

∂x

(
Dα(x) exp (−zαψ)

∂uα
∂x

)
= 0 in Ω1,3, (3.8a)

where

Dα(x) =

 D1
α x ∈ Ω1,

D3
α x ∈ Ω3.

(3.8b)

We introduce the following quantities:

S α(P, ψ(X), ψ(Y)) = P Be (zα(ψ(X) − ψ(Y))) e−zαψ(Y), (3.9)

Be (W) :=
W

eW − 1
. (3.10)

The boundary conditions for the restriction of uα in Ω1 are:

− D1
αe−zαψ(0)u′α (0) + S α(Pα, ψN , ψ(0))uα (0) = S α(Pα, ψ(0), ψN)uα,N , (3.11a)
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D1
αe−zαψ(R−1 )u′α

(
R−1

)
+ S α(Pα,i, ψ(R+

2 ), ψ(R−1 ))uα
(
R−1

)
(3.11b)

= S α(Pα,i, ψ(R−1 ), ψ(R+
2 ))uα

(
R+

2
)
.

The boundary conditions for the restriction of uα in Ω3 are:

− D3
αe−zαψ(R+

2 )u′α
(
R+

2
)

+ S α(Pα,i, ψ(R−1 ), ψ(R+
2 ))uα

(
R+

2
)

(3.11c)
= S α(Pα,i, ψ(R+

2 ), ψ(R−1 ))uα
(
R−1

)
,

uα (1) = uα. (3.11d)

For the purpose of analysis, it is convenient to perform in Ω3 the following change of dependent
variable

vα := uα − uα. (3.11e)

Inserting (3.11e) into (3.8a) yields

−
(
D3
αe−zαψv′α

)′
= 0 in Ω3. (3.11f)

The boundary conditions for vα are:

− D3
αe−zαψ(R+

2 )v′α
(
R+

2
)

+ S α(Pα,i, ψ(R−1 ), ψ(R+
2 ))(vα

(
R+

2
)

+ uα) (3.11g)
= S α(Pα,i, ψ(R+

2 ), ψ(R−1 ))(vα
(
R−1

)
+ uα),

vα (1) = 0. (3.11h)

The quantity uα,N is a positive constant denoting the value of the ion molar density uα in the neuron.
The quantity uα is a positive constant denoting the value of the ion molar density uα in the extracellular
medium, far from x = R2. The quantities Pα denote the permeability to ion uα of the neuron membrane.
The quantities Pα,i denote the permeability to ion uα of the nonlinear conductance GNL which represents
with a lumped equivalent electric parameter the electrodiffusive flow of ions between cleft Ω1 and
extracellular region Ω3.

The expressions (3.11a)–(3.11c) are transmission conditions that physically represent the
electrodiffusive coupling between neighbouring subdomains according to the Goldman-Hodgkin-Katz
model [24, Chapter 17]. The expression (3.11d) is a Dirichlet boundary condition that fixes the ion
molar density to the equilibrium value in correspondence of a position (x = 1) in the extracellular
medium that is sufficiently far from the interface with the nanoparticle at x = R2.

3.3. The boundary value problem for the superoxide ion u = uO−2

The superoxide ion molar density u = uO−2
is governed by the following continuity equation

−
∂

∂x

(
D(x)eψ

∂u
∂x

)
+

k1C̃ eψ

CEQ u = k1C̃ in Ω1,3, (3.12a)

where

D(x) =

 D1 x ∈ Ω1

D3 x ∈ Ω3.
(3.12b)
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The quantity k1 is the rate of the kinetic reaction (3.22). The quantity CEQ is the superoxide ion
equilibrium molar density of the kinetic reaction (3.22). The quantity C̃ is the molar density of
molecular oxygen O2 dissolved into the aqueous solution in which the NP is immersed.

We introduce the following quantities:

S(ψ(X), ψ(Y), up(Y)) = kpe[ψ(X)−ψ(Y)]up (Y) , (3.13)
W (ψ(X), ψ(Y), u(Y), un(X)) = kneψ(X)−g(ψ(Y),u(Y))un(X). (3.14)

The boundary conditions for the restriction of u in Ω1 are:

u′ (0) = 0, (3.15a)

D1eψ(R−1 )u′
(
R−1

)
+ S(ψ(R−1 ), ψ(R+

1 ), up(R+
1 ))u

(
R−1

)
(3.15b)

=W
(
ψ(R+

1 ), ψ(R−1 ), u(R−1 ), un(R+
1 )

)
.

The boundary conditions for the restriction of u in Ω3 are:

− D3eψ(R+
2 )u′

(
R+

2
)

+ S(ψ(R+
2 ), ψ(R−2 ), up(R−2 ))u

(
R+

2
)

(3.15c)
=W

(
ψ(R−2 ), ψ(R+

2 ), u(R+
2 ), un(R−2 )

)
,

u′ (1) = 0. (3.15d)

The expressions (3.15a) and (3.15d) are homogeneous Neumann boundary conditions which physically
represent the fact that no superoxide ion flux density can flow out of the computational domain. The
expressions (3.15b) and (3.15c) are nonlinear Robin boundary conditions which physically represent
the net balance between the recombination and generation processes that regulate consumption and
production of O−2 at the interfaces between the NP and the surrounding environment.

3.4. The boundary value problems for the photogenerated carriers

The photogenerated carriers un and up are governed by the following continuity equations:

−
∂

∂x

(
Dneψ

∂un

∂x

)
= ηG − R(up, un, ψ) in Ω2, (3.16a)

−
∂

∂x

(
Dpe−ψ

∂up

∂x

)
= ηG − R(up, un, ψ) in Ω2. (3.16b)

The quantity G is a given function of x and represents the light illumination rate. The dimensionless
quantity η is the photogeneration efficiency. The function R is defined as

R(up, un, ψ) =
upun − 1

τp(uneψ + 1) + τn(upe−ψ + 1)
, (3.16c)

and physically represents the net recombination rate due to two-particle interaction, according to the
Shockley-Read-Hall theory [28], τn and τp being the electron and hole lifetimes, respectively. At
thermodynamic equilibrium conditions (corresponding to switching illumination off, G = 0), unup = 1
so that R = 0 and both un and up are constant. If unup > 1, then R > 0 and both un and up tend to
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decrease due to the fact that recombination prevails over generation. Conversely, if unup < 1, then
R < 0 and both un and up tend to increase due to the fact that generation prevails over recombination.

We introduce the following quantities:

Qn(ψ(X), ψ(Y), u(Y)) = kn
nre f

nintr
eψ(X)−g(ψ(Y), u(Y)), (3.17)

Qp(ψ(X), ψ(Y), u(X)) = kp
nre f

nintr
eψ(X)−ψ(Y)u(X). (3.18)

The boundary conditions for un are:

Dneψ(R+
1 )u′n

(
R+

1
)

= Qn(ψ(R+
1 ), ψ(R−1 ), u(R−1 ))un

(
R+

1
)
, (3.19a)

− Dneψ(R−2 )u′n
(
R−2

)
= Qn(ψ(R−2 ), ψ(R+

2 ), u(R+
2 ))un

(
R−2

)
. (3.19b)

The boundary conditions for up are:

Dpeψ(R+
1 )u′p

(
R+

1
)

= Qp(ψ(R−1 ), ψ(R+
1 ), u(R−1 ))up

(
R+

1
)
, (3.19c)

− Dpeψ(R−2 )u′p
(
R−2

)
= Qp(ψ(R+

2 ), ψ(R−2 ), u(R+
2 ))up

(
R−2

)
. (3.19d)

The expressions (3.19a)–(3.19b) are nonlinear Robin boundary conditions that physically represent
the surface mechanisms of conversion of photogenerated electrons into superoxide ions according to
the Marcus-Gerischer theory [17]. The expressions (3.19c)–(3.19d) are Robin boundary conditions
that physically represent the surface mechanisms of recombination of photogenerated holes with the
superoxide ions that are present at x = R1 and x = R2. The quantities kn and kp are the tunneling
coefficient for electrons in the P3HT and the hole surface recombination probability, respectively. The
function g is defined as follows

g = g(x) = g (ψ(x), u(x)) =


(A + ψ(x) + ln u(x))2

B
if u(x) ≤ C̃,

(A + ψ(x) + ln C̃)2

B
if u(x) > C̃,

(3.20)

where A and B are constants, B > 0, and C̃ is a positive constant such that

0 < CEQ < C̃ � 1, (3.21)

CEQ denoting the superoxide ion equilibrium molar density of the kinetic reaction which transforms
molecular oxygen O2 into superoxide O−2

O2 + e→ O−2 . (3.22)

4. The Gummel Map: solution algorithm

In this section we illustrate the Gummel Map for the decoupled solution of the nonlinear differential
model constituted by the boundary value problems (3.1), (3.8), (3.12) and (3.16). The solution
algorithm is inspired by the fixed-point iteration originally introduced in [10] and customarily adopted
in the simulation of inorganic semiconductor devices with the DD model (see [12, 18]).

For a given tolerance δ > 0 and given u(k)
α , u(k), u(k)

n and u(k)
p , k ≥ 0, the fixed-point iteration proposed

in this work consists of the successive execution of the following steps:
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S.1 solve the nonlinear Poisson (NLP) equation for the electric potential:

−
∂

∂x

(
ε (x)

∂ψ(k+1)

∂x

)
= λ−2 f

(
x, ψ(k+1), u(k)

α , u(k), u(k)
n , u(k)

p

)
in Ω, (4.1a)

with the following boundary conditions:

− ε1

(
ψ(k+1)

)′
(0) + C0

mψ
(k+1) (0) = C0

mψN , (4.1b)

ε1

(
ψ(k+1)

)′ (
R−1

)
+ Cmψ

(k+1) (R−1 ) = Cmψ
(k+1) (R+

1
)
, (4.1c)

− ε2

(
ψ(k+1)

)′ (
R+

1
)

+ Cmψ
(k+1) (R+

1
)

= Cmψ
(k+1) (R−1 ) , (4.1d)

+ ε2

(
ψ(k+1)

)′ (
R−2

)
+ Cmψ

(k+1) (R−2 ) = Cmψ
(k+1) (R+

2
)
, (4.1e)

ε3

(
ψ(k+1)

)′ (
R+

2
)

+ Cmψ
(k+1) (R+

2
)

= Cmψ
(k+1) (R−2 ) . (4.1f)

ψ(k+1) (1) = 0; (4.1g)

S.2 solve the linearized continuity equation for the ion molar density of Na+, Cl− and K+:

−
∂

∂x

(
Dα(x) exp

(
−zαψ(k+1)(x)

) ∂u(k+1)
α

∂x

)
= 0 in Ω1 ∪Ω3, (4.2a)

with the following boundary conditions:

− D1
αe−zαψ(k+1)(0)

(
u(k+1)
α

)′
(0) + S α(Pα, ψN , ψ

(k+1)(0))u(k+1)
α (0) = S α(Pα, ψ

(k+1)(0), ψN)uα,N ,
(4.2b)

D1
αe−zαψ(k+1)(R−1 ) (

u(k+1)
α

)′ (
R−1

)
+ S α(Pα,i, ψ

(k+1)(R+
2 ), ψ(k+1)(R−1 ))u(k+1)

α

(
R−1

)
(4.2c)

= S α(Pα,i, ψ
(k+1)(R−1 ), ψ(k+1)(R+

2 ))u(k+1)
α

(
R+

2
)
,

− D3
αe−zαψ(R+

2 ) (
u(k+1)
α

)′ (
R+

2
)

+ S α(Pα,i, ψ
(k+1)(R−1 ), ψ(k+1)(R+

2 ))u(k+1)
α

(
R+

2
)

(4.2d)

= S α(Pα,i, ψ
(k+1)(R+

2 ), ψ(k+1)(R−1 ))u(k+1)
α

(
R−1

)
,

u(k+1)
α (1) = uα; (4.2e)

S.3 solve the linearized continuity equation for the ion molar density of O−2 :

−
∂

∂x

(
D(x)eψ

(k+1)(x)∂u(k+1)(x)
∂x

)
+

k1C̃ eψ
(k+1)(x)

CEQ u(k+1)(x) = k1C̃ in Ω1 ∪Ω3, (4.3a)

(4.3b)

with the following boundary conditions:(
u(k+1)

)′
(0) = 0, (4.3c)

D1eψ
(k+1)(R−1 ) (

u(k+1)
)′ (

R−1
)

+ S(ψ(k+1)(R−1 ), ψ(k+1)(R+
1 ), u(k)

p (R+
1 ))u(k+1) (R−1 ) (4.3d)

=W
(
ψ(k+1)(R+

1 ), ψ(k+1)(R−1 ), u(k)(R−1 ), u(k)
n (R+

1 )
)
,
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− D3eψ
(k+1)(R+

2 ) (
u(k+1)

)′ (
R+

2
)

+ S(ψ(k+1)(R+
2 ), ψ(k+1)(R−2 ), u(k)

p (R−2 ))u(k+1) (R+
2
)

(4.3e)

=W
(
ψ(k+1)(R−2 ), ψ(k+1)(R+

2 ), u(k)(R+
2 ), u(k)

n (R−2 )
)
,(

u(k+1)
)′

(1) = 0; (4.3f)

S.4 solve the linearized continuity equation for the photogenerated electrons:

−
∂

∂x

(
Dneψ

(k+1) ∂u(k+1)
n

∂x

)
= ηG − Rn(u(k)

p , u(k)
n , u(k+1)

n , ψ(k+1)) in Ω2 , (4.4a)

where

Rn(u(k)
p , u(k)

n , u(k+1)
n , ψ(k+1)) =

u(k)
p u(k+1)

n − 1

τp(u(k)
n eψ(k+1)

+ 1) + τn(u(k)
p e−ψ(k+1)

+ 1)
, (4.4b)

with the following boundary conditions:

Dneψ
(k+1)(R+

1 ) (
u(k+1)

n

)′ (
R+

1
)

= Qn(ψ(k+1)(R+
1 ), ψ(k+1)(R−1 ), u(k+1)(R−1 ))u(k+1)

n
(
R+

1
)
, (4.4c)

− Dneψ
(k+1)(R−2 ) (

u(k+1)
n

)′ (
R−2

)
= Qn(ψ(k+1)(R−2 ), ψ(k+1)(R+

2 ), u(k+1)(R+
2 ))u(k+1)

n
(
R−2

)
; (4.4d)

S.5 solve the linearized continuity equation for the photogenerated holes:

−
∂

∂x

Dpe−ψ
(k+1) ∂u(k+1)

p

∂x

 = ηG − Rp(u(k)
p , u(k)

n , u(k+1)
p , ψ(k+1)) in Ω2, (4.5a)

where

Rp(u(k)
p , u(k)

n , u(k+1)
p , ψ(k+1)) =

u(k+1)
p u(k)

n − 1

τp(u(k)
n eψ(k+1)

+ 1) + τn(u(k)
p e−ψ(k+1)

+ 1)
, (4.5b)

with the following boundary conditions:

Dpeψ
(k+1)(R+

1 ) (
u(k+1)

p

)′ (
R+

1
)

= Qp(ψ(k+1)(R−1 ), ψ(k+1)(R+
1 ), u(k+1)(R−1 ))u(k+1)

p
(
R+

1
)
, (4.5c)

− Dpeψ
(k+1)(R−2 ) (

u(k+1)
p

)′ (
R−2

)
= Qp(ψ(k+1)(R+

2 ), ψ(k+1)(R−2 ), u(k+1)(R+
2 ))u(k+1)

p
(
R−2

)
; (4.5d)

S.6 compute the maximum absolute relative increment of the electron electrochemical potential

δn =

∣∣∣∣∣∣∣∣∣∣ − ln
(
u(k+1)

n

u(k)
n

)∣∣∣∣∣∣∣∣∣∣
∞∣∣∣∣∣∣∣∣∣∣ − ln

(
u(k+1)

n

)∣∣∣∣∣∣∣∣∣∣
∞

in Ω2; (4.6)

S.7 compute the maximum absolute relative increment of the hole electrochemical potential

δp =

∣∣∣∣∣∣∣∣∣∣ ln
u(k+1)

p

u(k)
p

∣∣∣∣∣∣∣∣∣∣
∞∣∣∣∣∣∣∣∣∣∣ ln (

u(k+1)
p

)∣∣∣∣∣∣∣∣∣∣
∞

in Ω2; (4.7)
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S.8 compute the maximum absolute relative increment of the electrochemical potentials of the Na+,
Cl− and K+ ions:

δα =

∣∣∣∣∣∣∣∣∣∣ 1
zα

ln
(
u(k+1)
α

u(k)
α

)∣∣∣∣∣∣∣∣∣∣
∞∣∣∣∣∣∣∣∣∣∣ 1

zα
ln

(
u(k+1)
α

)∣∣∣∣∣∣∣∣∣∣
∞

in Ω1 ∪Ω3; (4.8)

S.9 update the electrochemical potential of the O−2 ion:

δu =

∣∣∣∣∣∣∣∣∣∣ − ln
(
u(k+1)

u(k)

)∣∣∣∣∣∣∣∣∣∣
∞∣∣∣∣∣∣∣∣∣∣ − ln

(
u(k+1))∣∣∣∣∣∣∣∣∣∣

∞

in Ω1 ∪Ω3; (4.9)

S.10 compute the maximum absolute relative increment:

δ(k+1) = max
(
δn, δp, δα, δu

)
; (4.10)

S.11 check for convergence:
if δ(k+1) < δ then terminate the iteration, otherwise go back to step 1. and continue.

A flow-chart of the sequence of the above steps is illustrated in Figure 2.

Remark 4.1. From the algorithmic point of view, the solution map schematically represented in the
flow-chart of Figure 2 consists of:

• the nonlinear step S.1 to solve the NLP equation. This step, performed by using the Newton
Method, is described in 4.1 and gives rise to the successive solution of a sequence of linear
diffusion-reaction equations, with a positive reaction term, to update the electric potential;
• the sequence of linear steps S.2–S.5 to solve the continuity equation for ions and carriers.

Each step is a self-adjoint diffusion-reaction-production equation with nonnegative reaction and
production terms.
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Figure 2. Flow-chart of the Gummel Map. The scheme shows which are the input variables
and the output variables of each block. The arrow on the left-hand side of the NLP equation
block refers to the iterative solution of the NLP equation using the Newton Method. The
quantity j is the counter of the Newton iteration. The NLP eq box corresponds to Step S.1,
the ion continuity eqns box to Steps S.2 and S.3, the electron continuity eq to Step S.4, the
hole continuity eq to Step S.5 and the convergence box is related to Steps S.6–S.11.
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4.1. Iterative solution of the NLP equation

The NLP equation (4.1a) can be written in the following residual form

Nψ(ψ(k+1)) = 0 in Ω, (4.11a)

where

Nψ(Φ) = −
∂

∂x

(
ε (x)

∂Φ

∂x

)
− λ−2 f

(
x, Φ, u(k)

α , u(k), u(k)
n , u(k)

p

)
(4.11b)

is the residual associated with the nonlinear operator Nψ. To iteratively solve (4.11a) through a
linearization procedure, we use the Newton Method and denote by j ≥ 0 the iteration counter. To
initialize the Newton iteration we set ψ( j=0) = ψ(k), where ψ(k) is the electric potential distribution
currently available from the Gummel Map. Then, each j-th iteration of the Newton Method consists of
the following two steps:

NM.1 compute the Newton increment δψ( j) by solving

N ′ψ(ψ( j))δψ( j) = −Nψ(ψ( j)) in Ω, (4.11c)

where

N ′ψ(v)(·) = −
∂

∂x

(
ε (x)

(·)
∂x

)
− λ−2 ∂ f

∂ψ

(
x, v, u(k)

α , u(k), u(k)
n , u(k)

p

)
(·) (4.11d)

is the Frèchet derivative of the nonlinear operator Nψ evaluated at v;

NM.1 update the Newton iterate through the relation

ψ( j+1) = ψ( j) + δψ( j), (4.11e)

until convergence is reached.

Let j∗ ≥ 0 denote the value of the iteration counter j in correspondence of which the sequence of steps
NM.1–NM.2 has reached convergence. The final step of the procedure for the solution of the NLP
equation consists of setting

ψ(k+1) = ψ( j∗). (4.11f)

Then, we are in the position to continue the Gummel Map from step S.2.

5. The Gummel Map

In this section, we illustrate the structure of the solution map which is proposed to iteratively
solve the fully nonlinear differential model described in Section 3. Then, we introduce an appropriate
functional setting for the action of the fixed-point iteration, analyzing existence and uniqueness of a
fixed-point.
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5.1. Abstract formulation

We denote by U =
(
un, up, uα, u

)
the vector of photogenerated carrier number densities and ion

molar densities. Then, we introduce the fixed-point operator

G = P ◦ T , (5.1a)

where, for every k ≥ 0,

T : U(k) → ψ(k+1), (5.1b)

represents the nonlinear step S.1 of Section 4 and

P :
(
ψ(k+1), U(k)

)
→ U(k+1), (5.1c)

represents the sequence of linear steps S.2–S.5 of Section 4.
Given U(0), the Gummel Map described in Section 4 can be written in the form of a fixed-point

iteration as

U(k+1) = G(U(k)) ∀k ≥ 0. (5.1d)

The block structure of the Gummel Map (5.1d) is represented in the scheme of Figure 3.

Figure 3. Block structure of the Gummel Map. Each iteration of the Gummel Map is the
composition of a map T which updates the electric potential and a map P which updates the
ion molar densities and the carrier number densities.
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5.2. Functional setting

For any interval S, in the following we denote Lp(S), p ∈ [1, ∞], the space of functions that are
p-integrable over S and by Hk(S), k ≥ 0, the Sobolev space of functions that are square integrable
over S with their first k derivatives (see [16] for an extensive discussion of Sobolev spaces and their
properties). We also denote by H1

0,{1} (Ω3) the subset of H1 (Ω3) of functions vanishing at x = 1 and we
define:

uα(x) := 0, u(x) := 0 x ∈ Ω2, (5.2a)
un(x) := 0, up(x) := 0 x ∈ Ω1,3. (5.2b)

Relations (5.2) allow us to define the dependent variables uα, u, un and up over all the computational
domain Ω = Ω1 ∪ Ω2 ∪ Ω3. In view of the subsequent theoretical analysis of the model, we introduce
the broken H1 spaces:

H1(Ω) =
{
v : Ω→ R : v|Ω j ∈ H1

(
Ω j

)
, j = 1, 2, 3

}
, (5.3)

H1
0,{1}(Ω) =

{
v ∈ H1(Ω) : v(1) = 0

}
. (5.4)

Then, we introduce the following function spaces (for the electric potential)

V =
{
v ∈ L2(Ω) : v ∈ H1

0,{1}(Ω)
}
, (5.5a)

V = {v ∈ V : −M1 ≤ v(x) ≤ M1 x ∈ Ω} , (5.5b)

where

M1 =
CI max {1,CL}

min
{
ε j,C0

m,Cm

} (K1 + K2 + K3), (5.5c)

and having introduced the positive constants CI and CL, and the following quantities:

K1 = C0
m |ψN | + λ−2γ1 ‖ρ‖L∞(Ω1,3) (5.5d)

+ λ−2γ2 ‖ρ2‖L∞(Ω2) + 2λ−2γ1

∥∥∥∥∥∥∥∥
∑
α,O−2

zαu(0)
α

∥∥∥∥∥∥∥∥
L∞(Ω1,3)

K2 = λ−2γ2(R2 − R1)
∥∥∥u(0)

n − u(0)
p

∥∥∥
L∞(Ω2)

(5.5e)

K3 = λ−2γ1

∥∥∥u(0)
∥∥∥

L1(Ω1,3) . (5.5f)

We also introduce the following function spaces (for ions, electrons and holes), each one being a closed,
bounded and convex set of L2(Ω):

Xα =
{
φα ∈ L2(Ω) : φα ∈ H1(Ω), 0 ≤ φα(x) ≤ Mα, x ∈ Ω

}
, (5.6a)

Xu =
{
φu ∈ L2(Ω) : φu ∈ H

1(Ω), 0 ≤ φu(x) ≤ Mu, x ∈ Ω
}
, (5.6b)

Xn,p =
{
φn,p ∈ L2(Ω) : φn,p ∈ H

1(Ω), 0 ≤ φn,p(x) ≤ N, x ∈ Ω
}
. (5.6c)
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Consistent with (5.2), we have:

φα(x) = φu(x) = 0 x ∈ Ω2,

φn(x) = φp(x) = 0 x ∈ Ω1,3.

We set N = Gmaxτmax, where Gmax = max
x∈Ω2

G(x) and τmax = max
{
τdi f f ,n, τdi f f ,p

}
, τdi f f ,n and τdi f f ,p being

the diffusion times of electrons and holes, respectively. We define:

Mα := max
{
uα,N , ūα

}
α =

{
Na+, Cl−, K+} , (5.7)

Mu :=
CIeM

Cδ

{
N kneM + k1C̃

}
, (5.8)

where:

M =
max {1,CL}CI

min
{
ε j,C0

m,Cm

} (C0
m |ψN | + λ−2

∥∥∥ f 0 (x, 0)
∥∥∥

L2(Ω)), (5.9)

Cδ = min
{

D1, D3,
k1C̃
CEQ

}
. (5.10)

Finally, to gather the nonreacting ions, the superoxide ion and the photogenerated carriers, we define
the function space

X ≡ (Xα)3 × Xu × (Xn,p)2. (5.11)

Remark 5.1. It is worth noting that uα(x) > 0 and u(x) > 0 for x ∈ Ω1,3, while un,p(x) > 0 for x ∈ Ω2.
The reason why we have used the mathematical expression 0 ≤, instead of 0 <, in the definition of the
spaces (5.6) is because of (5.2).

5.3. Existence (and uniqueness) of a fixed point

The following theorem is the principal theoretical result of this article. For its proof, we refer to
Section 8.

Theorem 5.1. The Gummel Map (5.1a) has the following properties:

a) G : X→ X.

b) G is continuous and compact.

Then G has a fixed point U∗ =
(
u∗α, u∗, u∗p, u∗n

)
∈ X.

The electric potential associated with the fixed-point is ψ∗ = T (U∗) such that ψ∗ ∈ V, T being the
map defined in (5.1b).

Corollary 5.2. Setting

M := max {Mα, Mu, N} , (5.12a)

we see that G is endowed with the following invariant region

Q = Q6, (5.12b)

Q =
{
q ∈ L2(Ω) : q ∈ H1(Ω), 0 < q(x) ≤ M, x ∈ Ω

}
. (5.12c)
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Remark 5.2. For the meaning of invariant region, cf. [12].

Remark 5.3. As it is common in these kinds of models (e.g., semiconductor devices), uniqueness of a
solution is not expected in general. In the present case, uniqueness of a fixed point for the Gummel Map
can be restored by modifying in a rather straightforward way the estimates in the proof of Theorem 5.1,
under additional restrictions on the parameters in (5.5c) andMα,Mu in (5.6a) and (5.6b), in order to
make the Gummel Map a strict contraction.

Remark 5.4. Theorem 5.1 shows that the ion molar densities and the photogenerated carrier number
densities are strictly positive in their domains of definition. This property agrees with physical
expectation.

6. Finite element approximation

This section is devoted to illustrate the numerical approximation of each linearized equation in the
Gummel Map using the Galerkin Finite Element Method. To this purpose, it is immediate to verify
that each linearized equation can be written in the general form of a diffusion-production-consumption
equation for the dependent variable χ = χ(x)

∂

∂x

(
−a(x)

∂χ(x)
∂x

)
+ s(x)χ(x) = p(x) x ∈ ω, (6.1a)

where ω is an interval such that ω ⊆ Ω. The quantity a = a(x) is the diffusion coefficient, such that

0 < amin ≤ a(x) ≤ amax ∀x ∈ ω. (6.1b)

The quantity s = s(x) is the consumption coefficient, such that

0 ≤ s(x) ≤ smax ∀x ∈ ω. (6.1c)

The quantity p = p(x) is the production coefficient, whose sign is not predictable in the case of
Eq (4.11c), whereas, in the case of the other equations in the Gummel Map, p is such that

0 ≤ p(x) ≤ pmax ∀x ∈ ω. (6.1d)

It is worth noticing that the diffusion coefficient a = a(x) may be an exponential function of the
electric potential. Therefore, a may experience significant variations, especially close to the boundary
of ω where interface phenomena take place. The same consideration holds for the consumption and
production coefficients, s and p. In such conditions, it is important to adopt a stable discretization
scheme to prevent from spurious oscillations to arise in the numerical solution of (6.1a). Denoting by
Th a partition of ω into subintervals K (elements) of size h, the approach taken in the present article is
based on the following choices:

• piecewise linear continuous finite elements;
• harmonic average of a over each K ∈ Th (see [25]);
• mass lumping of the tridiagonal matrix corresponding to the consumption term;
• trapezoidal quadrature rule to evaluate the right-hand side of the linear system associated with the

discrete form of (6.1a).
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The benefits emanating from the above discretization strategy are:

• discretization error eh := χ − χh of order h and h2 in the H1(ω) and L2(ω) norms, respectively;
• absence of unphysical oscillations in the spatial distributions of all the dependent variables over

the interval ω;
• nonnegative spatial distributions of ion molar densities and photogenerated carrier number

densities;
• weak conservation of the computed electric displacement vector, molar flux density of ions and

carrier current densities over Th.

We refer to [24, Chapter 23] for more details on the theoretical and computational properties of the
above described discretization strategy of the diffusion-production-consumption equation (6.1a).

7. Simulations

In this section we perform a series of simulation tests conducted by running a user-coded MatLab
software which implements the algorithm illustrated in Section 4 and the finite element discretization
scheme illustrated in Section 6. In Section 7.1 we analyze the convergence performance of the
algorithm and verify the a priori bounds illustrated in Section 5. In Section 7.2 we investigate the
role of each considered biophysical mechanism in the function of the bio-hybrid system studied in this
article.

7.1. Convergence of Gummel’s Map and a priori estimates

In Figure 4 (left panel) we represent the convergence history of the solution algorithm. On the x-
axis, the quantity k, with k ≥ 0, represents the number of Gummel’s Map iterations and on the y-axis the
quantity δ(k+1) represents the maximum absolute relative increment on the electrochemical potentials
computed using Eq (4.10). As customary in Numerical Analysis, δ(k+1) is used as an estimator of the
actual maximum absolute relative error. In the computations the tolerance δ was set equal to 10−5.
Interestingly, the plotted curve shows that the error decreases fastly during the first '25 iterations, and
then starts decreasing more slowly and non monotonically. In Figure 4 (right panel) we represent the
number of NLP iterations j = j(k) needed to meet a tolerance equal to 10−10 on the absolute maximum
relative error of the Newton increment at each Gummel’s Map iteration k. Results show that j(k) ≤ 4
and j(k) = 2 for k ≥ 100.

In Figure 5 (left panel) we represent the minimum and maximum values ψmin and ψmax of the electric
potential ψ as a function of k. Results show that ψmax = 0, corresponding to the Dirichlet datum
at x = 1, where the electrolyte is supposed to be electroneutral, and ψmin = −0.6, in the vicinity
of the neuron membrane (see Section 7.2). In Figure 5 (right panel) we represent the minimum and
maximum values Up,min and Up,max of the hole number density (blue color) and the minimum and
maximum values Un,min and Un,max of the electron number density (red color) as a function of k. It
is interesting to notice that in the case of holes Up,min and Up,max are almost overlapped, whereas in
the case of electrons Un,min and Un,max differ by almost two orders of magnitude. These results are
consistent with the physical transport properties of the two charge carriers: while the holes are able
to redistribute across the domain Ω2 due to their “elevated” mobility, the electrons are instead almost
immobile, and spatially distribute themselves throughout Ω2 according to the Lambert-Beer profile of
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the light source G.

Figure 4. Left panel: plot of the maximum absolute relative error δ(k+1) as a function of
Gummel’s Map iterations k. Right panel: plot of the number of NLP iterations j = j(k)
performed at each Gummel’s Map iteration k.

Figure 5. Left panel: plot of the minimum and maximum values of the electric potential ψ as
a function of k. Right panel: plot of the minimum and maximum values of the hole number
density Up and of the minimum and maximum values of the electron number density Un as a
function of k.

In Figure 6 we represent the minimum and maximum values of the ion molar densities as a function
of k in the subdomain Ω1. It is interesting to notice that the behaviour of the O−2 ion is markedly different
from that of Na+, Cl− and K+: both minimum and maximum values of O−2 molar density increase
monotonically to their corresponding limit values, whereas the minimum and maximum values of the
other ions slowly converge with oscillations to their corresponding limit values.
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Figure 6. Plot of the minimum and maximum values of the molar density of O−2 (top left
panel), Na+ (top right panel), Cl− (bottom left panel) and K+ (bottom right panel) in Ω1, as a
function of k.

7.2. Physical analysis of model predictions

Throughout the section we abandon the dimensionless form of the variables and represent each
quantity with its units. This allows us to provide a consistent physical interpretation to the simulation
results.

Table 2 provides a list of all the numerical values of model parameters used in the simulations. In
Figure 7 we represent the piecewise spatial distribution of the electric potential over the computational
domain Ω = (0, L), distinguishing the cleft region Ω1 (left panel), the NP region Ω2 (middle panel)
and the electrolyte region Ω3 (right panel). Results indicate that in the proximity of the neuron the
electric potential exhibits a steep boundary layer due to the capacitive coupling induced by the cellular
membrane on the cleft region. Inside the NP the electric potential has a linear behavior. In the
electrolyte side the electric potential is clamped to the boundary value of 0 V enforced at x = L
which represents the electroneutrality of the biological electrolytic solution far away from the NP-
neuron interface. In Figure 8 we show a zoom of the boundary layer of the electric potential ψ at the
interface with the neuron in three different simulation conditions: (i) when no NP is present in the
environment and the neuronal membrane is directly in contact with the bulk electrolyte (blue line); (ii)
when the NP is present and forms a cleft region but it is not photo-activated by light; (iii) when the NP
is present and is also activated by light. Results indicate that in case (i), the amplitude of the boundary
layer is of ' −1.5 mV. In both cases (ii) and (iii), the qualitative behavior of the electric potential
profile is the same as in case (i), but the amplitude of the electrostatic shift is of ' −15 mV. This
physical behavior is to be solely ascribed to the interface electrostatic coupling of neuron and NP with
the cleft electrolytic solution, expressed by Eqs (3.7b), (3.7d) and (3.7e). Other electrostatic coupling
effects, such as that induced by the polarization of the nanoparticle or by the electrostatic production
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and accumulation of superoxide anions in the cleft region are hindered by the presence of bulk ions in
the cleft region, which are able to screen any polarizing effect in a few Debye lengths.

Table 2. Numerical values of model parameters used in the simulations. Left column:
symbol representing the parameter; middle column: units; right column: numerical value
of the parameter.

Parameter Units Value
L m 430 · 10−9

R1 m 30 · 10−9

R2 m 180 · 10−9

C0
m F m−2 9 · 10−3

Cm F m−2 7.45
DO−2 m2 s−1 2.1 · 10−10

DNa+ m2 s−1 1.33 · 10−9

DCl− m2 s−1 2.03 · 10−9

DK+ m2 s−1 1.96 · 10−9

PNa+ m s−1 6 · 10−11

PCl− m s−1 1 · 10−9

PK+ m s−1 4 · 10−10

µn m2 V−1s−1 1 · 10−12

µp m2 V−1s−1 1 · 10−8

η − 5 · 10−4

ε1 − 6
ε2 − 3.5
ε3 − 80
kn mol m s−1 9 · 10−31

kp m4 s−1 1 · 10−30

Figure 7. Piecewise electric potential profile simulated in the three regions of the
computational domain Ω. Left panel: cleft, Ω1 = (0, R1); middle panel: NP, Ω2 = (R1, R2);
right panel: electrolytic solution, Ω3 = (R2, L).
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Figure 8. Zoom of the electric potential ψ at a distance of 3 nm from the neuron interface in
three different simulation conditions. Blue line: no NP is present and the neuron is in contact
with the bulk electrolyte. Orange line: the NP is present, but light is not polarizing it. Yellow
line: the NP is illuminated.

In Figure 9 we represent the spatial distribution in the NP region Ω2 of the number density of holes
and electrons (p and n) and of their corresponding Slotboom variables (up and un). It is interesting
to notice that holes are able to redistribute almost homogeneously across the NP domain (Figure 9
left) thanks to their high mobility. Electrons instead, due to the formation of P3HT + : 3O−2 with
the molecular oxygen [3], are characterized by a mobility which is 4 orders of magnitude smaller
than hole mobility, and, as a consequence, their spatial distribution closely resembles the Lambert-
Beer profile of the input light G (Figure 9 right), in agreement with the considerations already drawn
in Section 7.1 and in [4]. The strong asymmetry in the mobilities of the two charge carriers leads
to the formation of a dipole-like distribution of positive and negative charge across the NP domain,
which is responsible of the NP polarization. The combination of the asymmetric transport properties
of holes and electrons inside P3HT with the asymmetric Lambert-Beer light profile, is an instance
of the so-called Dember Effect [5, 9]. This effect leads to the formation of a dipole-like electric
potential distribution, referred to as Dember photovoltage, and is caused by an asymmetric distribution
of charge inside a semiconducting material due to a markedly different accumulation and redistribution
of charges according to their transport properties and light incidence.

In Figure 10 we represent the spatial distribution of the ion molar density of the electrolytic ions
across the whole domain Ω. Consistent with definitions (5.2a), all the ion molar densities are set
equal to zero in Ω2 since no ions are allowed to travel across the NP, a physical evidence of the high
hydrophobicity of P3HT. Results indicate that O−2 molar density increases with respect to its bulk
concentration in the cleft region, where it gets accumulated (top left panel). In the simulation, light
comes from the left, from the neuron towards the NP, inducing, as clearly visible in Figure 9, an
accumulation of electrons at the NP-cleft interface. This favors the production of O−2 compared to the
bulk electrolyte side. It is also interesting to notice that a steep boundary layer shows up at the cellular
membrane, due to the negative peak of the electric potential (see Figure 7, left panel). In the bulk
electrolyte the O−2 molar density, as well as that of the other bulk electrolytic ions, does not depart
significantly from its Dirichlet boundary value at x = L. Bulk ions, such as Na+, Cl− and K+, show in
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the cleft a different behaviour depending on their valence and their Nernst potential in contact with the
neuron. In particular, Cl− and Na+, whose concentration is low in the intracellular region, are reduced
with respect to their bulk concentrations, whereas K+ is accumulating. Depending on the valence of
each ion, the formed boundary layer exhibits a different slope: cations tend to accumulate around a
peak of negative potential, whereas anions tend to deplete the boundary layer in proximity of the cell
membrane.

Figure 9. Left panel: hole number density in the NP region (in red color: p, in black color:
up). Right panel: electron number density in the NP region (in blue color: n, in black color:
un).

Figure 10. Piecewise electrolytic ion profiles simulated in the three regions of the
computational domain Ω. In each panel, cα = uα = 0 in the NP region Ω2. Top left panel:
cO−2 (red color) and uO−2 (blue color). Top right panel: cNa+ (red color) and uNa+ (blue color).
Bottom left panel: cCl− (red color) and uCl− (blue color). Bottom right panel: cK+ (red color)
and uK+ (blue color).
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7.3. The role of light intensity

In our model description of the bio-hybrid system, the presence of an electrolytic solution in the
cleft screens the polarization and the Dember Effect of the NP very efficiently but does not affect the
chemical role of O−2 , which, as a Reactive Oxygen Species (ROS), may possibly trigger some signaling
pathways at the neuron membrane.

Figure 11 represents the predicted superoxide molar density at the neuron membrane, for different
values of light intensity impinging onto the NP. As light intensity becomes higher than 1 W m−2, the
dependence between the superoxide molar density at the neuron membrane and the light intensity
becomes almost linear in the logarithmic scale. Below this threshold value, instead, the superoxide
molar density tends to a plateu value, coinciding with the equilibrium concentration of O−2 in the
aqueous solution, which is assumed to be around 1 nM. From the data reported in [1], the light
intensity regime hitting the retinal layers under sunlight exposure is of 0.2 W m−2, which corresponds
in Figure 11 to a value of superoxide molar density of a few nM, likely a too small molar density to
trigger any photochemical effect at the neuron membrane.

Figure 11. Superoxide molar density cO−2 (x = 0+) at the neuron membrane as a function of
the light intensity impinging onto the NP.

The increase in light intensity not only affects the efficiency of the interface reactions leading
to the production of O−2 , but has also some numerical consequences. Figure 12 represents the
number of Gummel’s Map iterations that are required to meet a tolerance δ = 10−5 as a function
of light intensity. When light intensity exceeds 10 W m−2 we observe that the convergence of the
algorithm is significantly deteriorated and the number of iterations abruptly becomes three times
larger than in the lower light intensity regime. This may be explained by the increased rate of
nonlinear interface reactions, which, correspondingly, gives rise to an increase of the coupling between
continuity equations and NLP equation, resulting into a reduced convergence rate of the Gummel Map.
This behavior agrees favorably with similar conclusions drawn in [18] and [12] in the application of
Gummel’s Map to semiconductor device simulation.
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Figure 12. Number of Gummel’s Map iterations as a function of the light intensity impinging
onto the NP.

8. Proof of Theorem 5.1

In this section we provide the full details of the proof of Theorem 5.1.
The adopted notation is:

uα, α = Na+,Cl−,K+, zα = +1,−1,+1, respectively;
u = uO−2

, up and un for the carriers;
ψ is the electric potential.

8.1. Strategy for the existence of a solution: the Gummel Map

The strategy to prove the existence of a solution of the fully coupled nonlinear differential model
constituted by the boundary value problems (3.1), (3.8), (3.12) and (3.16), consists in constructing a
solution map, henceforth referred to as Gummel’s Map in analogy to that used in the case of the Drift-
Diffusion model for semiconductor devices [10], acting over some convex, closed subsets of suitable
Sobolev spaces and showing that this map has a fixed point.

As illustrated in Section 5.1, the Gummel Map is a composition of two other maps: the first map, T ,
determines the potential ψ(1) once the other variables u(0)

α , u(0), u(0)
n , u(0)

p have been fixed. The differential
problem for ψ(1) is nonlinear (cf. (4.1a) with k = 0) and to solve it we shall use the Leray-Schauder
Theorem. Once ψ(1) has been uniquely determined, still keeping the same u(0)

α , u(0), u(0)
n , u(0)

p , a second
map, P, computes a set of new variables u(1)

α , u(1), u(1)
n , u(1)

p . The problems for all these variables are all
linear and the main tool will be the Lax-Milgram Theorem. The Gummel Map is precisely G = P ◦ T

and it turns out (Schauder Theorem) that it has a fixed point, which is a solution of the original nonlinear
fully coupled problem constituted by the boundary value problems (3.1), (3.8), (3.12) and (3.16).
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8.2. The map T :
(
u(0)
α , u(0), u(0)

n , u(0)
p

)
→ ψ(1)

In this section, we study the mathematical properties of the map that represents the step to update
the electric potential in the Gummel Map. We assume that u(0)

α , α = Na+,Cl−,K+, and u(0) are given
in H1 (

Ω1,3
)
, u(0)

n , u(0)
p are given in H1 (Ω2) and that they are all nonnegative. To solve the nonlinear

Poisson equation (4.1a) for ψ(1) we will use a variational formulation and the Lax-Milgram Theorem.
To this purpose, let us consider the space V defined in (5.5a). In V we introduce the following scalar
product (see Lemma 8.1):

(v,w)V =

3∑
j=1

∫
Ω j

v′w′ + v (0) w (0) +
(
v
(
R+

1
)
− v

(
R−1

)) (
w

(
R+

1
)
− w

(
R−1

))
(8.1)

+
(
v
(
R+

2
)
− v

(
R−2

)) (
w

(
R+

2
)
− w

(
R−2

))
wih energy norm

‖v‖2V =

3∑
j=1

∫
Ω j

(v′)2 + v (0)2 +
(
v
(
R+

1
)
− v

(
R−1

))2
+

(
v
(
R+

2
)
− v

(
R−2

))2
. (8.2)

Lemma 8.1. (8.1) is a scalar product in V and the norm ‖v‖V is equivalent to the norm

‖v‖2 =

3∑
j=1

∫
Ω j

(v′)2 + ‖v‖2L2(Ω) . (8.3)

Moreover, V is a Hilbert space with respect to the scalar product (8.1).

Proof. (8.1) is bilinear, symmetric and (v, v) ≥ 0. If (v, v) = 0 then v is constant on every Ω j, and
v (0) = 0, v

(
R+

1

)
= v

(
R−1

)
v
(
R+

2

)
= v

(
R−2

)
. Since v (0) = v (1) = 0, then v = 0 on Ω1 ∪ Ω3. In particular

v
(
R+

2

)
= 0 so that also v

(
R−2

)
= 0 from which v = 0 on Ω2 too. Thus (8.1) is a scalar product. For the

equivalence of the norms (8.2) and (8.3) it is enough to prove that there exists a constant CL such that

‖v‖2L2(Ω) ≤ CL ‖v‖2V ∀v ∈ V. (8.4)

By contradiction, let {vk} ⊂ V such that, for k ≥ 1,∫
Ω

v2
k ≥ k

 3∑
j=1

∫
Ω j

(v′k)
2 + vk (0)2 +

(
vk

(
R+

1
)
− vk

(
R−1

))2
+

(
vk

(
R+

2
)
− vk

(
R−2

))2

 .
Normalizing, we can assume that ‖vk‖L2(Ω) = 1,∀k ≥ 1. Then, in particular {vk} is bounded in H1

(
Ω j

)
,

j = 1, 2, 3 and ∫
Ω j

(v′k)
2 + vk (0)2 +

(
vk

(
R+

1
)
− vk

(
R−1

))2
+

(
vk

(
R+

2
)
− vk

(
R−2

))2
≤

1
k
. (8.5)

From Rellich theorem, there exists a sequence
{
vkm

}
such that

vkm ⇀ v in H1
(
Ω j

)
, j = 1, 2, 3
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vkm → v in L2 (Ω) .

The weak lower semicontinuity of the norm gives(∫
Ω j

(v′)2
)1/2

≤ lim inf
(∫

Ω j

(v′km
)2
)1/2

= 0

and hence v is constant in Ω1,Ω2,Ω3. In particular, v = 0 in Ω3, since v (1) = 0, and therefore
vkm

(
R+

2

)
→ 0. From (8.5) we deduce that vkm

(
R+

2

)
− vkm

(
R−2

)
→ 0 so that also vkm

(
R−2

)
→ 0 which

implies v = 0 in Ω2. Finally, again from (8.5), vkm (0) → v (0) = 0 and hence v = 0 in Ω1. Thus v = 0
in Ω, while ‖vk‖L2(Ω) = 1→ ‖v‖L2(Ω) : contradiction. �

Corollary 8.2. Let
C∗ =

{
v : Ω→ R; v|Ω j

∈ C
(
Ω j

)
, j = 1, 2, 3

}
with the norm

‖v‖C∗ =

3∑
j=1

max
Ω j

|v| .

Then
‖v‖C∗ ≤ CI ‖v‖V ∀v ∈ V (8.6)

with compact embedding V ↪→ C∗.

In view of the weak formulation of the NLP equation, we introduce the bilinear form

B (ψ, ϕ) =

3∑
j=1

ε j

∫
Ω j

ψ′ϕ′ + C0
mψ (0)ϕ (0) + Cm

(
ψ

(
R−1

)
− ψ

(
R+

1
))
ϕ
(
R−1

)
+Cm

(
ψ

(
R−2

)
− ψ

(
R+

2
))
ϕ
(
R−2

)
+ Cm(ψ

(
R+

1
)
− ψ

(
R−1

)
)ϕ

(
R+

1
)

+Cm
(
ψ

(
R+−

2
)
− ψ

(
R−2

))
ϕ
(
R+

2
)
.

It is easy to check that B : V × V → R is continuous. Moreover

B (ψ, ψ) =

3∑
j=1

ε j

∫
Ω j

(ψ′)2 + C0
mψ (0)2 + Cm

(
ψ

(
R−1

)
− ψ

(
R+

1
))2

+ Cm
(
ψ

(
R−2

)
− ψ

(
R+

2
))2

whence
B (ψ, ψ) ≥ min

{
ε j,C0

m,Cm

}
‖ψ‖2V

which shows the coercivity of B on V .
For fixed, nonnegative, u(0)

α , u(0), u(0)
n , u(0)

p , let us consider the nonlinear problem of finding ψ ∈ V
such that

B (ψ, ϕ) =

∫
Ω

λ−2 f 0 (x, ψ)ϕ + C0
mψNϕ (0) ∀ϕ ∈ V. (8.7)

where

f 0 (x, 0) =



γ1

∑
α

zαu(0)
α − u(0) + ρ1

 in Ω1

γ2

(
u(0)

p − u(0)
n + ρ2

)
in Ω2

γ1

∑
α

zαu(0)
α − u(0) + ρ3

 in Ω3.
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Theorem 8.3. There exists a unique solution ψ(1) = T
(
u(0)
α , u(0), u(0)

n , u(0)
p

)
∈ V to (8.7) satisfying

max
x∈Ω
|ψ(1)(x)| ≤

∥∥∥ψ(1)
∥∥∥

C∗
≤ CI

∥∥∥ψ(1)
∥∥∥

V
≤ M, (8.8a)

where

M =
max {1,CL}CI

min
{
ε j,C0

m,Cm

} (C0
m |ψN | + λ−2

∥∥∥ f 0 (x, 0)
∥∥∥

L2(Ω)). (8.8b)

We also have ψ(1) ∈ H2
(
Ω j

)
, j = 1, 2, 3, and therefore (ψ(1))′ ∈ C∗. In particular, T is compact in both

the topologies of V and C∗. An alternate estimate for ψ(1), possibly more convenient than (8.8a), is

max
x∈Ω
|ψ(1)(x)| ≤

∥∥∥ψ(1)
∥∥∥

C∗
≤ M1, (8.8c)

where:

M1 =
CI max {1,CL}

min
{
ε j,C0

m,Cm

} (K1 + K2 + K3), (8.8d)

K1 = C0
m |ψN | + λ−2γ1 ‖ρ‖L∞(Ω1,3) + λ−2γ2 ‖ρ2‖L∞(Ω2) + 2λ−2γ1

∥∥∥∥∥∥∥∥
∑
α,O−2

zαu(0)
α

∥∥∥∥∥∥∥∥
L∞(Ω1,3)

(8.8e)

K2 = λ−2γ2(R2 − R1)
∥∥∥u(0)

n − u(0)
p

∥∥∥
L∞(Ω2)

(8.8f)

K3 = λ−2γ1

∥∥∥u(0)
∥∥∥

L1(Ω1,3) . (8.8g)

Proof. (Existence and regularity of a solution) We use the Leray-Schauder fixed point Theorem. Fix
ψ∗ ∈ C∗; the linear problem

B (ψ, ϕ) =

∫
Ω

λ−2 f 0 (x, ψ∗)ϕ + C0
mψNϕ (0) ∀ϕ ∈ V

has a unique solution ψ = S (ψ∗) ∈ V ↪→ C∗, by Lax Milgram Theorem. The operator S : C∗ → C∗ is
continuous, as it is easy to check, and compact (from Corollary 8.2).

To conclude, we need an apriori estimate for the solutions of the family of equations

ψ = sS (ψ) s ∈ (0, 1],

that is of
B (ψ, ϕ) = s

∫
Ω

λ−2 f 0 (x, ψ)ϕ + C0
mψNϕ (0) ∀ϕ ∈ V,

of the type
‖ψ‖C∗ ≤ M,

with M independent of s and ψ.
First observe that, since the functions u(0)

α , u(0), u(0)
n , u(0)

p are nonnegative, the map ψ 7−→ f 0 (x, ψ) −
f 0(x, 0) is decreasing and hence

( f 0 (x, ψ) − f 0 (x, 0))ψ ≤ 0 ∀ψ ∈ V, x ∈ Ω.
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Choosing ϕ = ψ, we find

B(ψ, ψ) − sλ−2
∫

Ω

( f 0 (x, ψ) − f 0 (x, 0)ψ︸                                 ︷︷                                 ︸
≤0

= s
∫

Ω

(λ−2 f 0 (x, 0)ψ + C0
mψNψ (0)

from which

min
{
ε j,C0

m,Cm

}
‖v‖2V ≤

(
C0

m |ψN | + λ−2
∥∥∥ f 0 (x, 0)

∥∥∥
L2(Ω)

)
max {1,CL} ‖ψ‖V(Ω)

and
‖v‖C∗ ≤

CI max {1,CL}

min
{
ε j,C0

m,Cm

} (
C0

m |ψN | + λ−2
∥∥∥ f 0 (x, 0)

∥∥∥
L2(Ω)

)
.

The H2−regularity follows directly from the differential equation. �

Proof. (Uniqueness of the solution) Let η, ψ be solutions to (8.7). Then w = ψ − η solves the equation

B (w, ϕ) = λ−2
∫

Ω

( f 0 (x, ψ) − f 0 (x, η))ϕ ∀ϕ ∈ V.

Letting ϕ = w we get,

B (w,w) = λ−2
∫

Ω

( f 0 (x, ψ) − f 0 (x, η))(ψ − η) ≤ 0

from which w = 0. By the Leray-Schauder Theorem, the map S has a unique fixed point ψ0. This fixed
point is the unique weak solution to problem (8.7) and satisfies the estimate (8.8a). This concludes the
proof of Theorem 8.3. �

8.3. The map P : (ψ1, u(0)
α , u(0), u(0)

n , u(0)
p )→ (u(1)

α , u(1), u(1)
n , u(1)

p )

In this section, we study the mathematical properties of the map that represents the step to update
the ion molar densities and the carrier number densities in the Gummel Map.

8.3.1. Determining u1
α, α = Na+,Cl−,K+

Given ψ(1) as uniquely determined in Theorem 8.3, in this subsection we solve problem (3.8a)–
(3.11g). For notational simplicity, we denote u(1)

α by uα and ψ(1) by ψ.
Consider first the problem in Ω1. In H1 (Ω1) we use the norm (equivalent to the usual one)

‖uα‖2H1
α(Ω1) =

∫
Ω1

(
u′α

)2
+ u2

α (0) .

The weak formulation of our problem is the following. To find uα ∈ H1 (Ω1) such that, for every
v ∈ H1 (Ω1)

A1 (uα, v) =

∫
Ω1

D1
αe−zαψ(R+

2 )u′αv′ (8.9)
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+ Pα,iBe
(
−Ψα,i

)
e−zαψ(R−1 )uα

(
R−1

)
v
(
R−1

)
+ PαBe (Ψα) e−zαψ(0)uα (0) v (0)

= Pα,iBe
(
Ψα,i

)
e−zαψ(R+

2 )u(0)
α

(
R+

2
)

v
(
R−1

)
+ PαBe (−Ψα) e−zαψN uα,Nv(0).

It is immediate to see that the bilinear form A1 : H1 (Ω1) × H1 (Ω1) is continuous. Moreover

A1 (uα, uα) =

∫
Ω1

D1
αe−zαψ(R+

2 ) (
u′α

)2
+ Pα,iBe

(
−Ψα,i

)
e−zαψ(R−1 )u2

α

(
R−1

)
+ PαBe (Ψα) e−zαψ(0)u2

α (0)

= Pα,iBe
(
Ψα,i

)
e−zαψ0(R+

2 )u(0)
α

(
R+

2
)

uα
(
R−1

)
+ PαBe (−Ψα) e−zαψN uα,Nuα(0).

Since Be (2M) ≤ Be (±Ψα) ≤ Be (−2M) we find

A1 (uα, uα) ≥ e−M min
{
D1
α, PαBe (2M)

} {∫
Ω1

(
u′α

)2
+ u2

α (0)
}

= e−M min
{
D1
α, PαBe (2M)

}
‖uα‖2H1

α(Ω1) ,

and therefore A1 is coercive in H1 (Ω1) . Since

v 7→ Pα,iBe
(
Ψα,i

)
e−zαψ(R+

2 )u(0)
α

(
R+

2
)

v
(
R−1

)
+ PαBe (−Ψα) e−zαψN uα,Nv(0)

is an element of H1 (Ω1)∗ (the dual of H1 (Ω1)), the following result holds.

Theorem 8.4. There exists a unique solution u1
α ∈ H1 (Ω1) of problem (8.9) and

∥∥∥u1
α

∥∥∥
H1
α(Ω1) ≤

e2MBe (−2M)
min

{
D1
α, PαBe (2M)

} {
Pα,iu(0)

α

(
R+

2
)

+ Pαuα,N
}
. (8.10)

Moreover u1
α ∈ H3 (Ω1) , u1

α takes its maximum and minimum at x = 0 or x = R1 and

0 < u1
α ≤ max

{
uα,N , u(0)

α

(
R+

2
)}
. (8.11)

Proof. For notational simplicity, we denote u1
α by uα. Existence, uniqueness and the stability estimate

(8.10) follow from Lax-Milgram Theorem. The regularity follows directly from the differential
equation that can be written in the form

−u′′α (x) + ψ′ (x) u′α (x) = 0.

Since ψ′ is bounded and continuous, uα attains maximum and minimum at the endpoints of Ω1, by the
maximum principle.

If uα (0) = min uα ≤ 0, then, by the Hopf principle, u′α (0) > 0, while if uα
(
R−1

)
= min uα ≤ 0, then

u′
(
R−1

)
< 0. In both cases we get a contradiction with the Robin conditions. Thus uα > 0.

Let max uα = uα (0) . Then the Hopf principle gives u′α (0) < 0 and from the Robin condition we
find

uα (0) ≤
Be (−Ψα)
Be (Ψα)

e−Ψαuα,N = uα,N
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since
Be (−Ψα)
Be (Ψα)

e−Ψα = 1.

On the other hand, if max uα = uα
(
R−1

)
, from the Hopf principle we deduce u′α

(
R−1

)
> 0 and from the

Robin condition we get

uα
(
R−1

)
≤

Be
(
Ψα,i

)
Be (−Ψα)

eΨαuα,N = u(0)
α

(
R+

2
)

since
Be

(
Ψα,i

)
Be (−Ψα)

= 1.

�

Consider now the problem in Ω3 for vα. Its weak formulation reads:
To find vα ∈ H1

0,{1} (Ω3) such that, for every η ∈ H1
0,{1} (Ω3) ,

A3 (vα, η) =

∫
Ω1

D3
αe−zαψ(R+

2 )v′αη
′ + Pα,iBe

(
Ψα,i

)
e−zαψ(R+

2 )vα(R+
2 )η(R+

2 ) (8.12)

= Pα,iBe
(
−Ψα,i

)
e−zαψ(R−1 )u(0)

α

(
R−1

)
η
(
R+

2
)
− Pα,iBe

(
Ψα,i

)
e−zαψ(R+

2 )uαη
(
R+

2
)
.

It is immediate to see that the bilinear form A3 : H1
0,{1} (Ω3)×H1

0,{1} (Ω3)→ R is continuous. Moreover

A3 (vα, vα) ≥ e−MD3
α

∫
Ω3

(v′α)2 = e−MD3
α ‖vα‖

2
H1

0,{1}(Ω3)

and A3 is also coercive. The following result holds.

Theorem 8.5. There exists a unique solution vα ∈ H1
0,{1} (Ω3) of problem (8.12) and

‖vα‖1,0 ≤
e2MBe (−2M) Pα,i

D3
α

uα. (8.13)

As a consequence, there exists a unique solution u1
α = vα + uα of the original problem. Moreover,

u1
α ∈ H3 (Ω3) , u1

α attains its maximum and minimum at x = 0 or x = R2 and

0 < u1
α ≤ max

{
uα, u(0)

α

(
R−1

)}
. (8.14)

Proof. The proof follows the same lines as the proof of Theorem 8.4. �

Remark 8.1. From the definition (5.6a), Xα is a closed, convex and bounded subset of C∗ and if
u(0)
α ∈ Xα then

u ∈
{
uα : 0 < uα ≤ max

{
uα,N , ūα

}}
.
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8.3.2. Determining u1 = u(1)
O−2

In this section we solve problem (3.12a)–(3.15d) where we denote ψ(1) by ψ. With this aim, we
introduce the bilinear form E : H1 (

Ω1,3
)
× H1 (

Ω1,3
)
→ R defined as

E (u, v) =

∫
Ω1,3

D (x) eψ
0
u′v′ +

∫
Ω1,3

k1C̃ e−ψ
0

CEQ uv + kpe[ψ(R−1 )−ψ(R+
1 )]u(0)

p
(
R+

1
)

u
(
R−1

)
v
(
R−1

)
+ kpe[ψ(R+

2 )−ψ(R−2 )]u(0)
p

(
R−2

)
u
(
R+

2
)

v
(
R+

2
)
,

where D = D(x) is defined in (3.12b).
We want to find u1 ∈ H1 (

Ω1,3
)

such that, for all v ∈ H1 (
Ω1,3

)
,

E
(
u1, v

)
= k1C̃

∫
Ω1,3

v + knu(0)
n

(
R+

1
)

eψ(R+
1 )e−g(ψ(R−1 ),u(0)(R−1 ))v

(
R−1

)
(8.15)

+ kneψ(R−2 )u(0)
n

(
R−2

)
e−g(ψ(R+

2 ),u(0)(R+
2 ))v

(
R+

2
)
.

The bilinear form E is symmetric, continuous and coercive in H1 (
Ω1,3

)
with coercivity constant δe−M

where

δ = min
{

D,
k1C̃
CEQ

}
. (8.16)

The following result holds.

Theorem 8.6. There exists a unique solution u1 ∈ H1 (
Ω1,3

)
of problem (8.15) and the following

stability estimates hold: ∥∥∥u1
∥∥∥

H1(Ω1,3) ≤ Mu, (8.17)∥∥∥u1
∥∥∥

L1(Ω1,3) ≤ Ku, (8.18)

where:

Mu =
CIeM

δ

{
kneM max

{
u(0)

n
(
R+

1
)
, u(0)

n
(
R−2

)}
+ k1C̃

}
, (8.19)

Ku = CEQeM

kneM max
{
u(0)

n

(
R+

1

)
, u(0)

n

(
R−2

)}
k1C̃

+ 1

 . (8.20)

Moreover, u1 > 0 in Ω1,3 and u1 ∈ H
3 (

Ω1,3
)
.

Proof. The existence and uniqueness of the solution, as well as the stability estimates (8.17), (8.18),
follow from Lax Milgram Theorem. The H3−regularity follows directly from the differential equation.
For notational simplicity set u ≡ u1. To show that u > 0, write the differential equation in the form.

−D jeψ(x)u′′ (x) − D jeψ(x)ψ′ (x) u′ (x) +
k1C̃ e−ψ

CEQ u = k1C̃ > 0 in Ω j, j = 1, 3.

If x0 ∈ Ω1,3 is a point of minimum, then u′′ (x0) ≥ 0, u′ (x0) = 0. Thus it cannot be u (x0) ≤ 0. Also
it cannot be min u = u (0) ≤ 0, since then, by Hopf principle, u′ (0) > 0, while we have u′ (0) = 0. If
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min u = u
(
R−1

)
≤ 0, Hopf principle gives u′

(
R−1

)
< 0 in contradiction with the Robin condition. Thus

minΩ1
u > 0. Similarly, it cannot be min u = u (1) ≤ 0 since u′ (1) = 0; finally, if min u = u

(
R−2

)
≤ 0,

Hopf principle gives u′
(
R−2

)
> 0 in contradiction with the Robin condition. Thus, also min

Ω3

u > 0. �

Remark 8.2. We assume that u(0)
n ≤ N = Gmaxτmax ∼ 109, and that

β =
CEQkn

k1C̃
eM1+M2

is sufficiently small. Then, we have ∥∥∥u1
∥∥∥

H1(Ω1,3) ≤ Mu, (8.21)

where

Mu =
CIeM

δ

{
N kneM + k1C̃

}
, (8.22)

and, for a suitable K3 depending only on β,N and λ, (see the definition (8.8g))

λ−2γ1

∥∥∥u1
∥∥∥

L1(Ω1,3) ≤ K3. (8.23)

To complete the analysis for the superoxide molar density, we need a bound from below for u. In
this direction, the following result holds.

Lemma 8.7. Let u1(xmin) = min
Ω1∪Ω3

u1. If a) xmin ∈ Ω1 ∪Ω3 or b) xmin = 0 or xmin = 1, then

u1 (xmin) ≥ CEQe−M. (8.24)

Proof. a) If xmin ∈ Ω1 ∪ Ω3, directly from the differential equation we get u1 (xmin) ≥ CEQeψ(xmin) ≥

CEQe−M. b) If xmin = 0, since (u1)′ (0) = 0, upon integrating the differential equation over (0, εk) yields

D1eψ(x)(u1)′ (εk) =

∫ εk

0

k1C̃
CEQ (u1e−ψ −CEQ) ≥ 0,

at least along a sequence εk → 0, otherwise there should exist an interval (0, ε) where (u1)′ < 0. Thus
we deduce that u1 (0) e−ψ(0) − CEQ < 0 and therefore u1 (0) ≥ CEQeψ(0) ≥ CEQe−M. If xmin = 1, after
integration over (εk, 1) we have

−D1eψ(εk)(u1)′ (εk) =

∫ 1

εk

k1C̃
CEQ (u1e−ψ −CEQ) ≥ 0,

at least along a sequence εk → 1. Therefore it cannot be u1 (1) e−ψ(1) − CEQ < 0 so that u1 (1) ≥
CEQeψ(1) ≥ CEQe−M. This completes the proof. �
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8.3.3. Determining the carriers u1
p, u

1
n

In this section we solve problems (3.16a)–(3.19d) where we denote ψ(1) by ψ. We additionally
assume that N ≥ u(0)

n ≥ mn > 0 and N ≥ u(0)
p ≥ mp > 0, where mn,mp are not specified yet. The weak

formulation for problems (3.16a)–(3.19d) reads:
To find un, up ∈ H1 (Ω2) such that for all ∀ϕ ∈ H1 (Ω2)∫

Ω2

Dneψu′nϕ
′ +

∫
Ω2

u(0)
p unϕ

τp(uneψ + 1) + τn(u(0)
p e−ψ + 1)

+
nr

ni
kneψ(R−2 )e−g(ψ(R+

2 ),u(0)(R+
2 ))un

(
R−2

)
ϕ
(
R−2

)
(8.25)

+
nr

ni
kneψ(R+

1 )e−g(ψ(R−1 ),u(0)(R−1 ))un
(
R+

1
)
ϕ
(
R+

1
)

=

∫
Ω2

ηGϕ +

∫
Ω2

ϕ

τp(u(0)
n eψ + 1) + τn(u(0)

p e−ψ + 1)
,

and∫
Ω2

Dpe−ψu′pϕ
′ +

∫
Ω2

u(0)
n upϕ

τp(u(0)
n eψ + 1) + τn(u(0)

p e−ψ + 1)
+

nr

ni
kpu(0) (R+

2
)

eψ(R+
2 )−ψ(R−2 )up

(
R−2

)
ϕ
(
R−2

)
(8.26)

+
nr

ni
kpu(0) (R−1 ) eψ(R−1 )−ψ(R+

1 )up
(
R+

1
)
ϕ
(
R+

1
)

=

∫
Ω2

ηGϕ +

∫
Ω2

ϕ

τp(u(0)
n eψ + 1) + τn(u(0)

p e−ψ + 1)
.

Since
mp

(τp + τn) (NeM + 1)
≤

u(0)
n

τp(u(0)
n eψ + 1) + τn(u(0)

p e−ψ + 1)
≤

eM

τp

and
mn

(τp + τn) (NeM + 1)
≤

u(0)
n

τp(u(0)
n eψ + 1) + τn(u(0)

p e−ψ + 1)
≤

eM

τp
,

both bilinear forms in (8.25), (8.26) are continuous and coercive. The following result holds.

Theorem 8.8. The variational problems (8.25), (8.26) have a unique solution u1
n, u

1
p, satisfying the

stability estimate

∥∥∥u1
n,p

∥∥∥
H1(Ω2)

≤

√
R2 − R1

(
NeM + 1

) (
ηG(τp + τn) + 1

)
mp,n

≡ Un,p (8.27)

Moreover, both un, up belong to H3 (Ω2) and:
a) u1

n, u
1
p are positive in Ω2;

b) u1
n, u

1
p attain their maximum at a point in Ω2 with:

max u1
n ≥

(R2 − R1) ηG
eM(τ−1

n (R2 − R1) + 2nr
ni

kn)
≡ Mn > 0 (8.28)

max up ≥
(R2 − R1) ηG

eM(τ−1
p (R2 − R1) + 2N nr

ni
kpeM ≡ Mp > 0. (8.29)
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Proof. a) Let min u1
n = u1

n (x0) ≤ 0. If x0 ∈ Ω2 we find the contradiction

0 ≥ −Dneψ(x0)(u1
n)′′ (x0) +

u(0)
p (x0) un (x0)

τp(un (x0) eψ(x0) + 1) + τn(u(0)
p (x0) e−ψ(x0) + 1)

≥ ηG > 0.

If x0 = R1, from the Hopf principle we get (u1
n)′

(
R+

1

)
> 0, while if x0 = R2 we have (u1

n)′
(
R−2

)
< 0; in

both cases we get a contradiction with the Robin conditions. Thus min u1
n > 0. The argument for u1

p is
similar.

b) u1
n and u1

p cannot attain their (positive) maximum at an end point x = R1 or x = R2, because in the
former case (u1

n,p)′
(
R+

1

)
≤ 0, while in the latter case u′n,p

(
R−2

)
≥ 0; both are in contrast with the Robin

conditions.
The inequalities (8.28) and (8.29) follow by taking ϕ = 1 in (8.25) and (8.26). �

Remark 8.3. Inserting ϕ = u1
n,p in the weak formulations for u1

n and u1
p, we also find the estimates∫

Ω2

(
du1

n

dx

)2

≤ DneM (R2 − R1) (ηG + 1) max u1
n (8.30)

and ∫
Ω2

du1
p

dx

2

≤ DpeM (R2 − R1) (ηG + 1) max u1
p. (8.31)

The following result gives a characterization of mn and mp.

Corollary 8.9. If

R2 − R1 ≤
1
4

ηG

Dn (ηG + 1) eM
[
τ−1

n eM((R2 − R1) + nr
ni

kn)
] , (8.32)

then
un (xmin) ≥

1
2

(R2 − R1) ηG
τ−1

n eM((R2 − R1) + 2nr
ni

kn)
≡ mn. (8.33)

If
R2 − R1 ≤

1
4

ηG
Dp (ηG + 1) eM(τ−1

p (R2 − R1) + 2N nr
ni

kpeM)
, (8.34)

then
up (xmin) ≥

1
2

(R2 − R1) ηG
eM(τ−1

p (R2 − R1) + 2N nr
ni

kpeM = mp (8.35)

Proof. We have

u1
n (xmax) = u1

n (xmin) +

∫ xmax

xmin

du1
n

dx
≤ u1

n (xmin) +
√

(R2 − R1)

∫ xmax

xmin

(
du1

n

dx

)21/2

(using (8.30)) ≤
√

Dn (ηG + 1)eM/2 (R2 − R1)︸                               ︷︷                               ︸
b

√
u1

n (xmax) + u1
n (xmin)

from which
u1

n (xmax) − b
√

u1
n (xmax) ≤ u1

n (xmin) . (8.36)
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Assume that, for a small ε,

R2 − R1 ≤
(1 − ε)2 ηG

Dn (ηG + 1) eM
[
τ−1

n eM((R2 − R1) + 2nr
ni

kn)
] .

Then

u1
n (xmax) ≥

(R2 − R1) ηG
τ−1

n eM((R2 − R1) + 2nr
ni

kn)
≥

Dn (ηG + 1) eM (R2 − R1)2

(1 − ε)2 =
b2

(1 − ε)2

or
(1 − ε)

√
u1

n (xmax) ≥ b, (1 − ε) u1
n (xmax) ≥ b

√
u1

n (xmax)

and finally,

u1
n (xmax) − b

√
u1

n (xmax) = εu1
n (xmax) + (1 − ε) u1

n (xmax) − b
√

u1
n (xmax) ≥ εu1

n (xmax) .

Choosing ε = 1/2, from (8.36) we get (8.33). The argument for u1
p is similar. �

8.4. Further estimates for u1, u1
n, u

1
p

To proceed further we need to complete the control from below of u1 and to verify that u1
n, u

1
p are

bouded above by N. We replace in all the previous estimates the quantity M with the parameter M∗

defined as

M∗ =
CICL

min
{
ε j,C0

m,Cm

} (M∗
1 + M∗

2 + K3)

with:

M∗
1 = C0

m |ψN | + λ−2γ1 ‖ρ‖L2(Ω1,3) + λ−2γ2 ‖ρ‖L2(Ω2) + λ−2γ1

∑
α,o−2

max
{
uα,N , ūα

}
, (8.37a)

M∗
2 = 2λ−2γ2 (R2 − R1) N. (8.37b)

We also let:

U∗np =
eM∗

min
{
Dn,Dp

} (
ηG +

1
τp + τn

)
, (8.37c)

U∗ = CEQeM∗
[
kneM∗

k1C̃
N + 1

]
, (8.37d)

U′∗ = D−1eM∗k1C̃. (8.37e)

Lemma 8.10. Assume that u(0)
α , u(0), u(0)

p , u
(0)
n ∈ X (defined in (5.11)) and that u1 ≥ min {u (R1) , u (R2)}

in Ω1,3. Then, there exists m > 0, depending only on U∗, U∗np and max
{
uα,N , ūα

}
, such that

min
{
u1 (R1) , u1 (R2)

}
≥ m. (8.38)
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Proof. Assume that there exists a sequence u j =
{
(u(0)

α , u(0), u(0)
p , u

(0)
n ) j

}
∈ X such that, say, u j (R1) →

0. Same argument if u j (R2) → 0. Correspondingly, there is a sequence of electric potentials
{
ψ j

}
equibounded in V.

Therefore there are sequences ψ jk , u
(1)
jk
,
(
u(0)

n

)
jk
,
(
u(0)

p

)
jk

weakly convergent in their Sobolev spaces
and strongly in C∗ (by the compact embeddings of these spaces into C∗) to ψ∗, u∗, u∗n, u∗p. In particular,
in Ω1, u∗ is a solution of the Robin-Neumann problem

−
∂

∂x

(
Deψ

∗ ∂u∗

∂x

)
+

k1C̃ e−ψ
∗

CEQ u∗ = k1C̃ in Ω1

with (u∗)′ (0) = 0 and

− Deψ
∗(R−1 ) (u∗)′

(
R−1

)
+ kpe[ψ∗(R−1 )−ψ∗(R+

1 )]u∗p
(
R+

1
)

u∗
(
R−1

)
= kneψ

∗(R+
1 )u∗n

(
R+

1
)

e−g(ψ∗(R−1 ,u∗(R−1 )).

However, we have also u∗
(
R−1

)
= 0 and (u∗)′

(
R−1

)
= 0, which imply u∗ ≡ 0 in Ω1. Contradiction. �

Lemma 8.11. Let u0 ≥ m∗ = min
{
CEQe−M∗ ,m

}
. If

R2 − R1 ≤
1
2

1√
min

{
Dn,Dp

}
eM∗

(
ηG +

(
τp + τn

)−1
) . (8.39a)

Then, we have

un ≤ max {1,Kn} ≡ K∗n , (8.39b)

up ≤ max
{
1,Kp

}
≡ K∗p, (8.39c)

where:

Kn = 2 (R2 − R1)
ni

nrkn
e(M∗+|A|−ln m∗)2

(
ηG +

1
τp + τn

)
(8.39d)

Kp = 2 (R2 − R1)
ni

nrkp

eM∗

m∗

(
ηG +

1
τp + τn

)
. (8.39e)

If we also assume that R2 − R1 is small enough to have (8.39a) and Kn,Kp ≤ N, then from (8.18) we
also have ∫

Ω1,3

u ≤ CEQeM∗
{

kneM∗N
k1C̃

+ 1
}
. (8.39f)

Proof. We start with the estimate for un. From u0 ≥ m∗, since CEQe−M∗ < C̃ < 1, it follows that

g
(
ψ(R−1 ), u(0)(R−1 )

)
, g

(
ψ(R+

2 ), u(0)(R+
2 )

)
≤ (|A| + M∗ − ln m∗)2,

and from the weak formulation for un with ϕ = 1 we get

un
(
R−2

)
, un

(
R+

1
)
≤ (R2 − R1)

ni

nr
kneM∗+(|A|+M−ln CEQ)2

(
ηG +

1
τp + τn

)
.
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Hence, using (8.30), we obtain

un (xmax) =

∫ xmax

R1

u′n + un
(
R+

1
)
≤ (R2 − R1)

√
DneM∗/2

√
ηG +

1
τp + τn

√
un (xmax) + un

(
R+

1
)
.

We distinguish two cases: either un (xmax) ≤ 1 or un (xmax) > 1. In the latter case
√

un (xmax) ≤ un (xmax)
and we can write 1 − (R2 − R1)

√
DneM∗/2

√
ηG +

1
τp + τn

 un (xmax) ≤ un
(
R+

1
)
.

If (8.39a) holds, we deduce

un (xmax) ≤ 2 (R2 − R1)
ni

nrkn
eM+(|A|+2M∗−ln CEQ)2

(
ηG +

1
τp + τn

)
We now address the estimate for up. From u0 ≥ m∗ and from the weak formulation for un with ϕ = 1
we get

up
(
R−2

)
, up

(
R+

1
)
≤ (R2 − R1)

ni

nrkp

eM∗

m∗

(
ηG +

1
τp + τn

)
.

Hence, from (8.31), we have

up (xmax) =

∫ xmax

R1

u′p + up
(
R+

1
)
≤ (R2 − R1)

√
DpeM∗/2

√
ηG +

1
τp + τn

√
up (xmax) + up

(
R+

1
)
.

From here on we can proceed as for un. �

8.5. Existence of a fixed point

We are now in the position to prove Theorem 5.1. The following assumptions are made:

Hp1 β = CEQkn
k1C̃ eM1+M2 is sufficiently small according to Remark 8.2;

Hp2 R2 − R1 is sufficiently small to ensure that (8.32) and (8.34) are satisfied and that K2 ≤ N and
Kp ≤ N.

Replace in all the estimates M with M∗, fix (u(0)
α , u(0), u(0)

p , u
(0)
n ) ∈ X and solve for ψ(1) =

T (u(0)
α , u(0), u(0)

p , u
(0)
n ) ∈ C∗ (from Theorem 8.3). The map T : X → C∗ is continuous and compact

(from Theorem 8.4). Moreover, because of Hp1 and Hp2, we have∥∥∥ψ(1)
∥∥∥

C∗
,
∥∥∥ψ(1)

∥∥∥
V
≤ M∗.

Given ψ(1), solve for (u(1)
α , u(1), u(1)

p , u
(1)
n ) = P(ψ(1), u(0)

α , u(0), u(0)
p , u

(0)
n ). The map P is continuous and

compact from C∗ × X into X (from Theorems 8.4, 8.5, 8.6 and 8.8). The application of Schauder
Theorem concludes the proof of Theorem 5.1.
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9. Conclusions and future perspectives

The continuous increase of questions regarding the coupling mechanisms in the bio-hybrid system
constituted by a NP, a retinal neuron and the intermediate aqueous environment, has pushed the need
for new tools to investigate the open problems in the realization of new generation retinal prostheses.

In our work we have proposed a mathematical model as a Virtual Laboratory complementing the
indispensable experimental activity in the study and comprehension of the electrochemical phenomena
that occur at the NP-neuron interface. In order to prove the reliability of our formulation, we have
performed a theoretical study of the model, specifying the assumptions on the data that guarantee
the existence of a solution to the nonlinear system of partial differential equations. Then, we have
constructed a consistent and stable numerical approximation of the model based on the use of the
finite element method. Finally, we have thouroughly investigated the numerical performance of the
computational algorithm and the biophysical soundness of simulation predictions.

With the use of the proposed model we have been able to describe the coupled system comprising
a neuron, an electrolytic solution and a NP immersed in the solution. We have taken into account
the light-induced polarization of the NP as well as the interface photo-cathodic reaction of P3HT
in an oxygenated environment. In particular, the choice of modeling the cleft as a fully electrolytic
medium has revealed some limits of the model, wherein ions are able to totally screen the electrostatic
charging of the NP. In the future, a better description of the proteinic nature of the cleft would help
us provide a more faithful model picture of the electrostatic mechanisms which may occur at the bio-
hybrid interface.

Regardless of the above mentioned limitations, the model has proved to be able to adequately
represent the production and diffusion of O−2 at the interface of the NP, thereby providing a
quantitatively accurate estimate of the ROS molecule concentration in proximity of the neuron
membrane as a function of the light intensity illuminating the NP.
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