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Abstract. In this paper, an indirect method to obtain the actual tension force in stay cables
is presented. It is based on a combined experimental and numerical approach, where the
experimental measurement of the first natural frequency of the cable is combined with a FE
model of the cable to finally obtain an estimate of the actual tension force. The method is
suitable to be applied to cables eventually equipped with tuned mass dampers. It is here
presented referred to an application case, the stays of the Hovenring Bridge. Being those cables
endowed with two tuned mass dampers, the well-established indirect method based on the
string theory cannot be applied to the present case. Therefore a new approach is proposed: it
makes advantage of a FE model of the cable, made by equivalent tensioned beam elements and
includes the effects of the dampers through equivalent mass-spring-damper systems. A complete
description of the method is presented along with its validation through a comparison with a
direct measurement of the tension force in 4 cables.

1. Introduction
When dealing with cable-suspended structures, it is essential to have an accurate estimate of
the tensile force on the cable elements. This is first to guarantee the structural safety of the
structure but also to allow for the scheduling of the maintenance operations. Looking at the
existing techniques to estimate cable tension, direct methods are available along with indirect
ones. The first, also called static methods, consists on using load cells or a hydraulic jack to
directly measure the tension force. The accurate estimation we can get from them is usually
counterbalanced by high costs and accessibility to the anchorage system, which may result in
the bridge closing to the traffic for several days. An alternative approach is to rely on the
so-called indirect methods, which allow the estimation of the tension force from the measure of
the natural frequencies of the cable. For this reason, they are also called vibration methods.
The existing literature proposes several experimental and theoretical studies for the indirect
estimation of the tension force. The simplest ones rely on the taut string theory, which proposes
a very simple formula to relate the measured natural frequency to the actual tension force in the
cable [1]. This simplified method neglects the bending stiffness of the cable and, to overcome
this problem, the Bernoulli-Euler beam theory can be applied. By applying this approach, Fang
and Wang [2] proposed a practical formula in a simple explicit form to estimate cable tension,
neglecting sag-extensibility by using the frequencies relative to antisymmetric or higher vibration
modes of the cable. Other studies inclusive of the sag effects can be found in [3, 4, 5]. Park
et al. [6] focused instead on the indirect estimation of the tension force in the double-hanger
cable system, introducing a new frequency-based system identification technique inclusive of the



(a) The bridge (b) Top view of the bridge and cable numbering

Figure 1: Hovenring Bridge

flexural stiffness of the system. In 2015, Wang et al. [7] studied the main cable for a suspended
bridge, introducing a new approach based on the continuum model to estimate the main cable
tension force from measured natural frequencies. Main cable tension force is affected by hangers
and stiffening girder, so they proposed to consider the differential equation of motion governing
the vertical vibration of a cable by considering an additional translational spring constant term
to reflect the effects induced by hangers and girder.

The literature survey allows highlighting that there exist several indirect approaches to
estimating actual tension force value in different types of structures. However, in case we want
to study a cable equipped with dampers, the application of the taut string theory or analogous
approaches based on the transverse vibration equation is not straightforward.

In this paper, a methodology to obtain an indirect estimation of the actual tension force in
the cable equipped with tuned mass dampers (TMDs) is proposed. Specifically, the method
is described and applied to the stays of the Hovenring Bridge (Figure 1a). It is based on the
experimental measurements of the first natural frequency of the cable that is then used to obtain
the estimation of the tension force through a FE model. The proposed method will account for
the structural and geometrical properties of the cable and will include dampers’ contribution.
The method has been developed to obtain a prediction of the actual tension force and to allow
for the scheduling of re-tensioning operations, if required. The desired accuracy of the method
is 5% for the force estimation. Being the tension force estimation based on the measurement
of the first natural frequency and being f1 ∝

√
T , this implies having ≈2% accuracy on the

frequency estimation.
Despite here referred to the Hovenring Bridge, the present methodology is general and

applicable to any other case.

2. Hovenring Bridge description
The Hovenring is a roundabout flyover for bicycles placed in Eindhoven, the Netherlands. The
structure is a bridge with a closed-box girder deck that realizes the “ring” with an outer diameter
of 72 m, as shown in Figure 1a. The deck is suspended by means of 24 inclined stay cables,
equally spaced along the deck. All the stays are connected to a 70-m high central steel pylon.



2.1. The cables
The 24 stay cables are 53 m long and are equally spaced along the deck. They consist of
fully locked coils (diameter of 50 mm) with adjustable cylindrical sockets with threaded rods
(M100x6 on the deck side and M72x4 on the pylon side), spherical nuts, and spherical washers.
The inclination angle of the cables is 55° with respect to the horizontal. Cables located in
correspondence of the lateral abutments have a nominal tension T1 = 705kN while the remaining
16 have a nominal tension T2 = 470kN . Figure 1b shows the top view of the bridge and cable
numbering: red cables are the ones with the higher nominal tension. To prevent wind-induced
vibrations, each cable is endowed with two TMDs, specifically designed to protect modes up to
25Hz. For a detailed description of the design and installation of the dampers, the reader is
referred to [8].

3. Methodology
The indirect assessment of the tension force in the stays of the Hovering Bridge is based on the
following methodology:

• starting from the FE model of the stays already available from a previous study [8],
equivalent models for the TMDs are designed and implemented in the numerical model

• experimental free vibration tests are performed on each cable to identify the first natural
frequency

• a direct measurement of the tension force is performed in 4 cables with a jacking system
• a validation of the new cable FE model inclusive of the TMDs is performed by comparing

the “direct” measurement of the tension value with the one predicted by the numerical
model

• the tension force in the remaining 20 cables is estimated by letting it free to vary in the FE
model until the numerical estimation of the first natural frequency matches the experimental
finding

3.1. The FE model
Each cable is modelled using an equivalent tensioned beam finite-element scheme. Specifically,
all the elements the stay is made of (threaded bars, washers and sockets) are modelled in
the computational domain. Proper mesh refinement is adopted close to the constraints, being
the locations interested by the maximum bending of both threaded bars and the cable itself.
Boundary conditions are set at the washer-nut interface locations. Because of friction and the
high tension force, the spherical nuts and washers act more as clamps than as hinges. Therefore,
a hinge and a lumped torsional stiffness are considered for a realistic model of the constraints.
The equivalent torsional stiffness values are determined by means of a best-fitting procedure
between the experimental and numerical modal shapes of the system [9]. In the FE cable
model, each TMD is modelled as 2 Degrees of Freedom lumped mass models, as shown in Figure
2. The parameters M1,2, K1,2 and R1,2 of the equivalent 2DoFs models are identified by matching
the experimental transfer function of the dampers with the one from the simplified model, both
in terms of magnitude and phase. As an example, the transfer function comparison for the
low-frequency damper is shown in Figure 3. Table 1 summarises 2DoFs parameters.

3.2. Free decay: experimental setup
During the on-field campaign, each cable is instrumented with a triaxial accelerometer placed
at 10 m from the cable socket, as shown in Figure 4. The measurement system consists of a
Lord G-Link-200 sensor (Figure 5), that has an onboard triaxial MEMS accelerometer allowing
high-resolution data acquisition with low noise. The accelerometer is installed such that two



Table 1: Lumped mass models’ parameters

TMD #1 TMD #2

M1 [kg] 5 4.93
M2 [kg] 7 5.1
K1 [N/m] 3.99E+03 2.12E+03
K2 [N/m] 1.17E+04 887.91
R1 [Ns/m] 55.96 22.25
R2 [Ns/m] 280.22 21.31

Figure 2: TMDs implementation in the FE model with 2 equivalent 1DoF systems

Figure 3: TF comparison for the low-frequency damper



Figure 4: Accelerometer position
on the cable.

Figure 5: The Lord G-Link 200
accelerometer installed on the cable.

(y and z) out of three axes are parallel to the excitation directions. The sampling frequency is
128Hz and the acquisition time is 100s. The free decay test method is used to identify the first
natural frequency of the cable. It consists of exciting the cable by hand in the neighbourhood
of the first mode frequency; then, once a steady condition of the vibration mode is reached, the
cable is let to move freely. The operator responsible for the cable excitation was on a cherry
picker (total mass about 7600 kg), standing on the bridge, close to the cable to be excited.

4. Results
4.1. FE cable model: TMDs effects on the first natural frequency
Being the cable FE model used to obtain the estimation of the actual tension force, it is important
to ensure that it correctly reproduces the dynamics of the cable. To this purpose, detailed
modelling of each component (sockets, washers and threaded bars) is included along with the
dampers. Natural frequency and mode shapes are computed in the FEM, including the effects
of the equivalent mass-spring-damper systems used to model the dampers. The resulting first
natural frequency is smaller than the one for the corresponding undamped case. Figure 6 shows
the comparison of the first mode shape and frequency with and without dampers for cable #5.
Such a result is obtained considering as tension force the nominal value (T = 470kN).

4.2. Free decay analysis
The time history of the decay motion is recorded by the accelerometer clamped to the cable
and allows for the identification of the first mode frequency and damping ratio. Specifically,
the first eigenfrequency detection is performed post-processing the decay time histories of the
accelerations through the zero-crossing method to identify the frequency as a function of time.
Vibration frequency is checked for two orthogonal directions. As an example, Figure 7 shows the
time history of the free decay response of the accelerometer for cable #5 and the magnitude of its
Hilbert transform in logarithmic scale (Figure 8) that is used to estimate the damping coefficient
h1, being the latter proportional to the slope of the curve as a function of time. Estimation of
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(a) Undamped system −f1 = 1.782Hz
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(b) Cable with TMDs −f1 = 1.764Hz

Figure 6: Cable FE model, first mode shape of undamped system (a) and with TMDs (b).

the damping ratio associated to the first mode is shown in Figure 9; Figure 10 reports instead
the average results from the zero-crossing method for the eigenfrequency identification.

The time history in Figure 7 is characterized by time intervals with different envelope
characteristics. Those differences are then reflected in the magnitude of the Hilbert transform,
in the damping ratio and frequency estimation. Specifically, the following differences are
highlighted:

• the first time interval (0–15 s) is characterized by the highest oscillation amplitude,
associated with the highest damping ratio (h1 = 6.8‰) and frequency estimation (f1 =
1.801Hz, the average over that time range). Such behaviour is ascribable to the high
amplitudes, responsible for cable elongation and so increased tension force with respect
to the rest configuration. For the analyzed cable, motion amplitude at the accelerometer
location is ≈ 7.5m/s2 over the first cycles; this corresponds to 0.1m oscillation amplitude at
the anti-nodal location. Assuming that the mode shape is the one shown in Figure 6b, the
cable elongation is equal to 0.001%, implying an increase of 3.1kN in the tension value (i.e.
0.6% with respect to the actual value) for the largest amplitudes. Such variation affects
both the first eigenfrequency and the damping ratio.

• in the interval 15–33 s, oscillations’ amplitude decays slightly less. In this time range,
the TMDs are in their standard operative conditions. The damping ratio is decreased
(h1 = 5.4‰) with f1 = 1.792Hz, as shown by the grey dashed line in Figure 10. In the
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Figure 7: Time history of free decay response as recorded by the accelerometer
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Figure 8: Magnitude of Hilbert transform as a function of time, mode 1 of cable 06.
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Figure 9: Damping coefficient for the first mode as a function of time

same figure, the dash-dotted lines mark the ±2% of the mean frequency in this time range.
This is to show the variability in the frequency computation to guarantee a 5% error in the
tension force estimation.

• in the last interval, small oscillations’ amplitude are observed and the TMDs are less
efficient. This results in a lower damping ratio (h1 = 1.2‰) and slightly decreased
estimation of the first eigenfrequency f1 = 1.78Hz.

It is clear that the cable frequency changes depending on the motion amplitude and on the
TMDs operative conditions.

The experimentally estimated eigenfrequency must be then compared to the one from the
numerical model. The FEM of the cable includes the dampers that are correctly working and
considers constant tension force. As a consequence, the experimental frequency to be considered
is the one from the 15–33 s time range, where the TMDs are in their operative conditions, and
therefore their equivalent lumped model is representative of their effects.
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Figure 10: First eigenfrequency estimation as a function of time

4.3. Comparison between nominal and actual tension force in the stays
The experimental detection of the first eigenfrequency is performed for all the stays of the
Hovenring Bridge. Then the experimental findings are used to proceed with the tension
estimation. Specifically, the input tension force in the FE model of each stay is varied until the
numerically estimated first eigenfrequency matches the experimental value. Table 2 summarizes
the results: all the cables are listed, along with their nominal tension force, the experimental
measures of the frequency and the outputs from the FEM (frequency and actual tension force).
Cables that have been used for validating the FEM are reported in bold: for them, it is available
also the direct (experimental) measure of the tension force that is performed by means of a
jacking system. In addition, for all the cables not located in correspondence of the lateral
abutments (i.e. the ones with lower nominal tension force), a correction to the numerically
predicted tension force is applied to account for the increase of tension due to the weight of the
cherry-picker used to reach the excitation location. Such correction is estimated as equal to the
weight component of the cherry-picker along the cable direction, uniformly distributed over the
4 cables in each quarter. Due to the restraining scheme of the bridge, no correction is applied
to the cables located over the lateral abutments.

5. Conclusions
This paper presents an indirect method to effectively estimate tension force in cables equipped
with TMDs with an accuracy of 5%. It relies on a combined experimental and numerical
approach: starting from measured frequency, the tension force is estimated through the FE
model of the cable. The method has been here presented as applied to the cables of the Hovenring
Bridge, a flyover roundabout in Eindhoven that has 24 inclined stays, each of them equipped
with two TMDs. The procedure the method is based on foresees the experimental detection of
the first natural frequencies of the cables, performed by means of free-decay tests. The output
of the experimental campaign allowed highlighting the way motion amplitudes affect the first
eigenfrequency detection; specifically, for the highest amplitudes, some non-linear effects due to
an increased tension force in the cable have been observed. Then, it has been found that for
the smallest amplitudes, the TMDs in the cable were not efficient, inducing differences in the
eigenfrequency and damping ratio for the first mode. Such experimental findings were then used
along with the FE model of the cables. Such model is based on tensioned beam elements, and
includes different types of elements to properly model cable sections close to the constraints,
characterized by sockets, threaded bars and washers. The connection with both the tower and
the deck is modelled through equivalent hinges plus lumped torsional stiffness. Moreover, each
TMD is modelled in the FEM as equivalent 2 Degrees of Freedom lumped mass models. The
estimation of the tension force in the cables is finally achieved by letting it free to vary in the FE
model until the numerical estimation of the first natural frequency matches the experimental



Table 2: Summary of the first natural frequency and tension force estimation for the stays of
the Hovenring Bridge. Cables used for FEM validation are reported in bold.

Cable Experimental Numerical Error

# Nominal T
[kN]

Freq.
[Hz]

Tension
[kN]

Tension
[kN]

Correction
[kN]

Corr. Tension
[kN] [%]

Cable 01 705 2.015 - 616.4 0 616.4 -
Cable 02 470 1.775 - 490 15.3 474.7 -

Cable 03 470 1.938 545.3 570 15.3 554.7 -1.7
Cable 04 470 1.597 382.2 394.1 15.3 378.8 0.9
Cable 05 470 1.792 - 488.9 15.3 473.6

Cable 06 705 1.87 545.3 546.2 0 546.2 -0.2
Cable 07 705 1.955 577.9 581.6 0 581.6 -0.6
Cable 08 470 1.84 - 528.1 15.3 512.8 -
Cable 09 470 1.755 - 465.3 15.3 450 -
Cable 10 470 1.903 - 565.3 15.3 550 -
Cable 11 470 1.615 - 391.7 15.3 376.4 -
Cable 12 705 1.94 - 588.8 0 588.8 -
Cable 13 705 2.045 - 635.9 0 635.9 -
Cable 14 470 1.773 - 488.6 15.3 473.3 -
Cable 15 470 1.685 - 427.4 15.3 412.2 -
Cable 16 470 1.798 - 503.2 15.3 487.9 -
Cable 17 470 1.86 - 524.8 15.3 509.5 -
Cable 18 705 1.915 - 573.5 0 573.5 -
Cable 19 705 1.94 - 571.9 0 571.9 -
Cable 20 470 1.673 - 433.8 15.3 418.5 -
Cable 21 470 1.79 - 485.3 15.3 470 -
Cable 22 470 1.8 - 504.5 15.3 489.2 -
Cable 23 470 1.7 - 436 15.3 420.7 -
Cable 24 705 1.887 - 556.9 0 556.9 -

finding. The method as presented provides an accurate indirect estimation of the tension force
in an efficient way, without the need for direct force measures. To further improve the model,
authors are working on the inclusion of temperature effects in the estimation of the tension force,
by relying on sets of experimental data acquired in different periods of the year.
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