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ABSTRACT
To reduce both the computational cost of probabilistic inversions and the ill-
posedness of geophysical problems, model and data spaces can be reparameterized
into low-dimensional domains where the inverse solution can be computed more ef-
ficiently. Among the many compression methods, deep learning algorithms based on
deep generative models provide an efficient approach for model and data space reduc-
tion. We present a probabilistic electrical resistivity tomography inversion in which
the data and model spaces are compressed through deep convolutional variational
autoencoders, while the optimization procedure is driven by the ensemble smoother
with multiple data assimilation, an iterative ensemble-based algorithm. This method
iteratively updates an initial ensemble of models that are generated according to a
previously defined prior model. The inversion outcome consists of the most likely
solution and a set of realizations of the variables of interest from which the pos-
terior uncertainties can be numerically evaluated. We test the method on synthetic
data computed over a schematic subsurface model, and then we apply the inversion
to field measurements. The model predictions and the uncertainty assessments pro-
vided by the presented approach are also compared with the results of a Markov
Chain Monte Carlo sampling working in the compressed domains, a gradient-based
algorithm and with the outcomes of an ensemble-based inversion running in the un-
compressed spaces. A finite-element code constitutes the forward operator. Our ex-
periments show that the implemented inversion provides most likely solutions and
uncertainty quantifications comparable to those yielded by the ensemble-based inver-
sion running in the full model and data spaces, and the Markov Chain Monte Carlo
sampling, but with a significant reduction of the computational cost.
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INTRODUCTION

Electrical resistivity tomography (ERT) is widely used to im-
age the resistivity distribution of the subsurface in a variety
of engineering, hydrogeological and environmental problems
(e.g., Rucker et al., 2011; Moradipour et al., 2016; Whiteley
et al., 2017; Arosio et al., 2017; Bièvre et al., 2018; Hojat et al.,
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2019a; Dahlin, 2020; Hermans and Paepen, 2020; Aleardi
et al., 2020; Loke et al., 2020; Norooz et al., 2021; Aleardi
et al., 2021a). Due to incomplete data coverage and noise
contamination, ERT is an ill-posed problem characterized
by a non-unique and unstable solution (i.e., small variations
of the data produce large perturbations in the predictions;
Tarantola, 2005; Aster et al., 2018; Binley and Slater, 2020),
and hence, an accurate estimation of the model uncertainty is
of primary importance.However, the most common approach
to ERT solves the inversion through deterministic, gradient-
based algorithms. These methods employ optimization al-
gorithms to minimize a predefined objective function that
measures the difference between the predicted and the ob-
served data. Usually, model constraints are also infused in the
objective function to reduce the ill-conditioning of the prob-
lem. Such methods are generally computationally efficient but
provide an estimation of the model (i.e., the most likely so-
lution) without accurately quantifying the associated uncer-
tainty. On the contrary, a probabilistic (Bayesian) inversion
framework considers the model parameters as random vari-
ables and formulate the inversion as a probability density
function that is proportional to the product of the prior and
the data likelihood. The prior term corresponds to the regu-
larization term in deterministic methods, whereas the likeli-
hood incorporates information about the observed data. For
linear forward operators and Gaussian model and data as-
sumptions, the posterior can be analytically computed from
which model realizations can be efficiently simulated. Other-
wise, Markov chain Monte Carlo (MCMC; Sambridge and
Mosegaard, 2002; Sen and Stoffa, 2013) algorithms can be
employed for accurate posterior probability density (PPD) es-
timations in nonlinear problems. However, the considerable
number of samples needed for accurate uncertainty appraisals
often discouraged their applications in large dimensional pa-
rameter spaces and for expensive forward model evaluations
(Sajeva et al., 2014; Aleardi and Salusti, 2020; Pradhan and
Mukerji, 2020). To mitigate this problem, model and data
compression strategies can be employed, such as singular-
value decomposition, wavelet transform and discrete cosine
transform (Grana et al., 2019; Aleardi, 2020), and in this
context, the inversion is run in the reduced model and data
spaces. Another promising approach is based on the dimen-
sion reduction of model and data spaces via deep neural
networks (Goodfellow et al., 2016; Laloy et al., 2018) that
presents several advantages over linear compression strate-
gies. Ensemble-based data assimilation methods such as en-
semble smoother with multiple data assimilation (ES-MDA;
Emerick and Reynolds, 2013) can constitute an efficient alter-

native to MCMC algorithms because they are computation-
ally faster but might underestimate the model uncertainty in
high-dimensional parameter and data spaces. This undesirable
phenomenon is usually called ensemble collapse (Sætrom and
Omre, 2013). To mitigate this issue, a local analysis can be
employed to eliminate spurious correlations between data and
model parameters (Chen and Oliver, 2017; Luo et al., 2019).
Otherwise, reduction methods can be employed to eliminate
the redundant information (Luo et al., 2018). Therefore, com-
pression strategies have also been extensively implemented
in ensemble-based methods (Bao et al., 2020). In this con-
text, the compression of model and data space allows devel-
oping a fast and efficient probabilistic inversion. However,
the unavoidable information loss due to reduction might lead
to an underestimation or overestimation of the model uncer-
tainty (Grana et al., 2019). For this reason, the trade-off be-
tween model resolution and model uncertainty must always
be considered when reparameterization techniques are applied
(Aleardi, 2015). Recently, ensemble-based methods and con-
volutional autoencoders have extensively been used to solve
geophysical problems, and some applications can be found in
Liu and Grana (2018b), Mandelli et al. (2018), Kang et al.
(2019), Tso et al. (2020), Saad and Chen (2020), Gao et al.
(2020), Kang et al. (2021), to name just a few.

In this work, we present a probabilistic ERT inversion
in which deep convolutional variational autoencoders (DC-
VAEs; Kingma and Welling, 2013) are used to compress
data and model spaces, while the ES-MDA provides multi-
ple posterior realizations from which the uncertainty can be
numerically assessed. DCVAEs are a variant of variational
autoencoders (VAEs) in which convolutional filters are used to
extract latent features from the network input.We first discuss
a synthetic example over a schematic subsurface model before
applying the method to field data. The outcomes of the pro-
posed approach are also benchmarked against those yielded
by a gradient-based algorithm, an ES-MDA inversion running
in the full data and model spaces and an MCMC sampling
working in the compressed domains. The employed MCMC
recipe is described in Vinciguerra et al. (2021) with the only
difference that the probabilistic sampling is here performed
in DCVAE-compressed data and model spaces. The MCMC
method employed is the differential evolution Markov chain,
a popular algorithm that employs interactive chains to im-
prove the efficiency of probabilistic sampling (Vrugt, 2016).
In all cases, a 2.5D finite-elements (FE)Matlab modelling rou-
tine constitutes the forward operator (Karaoulis et al., 2013).
All the codes have been written in Matlab, and all the tests
have been run on a notebook equipped with Intel i7-10750H
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CPU@2.60GHz , 16 Gb of RAM and an NVIDIA GeForce
RTX 2060.

This work aims to assess the applicability of DCVAEs
to increase the computational efficiency of a probabilistic
ERT inversion solved via the ES-MDA algorithm. As far
as the authors are aware, this is the first paper in which
these two approaches are combined to solve this geophysical
problem.

METHODS

The Bayesian framework and the ensemble-based inversion

In a Bayesian context, the solution of an inverse problem is
fully expressed by the posterior probability density (PPD) in
the model space, which is expressed as:

p(m|d) = p(d|m)p(m)
p(d)

, (1)

where p(m) and p(d) denote the a priori distributions ofmodel
parameters and data, respectively; p(m|d) is the target PPD,
whereas p(d|m) is the data likelihood.

For nonlinear inverse problems, the posterior distribution
cannot be analytically computed because the forward opera-
tor cannot be expressed in a matrix form. Therefore, a nu-
merical evaluation of the posterior must be derived using, for
example, Markov chain Monte Carlo (MCMC) sampling al-
gorithms or ensemble-based methods.

The ensemble smoother with multiple data assimilation
(ES-MDA) is an iterative procedure in which the updatedmod-
els are used as the prior in the next iteration.Themethod starts
with an ensemble of models generated according to the prior
assumptions. Then, these models are updated by applying a
Bayesian updating step to a stochastic observation of the data
d̃k under model and data Gaussian assumptions with empiri-
cal parameters estimated from the ensemble members.A single
ES-MDA iteration can be written as:

mu
k = mp

k + C̃p
md

(
C̃p

dd + Cd

)−1 (
d̃k − dpk

)
, (2)

where:

C̃p
md = 1

N − 1

N∑
j=1

(
mp

k − m̄p
) (

dpk − d̄p
)T

, (3)

C̃p
dd = 1

N − 1

N∑
j=1

(
dpk − d̄p

) (
dpk − d̄p

)T
, (4)

with k = 1,…,N, where N represents the number of models
in the ensemble and d̃k is a random perturbation of the ob-

served data according to the Gaussian distribution N (d,Cd),
in which Cd is the data covariance. The subscripts u and p

denote the updated (current iteration) and prior (previous it-
eration) variables, respectively; C̃p

md and C̃p
dd represent the em-

pirical covariance matrices estimated from the ensemble mem-
bers, whereas m̄p and d̄p are the empirical ensemble mean of
the model parameters and predicted data, respectively.

The following steps are implemented for the ES-MDA:

1. Define the number of models in the ensemble N, the max-
imum number of iterations Q, and the inflation coefficient α

for each iteration with
Q∑
i=1

1
αi

= 1;

2. Generate realizations according to the prior p(m);
3. For each iteration:

a Apply the forward operator and compute the observa-
tion for each ensemble member{dp}1,...,N;

b Perturb the observations according to: d̃k =
d + √

αiC
−1/2
d n, with n = N (0, I), where I is the identity

matrix;
c Update the ensemble using equations (2)–(4) with Cd re-

placed by αiCd.

All the ensemble members at the last iteration represent
possible subsurface scenarios in agreement with the acquired
geophysical data and with the prior assumptions. From this
ensemble of models, the PPD can be numerically evaluated.
Theoretically, the method converges when the ensemble size
N tends to infinity. In practical applications, a sensitivity anal-
ysis is generally required to determine the optimal number
of ensemble members that guarantees accurate posterior un-
certainty assessments. In particular, the number of ensemble
members should be large enough to get an accurate estimate

of the
∼
C
p

dd and
∼
C
p

md matrices, but small enough not to make the
forward evaluations computationally impractical. Usually, the
number of ensemble members needed to get accurate uncer-
tainty assessments increases with the dimension of the model
space.

Variational autoencoders

Autoencoders are a class of unsupervised neural net-
works that are widely employed for representation learning
(Goodfellow et al., 2016). Autoencoders are more powerful
than linear dimensionality reduction methods (e.g., principal
component analysis) because deep neural networks can learn
nonlinear features underlying the uncompressed, input space.
An autoencoder consists of two components: an encoder
and a decoder. The encoder extracts latent features z from
the high-dimensional input data x; the decoder recovers the
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Figure 1 A schematic representation of VAEs.

predicted input data x from the latent features minimizing the
reconstruction error. Autoencoders force a sparse representa-
tion of the input by imposing a bottleneck in the network such
that the dimension of the latent features is much lower than
that of the original input. Mathematically, the autoencoder is
described as a set of two functions:

z = h (x; �enc), (5)

x̂ = g (z; �dec), (6)

where h represents the encoder that projects the input x to
the sparse latent features z, whereas g denotes the decoder
that recovers the estimated input x̂ from z; �enc and �dec are
the network internal parameters (i.e., learnable weight matri-
ces and biases) in the encoder and decoder. The internal net-
work parameters are randomly initialized and then updated
during the learning phase that involves the generation of ap-
propriate training and validation sets, and minimization of
a loss function. Variant or variational autoencoders (VAEs)
are a generalization of the standard approach to learning the
probability distribution of the latent space. The encoder in
VAEs learns two vectors: a vector of mean μ and a vector
of standard deviations σ. In our case, the inputs to the en-
coder are models and data generated according to prior as-
sumptions. The inputs to the decoders in the variational ap-
proach are random vectors drawn from the Gaussian distribu-
tion z ∼ N (μ,σ2), which allows the decoder to sample in the
latent space. Figure 1 schematically represents a generic VAE
architecture.

As previously mentioned, the learning process minimizes
a loss function that is here defined as a linear combination
of L2 norm difference between target and reconstructed net-
work outputs (Ex), and the Kullback–Leibler divergence (EKL)
that quantifies the similarity of two probability distributions.
Introducing the KL divergence allows making the variational

distribution as close as possible to the prior distribution.
Therefore, the loss function can be written as:

E = Ex + εEKL, (7)

with:

Ex = 1
L

∣∣∣∣x − x̂
∣∣∣∣2, (8)

EKL = − 1
2L

L∑
i=1

1 + log
(
σ 2
i

) − μ2
i − σ 2

i , (9)

where L denotes the dimensionality of the input data x, and
μi and σ i are the ith components of the output vectors μ and
σ of the encoder, respectively.

The term ε in equation (7) represents the trade-off pa-
rameter that must be optimally tuned to ensure that the re-
constructed output can reproduce the original input and that
the learned distribution is similar to the target distribution (see
Lopez-Alvis et al., 2021, for a detailed discussion). In this way,
the autoencoders can successfully learn the compact latent fea-
tures that represent the original data x.

In this work, we use deep convolutional VAEs to com-
press model and data spaces in an ES-MDA inversion frame-
work. In other terms, the model unknowns and the data points
in our approach are defined in latent spaces whose geometri-
cal properties are defined by properly trained VAE networks.
When the compression is applied to the full model space m,
we get:

m̂ = hm (m; �enc), (10)

where m̂ represents the reduced model vector through the hm

encoder. Otherwise, when the compression is applied to the
data, we obtain the reduced data vector:

d̂ = hd (d; �enc), (11)

with hd representing the trained encoder for data compression.
Therefore, the data likelihood in the reduced model and data
space becomes:

p
(
d̂|m̂

)
= N

(
d̂;hd (G (gm (m̂;�dec))) , Cd̂

)
, (12)

where G is the nonlinear forward operator, while the data co-
variance matrix in the compressed space Cd̂ is learned by the
VAE.

The inversion is performed in the compressed model
space, then the samples are projected in the full space before
the data computation through the finite-elements code. The
computed data are then compressed before the evaluation
of the data matching. Note that the encoding and decoding
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Figure 2 The true model for the synthetic inversion.

operations can be accomplished almost in real time with a neg-
ligible computational cost. Also, note that the encoding and
the decoding applied to the data and model space are different
and learned during separate training phases. The samples
forming the ensemble of the ES-MDA inversion at the last iter-
ations can be finally projected onto the full model space (using
the trained decoder) to numerically compute the most likely
solution and the associated uncertainties (i.e., model standard
deviation) in the original, uncompressed parameter space.

RESULTS

Synthetic inversions

We consider a schematic subsurface resistivity model repre-
sented by a rectangular block with a resistivity of 50 �m
hosted in a homogeneous half-space with resistivity equal to
150 �m (Fig. 2). The study area is discretized with 11 × 35 =
385 rectangular cells with vertical and lateral dimensions of
0.5 m and 1.0 m, respectively. The resistivity values within
the cells correspond to the model parameters to be estimated.
We simulate a Wenner acquisition layout with 36 electrodes
with a = 1.0 m. The maximum a value is 11. This config-
uration results in 198 data points. In this example, we em-
ploy the Wenner layout because it has been also used for the

field data acquisition, but the presented inversion framework
can be applied to other electrode configurations as well. The
finite-elements code was used to compute the noise-free ob-
served dataset that was contaminatedwith uncorrelated Gaus-
sian noise with a standard deviation equal to the 10% of the
total standard deviation of the noise-free apparent resistivity
data (i.e., a noise standard deviation equal to 2.06). Figure 3
represents the prior model assumptions used to generate the
training, validation and test sets. We employ a stationary log-
Gaussian prior, while a Gaussian variogram is used as the spa-
tial continuity pattern with horizontal and vertical variogram
ranges equal to 4.0 and 1.5 m, respectively.

For both model and data compression, we use deep con-
volutional variational autoencoders (DCVAEs). To simplify
the network configuration for the model compression, we
add a column and a row to the dimension of the study area
(11×35) to obtain a grid of 12 rows and 36 columns with di-
mensions that can be repeatedly and conveniently divided by
integer numbers. The additional row and column are removed
in the inversion phase before the forward modelling compu-
tation and are not considered in the visualization of the final
results. For model compression,we first generate 5000 realiza-
tions from the prior; 4000 are used for training, whereas 500
form the validation and test sets. The time needed to generate
the prior models is negligible while the training runs in less
than five minutes (20 epochs) on the GPU previously men-
tioned. The characteristics of the implemented DCVAE for
model compression are shown in Table 1. Note that in this
case, the full 385D model space is reduced to a 40D domain.
The Adam optimizer (Balles andHennig, 2018) is used to min-
imize the loss function.We employ a batch size of 24, whereas
a dropout of 10% is used before the fully connected layer to
prevent overfitting (Wu and Gu, 2015). We set the trade-off
parameter ε in the loss function to 0.1. In all layers, we adopt
the LeakyRelu activation function with a leakage value of 0.1
(Dubey and Jain, 2019). Batch normalization is used as a reg-
ularization operator (Santurkar et al., 2018), while the initial

Figure 3 (a) Log-Gaussian prior distribution for the synthetic example. (b) and (c) Spatial correlation functions associated with the assumed
2-D variogram model for the horizontal and vertical directions, respectively.
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Table 1 Network architecture of the DCVAE used for model compression in the synthetic example

Layer Dimension

Input 12 × 36
ENCODER Conv2D(FilterSize = 3 × 3, Layers = 8, Stride = 2) + LeakyRelu(0.1) + BatchNorm 6 × 18 × 8

Conv2D(FilterSize = 3 × 3, Layers = 16, Stride = 2) + LeakyRelu(0.1) + BatchNorm 3 × 9 × 16
Conv2D(FilterSize = 3 × 3, Layers = 32, Stride = 2) + LeakyRelu(0.1) + BatchNorm 2 × 5 × 32

Flatten 320
Fully connected layer (dropout 10%) 80

Latent Space Mean 40
Variance 40

DECODER Fully connected layer 27
Reshape 3 × 9

TransposeConv2D(FilterSize = 3 × 3,Layers = 32, Stride = 2)+LeakyRelu(0.1)+BatchNorm 6 × 18 × 32
TransposeConv2D(FilterSize = 3 × 3,Layers = 16,Stride = 2)+LeakyRelu(0.1)+BatchNorm 12 × 36 × 16
TransposeConv2D(FilterSize = 3 × 3,Layers = 1,Stride = 1)+LeakyRelu(0.1)+BatchNorm 12 × 36

Table 2 Network architecture of the deep convolutional VAE used to compress the data space in the synthetic example

Layer Dimension

Input 198
ENCODER Conv1D(FilterSize = 3 × 1, Layers = 8, Stride = 2) + LeakyRelu(0.1) + BatchNorm 99×8

Conv1D(FilterSize = 3 × 1, Layers = 16, Stride = 2) + LeakyRelu(0.1) + BatchNorm 50×16
Flatten 800

Fully connected layer (dropout 10%) 100
Latent Space Mean 50

Variance 50
DECODER Fully connected layer 99

TransposeConv1D(FilterSize = 3 × 1, Layers = 16, Stride = 2) + LeakyRelu(0.1) + BatchNorm 198×16
TransposeConv1D(FilterSize = 3 × 1, Layers = 1, Stride = 2) + LeakyRelu(0.1) + BatchNorm 198

learning rate is set to 0.001, and this value is multiplied by
0.95 every epoch.

For data compression, we first compute the data asso-
ciated with all the 5000 models previously generated. Again,
this ensemble is divided into training, validation, and test with
a split of 80/10/10. The network configuration used for data
compression is represented in Table 2. Note that because of its
trapezoidal shape, the apparent resistivity section is first flat-
tened to a 1D vector before feeding into the DCVAE. In this
case, the 198D data space has been sparsely reparameterized
by mean and variance vectors of dimensions 50. Again, the
Adam optimizer is used to minimize the loss functions, while
the trade-off parameter in the loss function is set to 0.05. The
batch size and the learning rate are the same used for themodel
compression. The training phase takes three minutes on the
same hardware resources previously mentioned.

As an example, Figure 4 represents some prior realiza-
tions extracted from the test set and the associated DCVAE
approximations. The satisfactory agreement between target

and approximated models proves that the network has been
properly trained, and hence it can capture most details of the
original models. Note that once the network is fully trained, it
can also be used to generate models (e.g., the models forming
the initial ensemble for the ensemble smoother with multiple
data assimilation (ES-MDA) inversion) according to the prior
without employing any geostatistical generation tool.

We run the ES-MDA inversion in the compressed domain
using an ensemble of 250 resistivity models. We also run in-
versions with smaller and larger ensembles, but this number
revealed to be the optimal compromise between the computa-
tional costs related to the forward evaluations and the sta-
bility of the estimated uncertainties (see discussion below).
With stability, we mean that the estimated uncertainty does
not sensibly change for an increased ensemble size. Indeed,
smaller ensembles resulted in underestimated posterior un-
certainties, while larger ensembles (e.g., 500 and 1000 mod-
els) provided uncertainty similar to the one obtained with
250 models. See Aleardi et al. (2021b) for a more detailed
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Figure 4 (a) Example of DCVAE approximations of resistivity models extracted from the test set. (b) The corresponding target, uncompressed
models.

discussion on how the ensemble size affects the uncertainty es-
timation in electrical resistivity tomography inversion solved
via ensemble-based algorithms. For comparison, the Markov
chain Monte Carlo (MCMC) employs 30 chains and runs in
the compressed model space for 3000 iterations, with a burn-
in period of 500. The potential scale reduction factor (PSRF;
Brooks and Gelman, 1998) is used to monitor the convergence
of the MCMC sampling towards a stable posterior probabil-
ity density (PPD). For computationally feasibility reasons, the
MCMC sampling has not been run in the full data and model
spaces.

As a comparison, Figure 5 illustrates the most likely ES-
MDA solution obtained with the implemented approach, the
solution provided by the MCMC inversion, the one obtained
by the ES-MDA inversion running in the full data and model
space, and the predictions of a gradient-based inversion per-
formed with the IP4DI software (Karaoulis et al., 2013). Both
the ensemble-based inversions have been run for four itera-
tions. The rectangular resistivity anomaly is well recovered
and properly located by all methods, although the gradient-
based inversion yields a final result that slightly underesti-
mates the resistivity values in the deeper part of the model,
while the probabilistic approaches slightly overestimate the

maximum depth reached by the low-resistivity body. From the
many inversion tests carried out with the ES-MDA running in
the full space, we noted that stable uncertainty quantifications
can be achieved with an ensemble of 1000 models (see again
the discussion below), thus meaning that the compression of
the model and data spaces provides similar model predictions
but with a total number of forward evaluations (and comput-
ing time) four times smaller.

Figure 6 compares the posterior standard deviations es-
timated by the ES-MDAs running in the compressed and full
spaces, and the MCMC sampling. The two ensemble-based
inversions provide congruent uncertainty quantifications, al-
though we observe that with DCVAE we get a slight under-
estimation of the posterior uncertainties due to the reduced
model space dimension, especially in the least illuminated part
of the subsurface. Some differences are also observed with re-
spect to the MCMC results particularly for the cells poorly
informed by the data, for which the two ES-MDA inversions
tend to underestimate the posterior uncertainties. However, in
all cases, we observe that the lower uncertainties are located
in correspondence with the low-resistivity anomaly while the
precision of the results decreases moving at the lateral edge
and the bottom of the study area.
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Figure 5 (a) The most likely model predicted by the ES-MDA with DCVAE. (b) The most likely solution predicted by the ES-MDA without
DCVAE. (c) The most likely model provided by the MCMC inversion with DCVAE. (d) Gradient-based solution.

Figure 6 Posterior standard deviation estimated with the ES-MDA running in the compressed and full model and data spaces (a) and (b),
respectively). (c) Posterior standard deviation estimated by the MCMC inversion working in the compressed domains.

To better investigate how the ensemble size affects
the estimated uncertainty, Figure 7 compares the standard
deviation sections computed for the ES-MDA inversion with
and without model compression and running with different

ensemble sizes. It emerges that with DCVAE, the inversion
yields stable posterior quantifications with smaller ensembles.
In particular, stable uncertainties can be achieved with 250
and 1000 models, respectively, for the inversion running in
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Figure 7 Standard deviation sections derived from inversion tests that employ different number of models in the ensemble (N). (a) ES-MDA
inversion with DCVAE. (b) ES-MDA inversion without model and data compression.

the reduced and full model and data spaces. Differently, the
most likely models are very similar for all the tests illustrated
previously, and hence they are not shown here.

Figure 8 shows for the MCMC inversion the evolution
of the negative log-likelihood for the 30 chains and the PSRF
for some model parameters. We observe that the steady state
of the Markov chain is attained in 500 iterations (i.e., corre-
sponding to the selected burn-in period),while 1500 iterations
are needed to reach stable PPD estimations (a PSRF lower than
1.1). This means that the MCMC inversion needs 45,000 for-
ward evaluations to converge (1500 iterations × 30 chains).
This value is 45 and 11.25 times larger than the number of for-
ward runs needed by the ensemble-based inversions running
in the compressed and full spaces, respectively.

Figure 9(a) and (b) show some resistivity models from the
initial ensemble generated with the trained network and the
corresponding models at the last ES-MDA iteration, respec-
tively.We observe that all the final models successfully predict
the low-resistivity anomaly located in the central part of the
investigated profile.

Figure 10 shows a comparison between the observed ap-
parent resistivity values and the data generated on the most
likely solutions predicted by the two ES-MDA inversions
and the MCMC sampling, along with the prediction of the
gradient-based algorithm.All themethods achieve satisfactory
data matching. Figure 11 illustrates for the ES-MDA inversion
running in the compressed domains, a comparison between
the observed data and the data computed on the initial and
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Figure 8 Evolution of the negative log likelihood for the 30 chains during the MCMC sampling. (b) For some model parameters, we show the
evolution of the PSRF. The red line represents the threshold of convergence fixed (as usual) at 1.1.

Figure 9 Some examples of prior (a) and posterior (b) resistivity models forming, respectively, the initial and final ensemble of the ES-MDA
inversion running in the compressed spaces.

final ensemble of models. This comparison demonstrates that
the inversion eventually converges towards an ensemble of re-
sistivity profiles that satisfactorily reproduce the observed ap-
parent resistivity values.

As a final and more quantitative assessment of the results,
we list in Table 3 the 90% coverage ratio, and the root-mean-
square errors (RMSE) between true and predicted models and
observed and predicted data. We remind that the 90% cov-
erage ratio quantifies the percentage of resistivity values in
the true model that fall within the 90% confidence interval
as estimated by the probabilistic inversion. Since the gradient-

based inversion does not provide uncertainty quantifications,
the coverage ratios are computed only for the MCMC sam-
pling and the two ES-MDA inversions. The four inversions
give very similar data predictions, while the model predic-
tions are slightly more accurate for the three probabilistic
inversions due to the underestimation of the background re-
sistivity of the gradient-based approach. A better data match-
ing can be achieved by the gradient-based inversion just by
lowering the trade-off regularization parameter but at the
expense of an increased scattering in the recovered solu-
tion. As expected, the two ES-MDA algorithms provide lower
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Figure 10 (a) Observed pseudosection. (b) Data predicted from the most likely solution of the ES-MDA inversion with DCVAE. (c) Data predicted
from the most likely solution of the ES-MDA inversion without DCVAE. (d) Data predicted from the most likely solution of theMCMC inversion.
(e) Data computed from the gradient-based result.

Figure 11 Comparison between the ob-
served data (black line), the data com-
puted on the initial ensemble of models
(cyan lines) and the data associated with
the models at the last ES-MDA iteration
(red lines). For graphical convenience, all
the computed pseudosections have been
flattened to 1D vectors. This figure refers
to the inversion running in the compressed
domains, but similar conclusions would
have been drawn for the ES-MDA inver-
sion running in the full model and data
spaces.

coverage ratios than the MCMC sampling, thereby demon-
strating that this last method gives slightly more accurate un-
certainty estimations, but this happens at the expense of a
dramatic increase of the computational workload due to the
higher number of forward evaluations needed to converge.
For the two ES-MDA inversions, we also note that the cov-
erage ratio slightly increases if we move from the compressed
to the full model and data spaces, but this again happens at

the expense of an increased computational cost. For example,
if we consider parallel codes and the hardware resources previ-
ously mentioned, the ES-MDA with DCVAE runs in less than
10 minutes. The same inversion approach without compres-
sion takes more than 40 minutes, while the MCMC sampling
running in the compressed domains takes 900 minutes to con-
verge. Finally, from a practical point of view, we deem that the
model uncertainties provided by the presented approach are
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Table 3 Table listing for each considered inversion approach the RMSE between the true and the predicted models (shown in Fig. 5), the RMSE
between the observed and the data computed on the predicted models (see Fig. 10) and for the three probabilistic inversions the 90% coverage
ratios

RMSE Model RMSE Data 90% coverage ratio

ES-MDA with DCVAE 114.11 3.12 84.31
ES-MDA without DCVAE 113.26 3.02 86.64
MCMC with DCVAE 114.40 3.08 88.24
Gradient based 118.03 4.10 Not available

reasonable and comparable to those yielded by the other prob-
abilistic inversion methods.

Field data application

We now apply the presented approach to invert a field dataset
acquired for levee monitoring along the Parma river (Italy).
We refer the interested reader to Hojat et al. (2019b) for more
information about the study area. We invert a single dataset
acquired with electrodes buried in a 0.5 m-deep trench and
employing the Wenner acquisition layout with 48 electrodes
for a unit spacing of a= 2.0 m. The investigated site covers an
area that is 94 mwide and 14 m deep, and it is discretized with
rectangular cells with vertical and lateral dimensions of 1.0 m
and 2.0 m, respectively. This configuration results in 15×47
= 705 resistivity values to be estimated from 360 data points.
Similar to the synthetic example, we have conveniently added
a column and a row to the dimension of the inversion grid to
simplify the network configuration.

We exploit all the available information about the inves-
tigated site to define the prior distribution of model parame-
ters. In particular, we still employ a log-Gaussian prior and a
spatial variability pattern described by a Gaussian variogram
with lateral and vertical ranges equal to 6 m and 2 m, respec-
tively. In this area,wemainly expect a low-resistivity clay body
that around 2–3 m depth hosts a more permeable layer with
higher resistivity values associated with the presence of sand
and gravel. The a priori simplifies the actual distribution of
the resistivity values in the synthetic model. Therefore, to val-
idate this prior we compare summary statistics of observed
and simulated data generated from prior realizations to de-
termine if the observed data samples are outliers. Figure 12
demonstrates that the observations always lie within the 95%
confidence interval derived from apparent resistivity sections
generated by prior realizations. In mathematical terms, this
means that the observed data and the data derived from the
prior can be considered as realizations of the same random
variable (Pradhan and Mukerji, 2020).

Figure 12 The observed data (yellow line) compared with the data
computed on the mean prior model (red line) and the 95% confidence
interval (blue dotted lines) derived from data generated on prior real-
izations.

To train the networks, we again generate 5000 prior re-
alizations and we define the training, validation and test sets
using the same split previously employed in the synthetic ex-
periment. The main characteristics of the network used for
model compression (see Table 4) are similar to those employed
in the synthetic case and listed in Table 1, but in this applica-
tion, the full model domain is compressed to a 150D space.We
also use the same batch size, optimization algorithm, initial
learning rate and the maximum number of epochs. The fact
that almost the same network configuration properly works
in both the synthetic and field example illustrates the flex-
ibility of the approach, which means that a successful ap-
plication does not depend on the selected network config-
uration (see the discussion section for additional considera-
tions). However, some care must be devoted to tuning the
trade-off parameter that here is set to 0.2. The comparison
between models extracted from the test set and the corre-
sponding DCVAE approximations demonstrate that the net-
work has been properly trained (Fig. 13). Table 5 depicts the
network hyperparameters used for data compression. Again
we employ an architecture similar to the one used in the syn-
thetic example, but with a trade-off parameter of 0.08. In this
example, the full data space is sparsely compressed into an
80D domain.
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Table 4 Network architecture of the DCVAE used to compress the model space in the field data application

Layer Dimension

Input 16 × 48
ENCODER Conv2D(FilterSize = 3 × 3, Layers = 16, Stride = 2) + LeakyRelu(0.1) + BatchNorm 8 × 24 × 16

Conv2D(FilterSize = 3 × 3, Layers = 32, Stride = 2) + LeakyRelu(0.1) + BatchNorm 4 × 12 × 32
Conv2D(FilterSize = 3 × 3, Layers = 64, Stride = 2) + LeakyRelu(0.1) + BatchNorm 2 × 6 × 64

Flatten 768
Fully connected layer (dropout 10%) 300

Latent Space Mean 150
Variance 150

DECODER Fully connected layer 48
Reshape 4 × 12

TransposeConv2D(FilterSize = 3 × 3, Layers = 32, Stride = 2) + LeakyRelu(0.1) + BatchNorm 8 × 24 × 32
TransposeConv2D(FilterSize = 3 × 3, Layers = 16, Stride = 2) + LeakyRelu(0.1) + BatchNorm 16 × 48 × 16
TransposeConv2D(FilterSize = 3 × 3, Layers = 1, Stride = 1) + LeakyRelu(0.1) + BatchNorm 16 × 48

Figure 13 (a) Example of DCVAE approximations of resistivity models extracted from the test set. (b) The corresponding original, uncompressed
models.

Figure 14 compares the most likely models estimated by
the two ES-MDA inversions and by the gradient-based ap-
proach. The three methods again provide similar and com-
parable estimates, and the slight low resolution of the two ES-
MDA approaches with respect to the gradient-based outcomes
is related to the different regularization strategies applied.
Figure 15 compares the posterior standard deviations nu-
merically estimated from the final ensembles associated with
the ES-MDA inversion running in the compressed and full

model and data space, respectively. Again, we note that the
uncertainty estimated when the data and model spaces are
reduced is slightly lower than that estimated without com-
pression. This is particularly evident for the model parameters
less informed by the data, for example, for the cells located
at the bottom and the lateral edges of the study site. Simi-
lar to the synthetic example, we note that the two ES-MDA
inversions achieve stable posterior assessments with very dif-
ferent ensemble sizes: When the DCVAE are employed, only
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Table 5 Network architecture of the DCVAE used to compress the data space in the field test

Layer Dimension

Input 360 × 1
ENCODER Conv1D(FilterSize = 3 × 1, Layers = 8, Stride = 2) + LeakyRelu(0.1) + BatchNorm 180 × 1 × 8

Conv1D(FilterSize = 3 × 1, Layers = 16, Stride = 2) + LeakyRelu(0.1) + BatchNorm 90 × 1 × 16
Flatten 1440

Fully connected layer (dropout 10%) 160
Latent Space Mean 80

Variance 80
DECODER Fully connected layer 180

TransposeConv1D(FilterSize = 3 × 1, Layers = 16, Stride = 2) + LeakyRelu(0.1) +
BatchNorm

360 × 1 × 16

TransposeConv1D(FilterSize = 3 × 1, Layers = 1, Stride = 2) + LeakyRelu(0.1) +
BatchNorm

360 × 1

Figure 14 (a) The most likely model estimated by the ES-MDA inversion with DCVAE. (b) The most likely model provided by the ES-MDA
without DCVAE. (c) Model estimated by the gradient-based inversion.

500 models are needed while 2000 models are requested by
the inversion without compression. Again, both these inver-
sions have been run for four iterations. Therefore, the use of
the DCVAE still guarantees a significant decrease in the num-
ber of forward evaluations, and thus a decrease in the comput-
ing time of the probabilistic inversion. For example, the ES-
MDA with DCVAE runs in 15 minutes while about an hour
is needed without model and data compression. These com-
puting times are still referred to parallel codes running on the
same hardware resources previously described.

Figure 16 shows some models forming the final ensemble
for the ES-MDA inversion with DCVAE. Again, we observe

that the inversion satisfactorily converges towards congruent
results. Indeed, all the models at the very last iteration show
similar characteristics such as the low-resistivity anomaly in
the shallowest and central part of the study area, and the high
resistivity body buried around 3 m depth.

DISCUSS ION

We applied a probabilistic approach to solve the electrical re-
sistivity tomography (ERT) problem in which deep convo-
lutional variational autoencoders (DCVAEs) have been used
to increase the computational efficiency of the inversion
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Figure 15 Posterior standard deviation estimated with the ES-MDA inversion running in the compressed spaces. (b) Posterior uncertainty pro-
vided by the ES-MDA inversion without compression.

Figure 16 Models extracted from the ensemble at the last ES-MDA inversion working in the compressed model and data domains.

procedure and to avoid the so-called ensemble collapsing is-
sue. On the one hand, the computational burden of the en-
semble smoother with multiple data assimilation (ES-MDA)
inversion largely depends on the number of ensemble mem-
bers and the cost of running the forward computations. On
the other hand, the ensemble size should be large enough to
get accurate uncertainty evaluations, and its dimension should
increase with the dimension of the parameter space. There-
fore, running the inversion in compressed spaces significantly
reduces the number of ensemble members and the computa-
tional cost needed for reliable uncertainty quantifications.

In our application, we employ log-Gaussian prior, but
deep generative models are helpful for data assimilation and
inverse problems with non-Gaussian models as well (Bao
et al., 2020). In our implementation, the use of nonparametric
priors is theoretically possible, but it requires the application
of a normal score transformation. In this context, the sam-
pling would be performed in the original domain, whereas the
inversion would run in the normal score transformed space.
We expect this approach to be quite accurate for unimodal

distributions, but further investigations are needed in the case
of multimodal priors.

The reason for uncertainty underestimation or overesti-
mation in the case of model and data space compressions is
that data reduction makes the inverse problem underdeter-
mined, while model compression makes the inversion overde-
termined. Ideally, the compression of model space should be as
small as possible to sparsely represent the original domain and
to effectively mitigate the ill-conditioning of the problem. For
this reason, the reduction of the parameter space should be a
compromise between the expected model resolutions, and the
accuracy of the uncertainty assessments. Also, note that the
posterior uncertainty is underestimated in the ES-MDA if the
number of ensemble members is not sufficient to statistically
represent the model space (Aleardi et al., 2021b). Reducing
the data space partially mitigates the underestimation because
it makes the problem more underdetermined, thus increasing
its condition number and consequently the posterior uncer-
tainties (Grana et al., 2019). However, in practice, it is often
difficult (especially for nonlinear problems) to determine the
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optimal dimensions of the reduced model and data to get un-
certainty quantification equal to the one obtained in the full
spaces.

In the proposed approach, a sufficient number of prior
realizations and associated data are needed to train the net-
works. From our experience, 4000 examples are enough for
successful training. In our many experiments (not shown here
for brevity), we found that many different DCVAE architec-
tures (with a different number of layers and filter dimensions)
work similarly. The final one has been selected as a reasonable
compromise between the computational cost of the training
phase and the accuracy of the predictions. However, special
care must be devoted to properly tune the trade-off parameter
of the loss function, thus ensuring that the reconstructed out-
put can reproduce the original input and that the learned dis-
tribution approximates the target distribution. In this work,
we selected this parameter using a trial-and-error procedure
that is facilitated by the limited computational cost of the
training phase (very few minutes on the employed hardware
resources). We also found that the optimal range for this pa-
rameter is not that narrow: for example, in the synthetic ap-
plication, all the values between 0.05 and 0.15 provide very
similar model approximations. If needed the modelling error
related to the uncertainty in the network reconstruction can
additionally be propagated into the final posterior probabil-
ity densities (PPDs). This is an interesting point that is wor-
thy of a deeper investigation in further studies. Here, we limit
the comparison of ES-MDA and Markov chain Monte Carlo
(MCMC) only to the synthetic example because running an
MCMC sampling to solve the field inversion is computation-
ally impractical on the limited hardware resources employed
in this study (it would probably require a couple of weeks to
converge).

Reducing the computational cost of a probabilistic ERT
inversion is needed to make this approach more appealing
than popular local inversion algorithms. The Bayesian frame-
work provides crucial information regarding the uncertainties
affecting the recovered solution. Such estimated model uncer-
tainties can be used to generate different subsurface scenar-
ios in agreement with the prior assumptions and the acquired
data. We deem that the outcome of such a probabilistic ap-
proach adds an extra layer of information over gradient-based
solutions that could contribute to a more informed decision-
making process in many ERT applications (e.g., monitoring
applications). For this reason, we are also working to extend
the presented approach to time-lapse ERT inversion.

As demonstrated in Aleardi et al. (2021b), linear com-
pression methods are very effective to reduce model and data

spaces in 2D ERT inversion. However, the popularity that ma-
chine learning compression methods have recently gained in
the geophysical community, motivated us to contemporarily
assess the applicability of DCVAEs to solve the same problem.
The limited computational effort needed for network training,
along with the limited human effort needed to set up an ap-
propriate DCVAE architecture, make the total computational
cost of ES-MDA inversions with linear and nonlinear com-
pressions very similar (note also that for linear compressions,
an accurate analysis conducted on prior realizations must be
done to select the optimal number of basis functions to retain).
However, deep neural networks exploit the nonlinear and spa-
tial patterns in the input, and thus they generally outperform
linear dimension reduction methods for more complex (e.g.,
three-dimensional) models/data. Indeed, our preliminary at-
tempts on 3D and time-lapse ERT inversion indicate superior
performances of DCVAE over linear strategies. We are still
investigating these challenging topics, but some preliminary
results can be found in Vinciguerra and Aleardi (2021).

CONCLUSIONS

This work was aimed at decreasing the computational cost
of a probabilistic electrical resistivity tomography inversion
by exploiting the sampling ability of ensemble smoother with
multiple data assimilation (ES-MDA) and the compression
ability of deep convolutional variational autoencoders (DC-
VAEs). The DCVAEs were used as a dimensionality reduction
strategy to avoid spurious correlation and ensemble collapse
and to decrease the dimensionality of the problem, hence re-
ducing the computational cost of the inversion. Indeed, our
tests illustrated that the ensemble size needed for stable uncer-
tainty quantifications significantly decreases for an ES-MDA
inversion running in the compressed space with respect to the
same inversion approach working in the full model and data
domains. More in detail, the use of DCVAE reduced the total
number of forward evaluations of the stochastic inversion by
four times in both the synthetic and field data experiments.
Our tests also demonstrated that the implemented inversion
can provide most likely models and uncertainty quantifica-
tions comparable to those yielded by an ES-MDA algorithm
running in the full model and data space, and a Markov chain
Monte Carlo sampling working in the compressed domains.
All these probabilistic approaches estimated most likely so-
lutions very similar to the results of a gradient-based inver-
sion. We also observed that due to the dimensionality re-
duction, the proposed ES-MDA inversion is prone to slightly
underpredict the uncertainties for the parameters poorly
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informed by the data.However, from a practical point of view,
the estimated uncertainties remain extremely valuable since
they offer insights into the accuracy of the recovered model
features and allow assessing the precision of the results. The
presented method can be easily adapted to solve other geo-
physical inverse problems.

DATA AND CODE AVAILABIL ITY

The data that support the findings of this study are available
from the corresponding author upon reasonable request
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