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Abstract—3D image registration is one of the most complex
algorithms employed in medical imaging applications. Software
solution struggles to reach high accuracy in a reasonable time,
therefore this work presents ATHENA, a framework for rigid
3D Image Registration, exploiting heterogeneous architecture for
acceleration, and also providing support for memory-constrained
devices. Moreover, ATHENA presents a tool for automatically
generating misalignent between volumes, to perform a robust-
ness analysis on different kinds of distortions. We compared
ATHENA with SimpleITK, a well-known software library, and
with a software version of the proposed algorithm, achieving a
top speedup of 18.1× and 53.7× respectively.

Index Terms—3D Image Registration, GPU, Acceleration

I. INTRODUCTION

Nowadays, an increasing number of companies [1]–[7] give
their contribution to find innovative and fast solutions for very
complex algorithms employed in biomedical applications [8],
[9]. Among the huge spectrum of applications, the ones related
to medical image analysis are the most explored due to the
growing number of use case scenarios, such as disease diag-
nosis [7] and robotic aided surgery [10]. In particular, given
the limitations of software solutions, researchers investigated
new architectural and algorithmic alternatives employing het-
erogeneous systems to accelerate compute-bound procedures.

One of the most computationally expensive applications is
Image Registration (IR), which involves aligning two images
to fix their relative distortion. This task can be categorized
into rigid/affine registration and deformable registration [11].
The former handles a subset of possible deformations since it
exploits transformation that preserve the parallelism of lines.
Conversely, the latter can correct all kinds of transformations
and mainly exploits deep learning techniques [12]. However,
the two are not completely unrelated, since deformable reg-
istration exploits, as its initial step, the rigid one. Thus, the
acceleration of rigid IR will also benefit the deformable one
[13]. Additionally, depending on the acquisition technique, we
can also distinguish between mono-modal and multi-modal IR.
The former registers images acquired in different time instants
by the same protocol and sensor type. The latter, common in
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clinical practice, deals with heterogeneous image types such as
Computed Tomography (CT), Positron Emission Tomography
(PET), or Magnetic Resonance Imaging (MRI) [14].

Since most medical images, like CTs and PETs, are acquired
as 2D slices stacked in a 3D volume, 2D IR focuses on
registering a couple of images at a time. Conversely, 3D
IR also considers information about the volume itself, thus
dealing with all the 2D slices as a single 3D object. More
specifically, 3D IR aligns a floating volume against a reference
to fix distortion.

In the literature of 3D image registration there are two
main trends: software-based and hardware-based solutions.
Software frameworks rely entirely on software libraries, while
accelerated frameworks use hardware acceleration to achieve
higher performance. On this path, GPUs have proven effective
in accelerating image registration procedures [13], [15]–[18].

For these reasons, this work presents ATHENA, an open-
source 3D IR framework for multi-modal rigid procedure ex-
ploiting heuristic procedures and heterogeneous architecture to
enhance performance. As a similarity metric for the employed
heuristic algorithm, ATHENA uses mutual information, which
already proved effective to achieve remarkable results in
accuracy [19]. Our main contributions are:

• An open-source framework1 to perform 3D IR on hetero-
geneous architecture, achieving state-or-the-art accuracy
(Section IV-A).

• A novel methodology to exploit such a complex proce-
dure on memory-constrained devices, reaching the same
accuracy as less constrained architecture (Section IV-B).

• A tool for the automatic generation of misaligned vol-
umes, to perform robustness analysis while exploring the
space of possible deformations (Section IV-C).

Following, we present the background of 3D IR (Section II)
and a comparison with other related work (Section III) as
groundwork to deeply understand the ATHENA’s design
process (Section IV) and results (Section V).

II. BACKGROUND ON IMAGE REGISTRATION

This Section describes the main theoretical concepts behind
3D rigid image registration (IR), to provide the groundwork
for fully understanding the development process. Rigid IR can
be carried out using landmark points or voxels intensity [11].

1https://github.com/necst/athena



While the former requires some a priori knowledge of the im-
age features, the latter does not and, therefore, is more general
and commonly employed. Moreover, the IR is structured as an
iterative heuristic process aiming at maximizing a similarity
metric (Sim) among the reference (R) and the floating (F )
volume, after the application of the transformation T to F
(FT ), and giving, as output, the optimal parameters for floating
volume transformation (T̂ ) as in (Equation (1)) [20].

T̂ = argmax
T

Sim(R,FT ) (1)

The rigid IR algorithm can be divided into three main phases:
the parameter search, involving the use of optimizers to ex-
plore the parameters space; the transformation, which exploits
the parameters discovered in the previous phase to transform
the floating image; and the similarity metric computation, used
to evaluate the correctness of the transformation. This simi-
larity metric allows convergence to the solution providing the
best parameters to align the floating volume to the reference.

Depending on the desired result, the three phases can be
customized to create several configurations of transformations,
metrics, and optimizers.

III. RELATED WORK

Current approaches dealing with 3D image registration
cluster into two main categories. On the one hand, there
are entirely software-based solutions aiming at performing
registration, looking for the best accuracy-performance trade-
off. These solutions can be closed-source, like MATLAB [21],
which require licenses and achieve very high results suffering
low flexibility and customizability, or open-source solutions,
like SimpleITK [22] and ANTs [23], that achieve sufficient
accuracy but far from negligible execution times.

On the other hand, none of these algorithms achieves perfect
accuracy since it would be unfeasible in terms of execution
time. Consequently, other solutions exploit hardware accelera-
tion to enable more accurate algorithms while keeping low ex-
ecution time [16], [24]–[26]. On this path, GPUs proved very
effective in accelerating IR algorithms. While many solutions
performed approximations to achieve significant results [26],
D’Arnese et al. [16] developed a framework to accelerate 2D
IR by employing heterogeneous architecture without reducing
accuracy and reaching remarkable performance. However, they
only focus on 2D IR, which does not take advantage of
the information about the overall 3D volume. Additionally,
2D computations do not exploit all the available hardware
resources and memory bandwidth, thus suggesting that higher
performance can be obtained with the more general 3D IR.

In this sense, recognizing the effort of the approach pro-
posed in [16], we present ATHENA, a framework exploiting
heterogeneous architectures to accelerate multi-modal 3D rigid
image registration, reaching state-of-the-art accuracy and sig-
nificantly reducing execution time compared to the software.
Differently from others, ATHENA uses information about
the volume to register highly misaligned images, thus fixing
problems of existing solutions in the state-of-the-art.

Fig. 1. High-level scheme of the 3D Image Registration heuristic.

IV. PROPOSED APPROACH AND OPTIMIZATION

ATHENA’s solution performs 3D image registration with
a GPU-accelerated framework. This Section presents the soft-
ware design (Section IV-A), proposes a specific strategy to
obtain high accuracy even on memory-constrained devices
(Section IV-B), and devise a generator of misalignment be-
tween volumes, that will be used to evaluate the registration
robustness to different degrees of distortion between the ref-
erence and floating volumes (Section IV-C).

A. 3D Image Registration Framework

We developed our framework in Python while using the
PyTorch library [27] for image processing and Kornia [28] for
rigid transformations. Indeed PyTorch allows for using both
CPU and GPU with the same programming interface while
offering support for multithreading, especially for tensorial
operations. The software pipeline that performs 3D image
registration receives as input two volumes, the reference and
the floating, represented as two stacks of 2D images (as
the volumes are split on the z axis). Its goal is to apply
a transformation to the floating volume that maximizes the
chosen similarity metric (i.e., mutual information) with respect
to the reference volume. Therefore, it executes a search into
the transformation parameters space, as Figure 1 shows.

As described in [29], a correct search highly depends on
good initial conditions. Generally, 3D moments between vol-
umes are a rigorous way to find such starting parameters, yet
their computation appears highly inefficient [30]. Therefore,
we introduce a lightweight computation of 3D moments that
focus on the three main degrees of freedom considered for
biomedical cases: the translation on the axes x and y, be-
longing to the plane orthogonal to the acquisition direction (z
axis), and the rotation around z. We reduce the 3D moments’
computation to average the 2D moments’ parameters between
the 2D images of the input stacks. Since it is computationally
demanding, we offload its evaluation onto GPUs.

After the initial condition computation, an optimizer
searches for the parameters that maximize the similarity metric
between the reference and the floating volumes by consider-
ing translations and rotations over the three axes. However,
specific use cases may allow for avoiding some negligible
parameters. We implemented two different optimizers: 1+1
Evolutionary and Powell. The former employs an evolutionary



strategy of parent-child to optimize all the parameters simul-
taneously and stops when converging or after a maximum
number of iterations. The latter instead optimizes each pa-
rameter at a time and converges based on a hyperparameter
threshold. According to profiling analysis, these algorithms’
most computationally expensive parts are the evaluation of
the mutual information and the transformation of the floating
volume. Therefore, we accelerate them by exploiting GPUs.
Indeed, we load the volumes onto the GPU RAM, perform
volume transformation and computation of the mutual infor-
mation, and then retrieve the output. To reduce back and forth
CPU-GPU data transfer we move the transformation matrix
only. Furthermore, to reduce the execution time, we precom-
pute the mutual information piece of the reference volume,
being constant throughout the procedure. Moreover, we further
reduce Powell’s execution time by evaluating, at each iteration,
two volume transformations and their corresponding mutual
information concurrently. After the computation of the final
parameters, they are applied to the floating volume to align it.

B. Strategy for Memory-Constrained Devices

The main bottleneck of the IR procedure in Section IV-A
is the amount of memory available on the GPU devices.
Indeed, since we transform 3D volumes and compute the
mutual information on GPU, we need the whole reference and
floating volumes to fit the available GPU memory, along with
the additional data structures used by the underlying libraries.
This prevents, in many cases, the adoption of low- or middle-
end memory-constrained devices.

Therefore, we devised an additional strategy to tailor IR
to such a class of devices: we sample a portion of the input
volumes and search for the optimal registration parameters
on such subvolumes. Once we obtain the final parameters,
we apply them subvolume-wise to the input floating volume.
Doing so, the amount of data that needs to be loaded onto
the devices does not exceed the available memory. Indeed, we
sample a restricted number of 2D slices based on the system
resources, but other strategies may be explored according to
an apriori knowledge of the volume’s information distribution.

Once the algorithm computes the optimal transformation,
we divide the floating volume into subvolumes, and apply the
final transformation parameters on each subvolume separately,
since memory-constrained hardware cannot apply a transfor-
mation on the whole volume. Differently from unconstrained
devices that can transform the entire volume with a single
transformation, the mechanism for memory-constrained ones
requires to split the volume into subvolumes, move them to
GPU, and transform them separately. This procedure increases
the transfer time introducing a delay in the last transformation
compared to the one performed on unconstrained boards.

C. Generator of Misalignment for Robustness Evaluation

We also developed a tool to generate and apply specific
misalignment degrees to a 3D volume. Indeed, we aimed to
estimate the robustness of the registration task compared to the
misalignment between the reference and the floating volumes.

TABLE I
TARGET MACHINE CONFIGURATIONS WITH THEIR UNIQUE CODE NAME.

Code Name CPU Machine RAM NVIDIA GPU GPU RAM

A5000 AMD Ryzen 7 5800X 32GB RTX A5000 24GB
GTX1650 Intel i7-10870H 16GB GTX 1650 Ti 4GB
GTX1050 Intel i7-7700HQ 16GB GTX 1050 4GB
GTX960 Intel i7-6700 32GB GTX 960 2GB

V100 Intel Xeon Platinum 8167M 88GB Tesla V100 32GB
Ryzen7 AMD Ryzen 7 5800X 32GB - -

The misalignment can be described in translations and
rotations over x, y, and z. Our generator takes an initial input
volume, randomly applies transformations, and ATHENA
performs registration between the initial volume and the trans-
formed one. Then, it evaluates the registration accuracy and
considers it optimal if it overcomes a specific threshold. The
generator applies transformations that only modify one degree
of freedom at a time (e.g., a translation or a rotation) with
increasing values until the IR quality exceeds the threshold,
providing quantitative interval ranges for the variables.

V. EXPERIMENTAL EVALUATION

For evaluating ATHENA, we consider two main classes of
devices: high-end GPUs, which can search the parameters over
the whole volumes, and memory-constrained GPUs, for which
we apply the procedure explained in Section IV-B. Then,
we compare ATHENA’s performance and accuracy against
a software version of the proposed algorithm and SimpleITK.
Finally, we provide results for the robustness analysis based on
the generator of Section IV-C. For clarity, in Table I we show
the hardware configurations used in testing, together with the
codename they are referred to throughout this Section.

A. Performance Evaluation: Execution Time and Accuracy

Since we exploit a novel mechanism to perform 3D IR even
on memory-constrained devices, performance speedup is eval-
uated in Frame per Second (FPS) exploited for searching the
optimal parameters. Moreover, to reach the highest accuracy,
each configuration uses the maximum number of slices that fits
the available GPU resources. Indeed, the qualitative analysis
in Figure 2 shows the difference between the overlap achieved
between the ground truth and ATHENA, and SimpleITK.

Figure 3 and Figure 4 showcase the speedup against
ATHENA’s software version with 1+1 and Powell, respec-
tively, as optimizers. All the data in Figure 3 and Figure 4 does
not account for time needed to apply the final transformation to
the floating volume since, for the low-end device, it introduces
an overhead, while Table II reports the overall execution time,
comprehensive of the final transformation.

Figure 3 shows that even memory-constrained devices
achieve massive speedups over our software version, specif-
ically with a top speedup of 15.1× (on low-end boards)
and 53.7× (on high-end ones) with 1+1. Figure 4, instead,
shows that SimpleITK suffers Powell’s complexity, achieving
a speedup of 1.88×, while ATHENA still achieves significant
speedup over our software version, with a top speedup of
8.99× and 33.7×, on low- and high-end devices respectively.
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Fig. 2. Visual comparison of the overlapping achieved with ATHENA’s
A5000 and SimpleITK Ryzen7 .
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Fig. 3. Speedup against our software, exploiting 1+1 optimizer.

Table II, along with the overall the execution time, includes
information about the accuracy, measured as Intersection over
Union (IoU), for each solution. We can see how all GPU-based
configurations are significantly more accurate than SimpleITK,
reaching up to 0.986 IoU on memory-constrained devices.
Moreover, Table II allows appreciating that the employed
mechanism has no negative impact on accuracy, reaching
comparable results than high-end devices.

Finally, almost all configurations are significantly faster than
SimpleITK, with a top speedup of 18.1× and 15.8× using
Powell optimizer on ATHENA’s V100 and A5000.

B. ATHENA Robustness Analysis

The procedure defined in Section IV-C aims to evaluate the
quality of the output of the registration procedure based on
the intensity of the misalignment between the floating and
the reference volumes. We described such misalignment in
terms of translation on x and y axes and rotation around z
axis since they are the most representative for our biomedical
use case. From now on, we refer to these parameters as
tx, ty , and ψ, respectively. For each of them, we select an
interval to test. Table III displays the results obtained on
A5000 since it is a good trade-off low-end and newer high-
end devices. To evaluate the registration quality, we define
three different ranges: optimal, for IoU ≥ 0.85, acceptable,
for 0.75 ≤ IoU < 0.85, and not acceptable, for IoU < 0.75.

Therefore, we selected one parameter per time and applied
the corresponding transformations. For tx and ty , we tested the
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Fig. 4. Speedup against our software, exploiting Powell’s optimizer.

TABLE II
VOLUME DIMENSION, EXECUTION TIME µ(σ), AND IOU FOR DIFFERENT

ATHENA’S CONFIGURATIONS, SIMPLEITK, AND OUR SOFTWARE.

Work Device Optimizer #Volume
Slices

Execution
Time [s] IoU

ATHENA

GTX960 1+1 80 95.50 (0.08) 0.876 (0.079)
Powell 80 25.43 (0.03) 0.907 (0.070)

GTX1650 1+1 190 164.8 (2.74) 0.981 (0.015)
Powell 160 36.81 (1.44) 0.988 (0.006)

GTX1050 1+1 180 716.24 (69.42) 0.977 (0.019)
Powell 140 128.67 (15.62) 0.981 (0.008)

A5000 1+1 246 47.859 (0.099) 0.983 (0.008)
Powell 246 16.97 (0.08) 0.982 (0.008)

V100 1+1 246 47.296 (0.086) 0.982 (0.007)
Powell 246 14.836 (0.017) 0.985 (0.008)

SimpleITK Ryzen7 1+1 246 273.855 (8.542) 0.861 (0.060)
Powell 246 269.063 (4.344) 0.873 (0.024)

Software Ryzen7 1+1 246 2550.418 (94.4216) 0.991 (0.060)
Powell 246 499.952 (1.224) 0.993 (0.024)

range (−200px; +200px), with a 10px step, while for rota-
tions, we tested values of ψ ∈ (−25◦; +25◦), with a 0.5◦ step.
For each variable, we show in Table III the interval ranges for
acceptable and optimal performance. The robustness analysis
proves that ATHENA optimally corrects translation of almost
30% of the image dimension and rotations of 8◦, which is
remarkable given the physical constraints of our use case.

TABLE III
ACCEPTABLE AND OPTIMAL RANGES FOR MISALIGNMENT VARIABLES.

Var. Acceptable Rng. IoU ∈ [0.75,0.85) Optimal Rng. IoU ∈ [0.85,1]

tx (−140px; +200px) (−100px; +150px)
ty (−200px; +180px) (−190px; +150px)
ψ (−11◦; +11◦) (−8◦; +8◦)

VI. CONCLUSIONS AND FUTURE WORK

This work introduced ATHENA, a framework for 3D rigid
image registration exploiting hardware acceleration through
heterogeneous devices. Compared with the state-of-the-art,
ATHENA presents better results in accuracy and execution
time for almost all configurations, by also introducing a novel
mechanism to use memory-constrained devices.



Future work. We will extend ATHENA to other optimizers
and metrics to reach software-library flexibility.
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of simpleitk,” Frontiers in neuroinformatics, vol. 7, p. 45, 2013.

[23] B. B. Avants, N. Tustison, G. Song et al., “Advanced normalization tools
(ants),” Insight j, vol. 2, no. 365, pp. 1–35, 2009.

[24] D. Conficconi, E. D’Arnese, E. Del Sozzo, D. Sciuto, and M. D. Santam-
brogio, “A framework for customizable fpga-based image registration
accelerators,” in The 2021 ACM/SIGDA International Symposium on
Field-Programmable Gate Arrays, 2021, pp. 251–261.

[25] E. D’Arnese, D. Conficconi, E. Del Sozzo, L. Fusco, D. Sciuto, and
M. D. Santambrogio, “Faber: A hardware/software toolchain for image
registration,” IEEE Transactions on Parallel and Distributed Systems,
vol. 34, no. 1, pp. 291–303, 2022.

[26] K. Ikeda, F. Ino, and K. Hagihara, “Efficient acceleration of mutual
information computation for nonrigid registration using cuda,” IEEE
Journal of Biomedical and Health Informatics, vol. 18, no. 3, pp. 956–
968, 2014.

[27] A. Paszke, S. Gross, F. Massa, A. Lerer, J. Bradbury, G. Chanan,
T. Killeen, Z. Lin, N. Gimelshein, L. Antiga, A. Desmaison, A. Kopf,
E. Yang, Z. DeVito, M. Raison, A. Tejani, S. Chilamkurthy, B. Steiner,
L. Fang, J. Bai, and S. Chintala, “Pytorch: An imperative style,
high-performance deep learning library,” in Advances in Neural
Information Processing Systems 32. Curran Associates, Inc., 2019,
pp. 8024–8035. [Online]. Available: http://papers.neurips.cc/paper/
9015-pytorch-an-imperative-style-high-performance-deep-learning-library.
pdf

[28] E. Riba, D. Mishkin, D. Ponsa, E. Rublee, and G. Bradski, “Kornia:
an open source differentiable computer vision library for pytorch,” in
Proceedings of the IEEE/CVF Winter Conference on Applications of
Computer Vision, 2020, pp. 3674–3683.

[29] M. V. Narkhede, P. P. Bartakke, and M. S. Sutaone, “A review on weight
initialization strategies for neural networks,” Artificial intelligence re-
view, vol. 55, no. 1, pp. 291–322, 2022.

[30] J. Flusser, T. Suk, and B. Zitová, 2D and 3D image analysis by moments.
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