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Abstract: The WCLL Breeding Blanket of DEMO and the Test Blanket Module (TBM) of ITER require
accurate R&D activities, i.e., concept validation at a relevant scale and safety demonstrations. In
view of this, the strategic objective of the Water Loop (WL) facility, belonging to the W-HYDRA
experimental platform planned at C.R. Brasimone of ENEA, is twofold: to conduct R&D activities
for the WCLL BB to validate design performances and to increase the technical maturity level for
selection and validation phases, as well as to support the ITER WCLL Test Blanket System program.
Basically, the Water Loop facility will have the capability to investigate the design features and
performances of scaled-down or portions of breeding blanket components, as well as full-scale TBM
mock-ups. It is a large-/medium-scale water coolant plant that will provide water coolant at high
pressure and temperature. It is composed by single-phase primary (designed at 18.5 MPa and 350 °C)
and secondary (designed at 2.5 MPa and 220 °C) systems thermally connected with a two-phase
tertiary loop acting as an ultimate heat sink (designed at 6 bar and 80 °C). The primary loop has two
main sources of power: an electrical heater up to about 1 MWe, installed in the cold side, downstream
of the pump and upstream of the test section, and an electron beam gun acting as a heat flux generator.
The WL has unique features and is designed as a multi-purpose facility capable of being coupled
with the LIFUS5/Mod4 facility to study PbLi/water reaction at a large scale. This paper presents the
status of the Water Loop facility, highlighting objectives, design features, and the analyses performed.

Keywords: fusion technology; water loop facility; design; WCLL; DEMO

1. Introduction

The International Thermonuclear Experimental Reactor (ITER) project [1] stands as
an ambitious international project supported over decades by R&D activities in the field
of nuclear fusion technology. Located in Cadarache, France, it is a magnetic confinement
tokamak of unprecedented scale and complexity that aims at achieving sustained nuclear
fusion and demonstrating the scientific feasibility of controlled fusion reactions. The
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engineering required for ITER is exceptionally challenging; reactor components must
withstand the extreme heat and radiation loads generated by the plasma that has to be
maintained as stable and confined through the use of superconducting magnets, cryogenic
cooling systems, and advanced diagnostics. Among the multiple hurdles to overcome for
the successful development of fusion reactors, one of the most critical is the design of the
Breeding Blanket (BB) [2], which serves as heat extraction, tritium breeder, and neutron
shield. Different BB concepts will be tested in ITER in the form of Test Blanket Modules
(TBMs) [3,4], each one involving trade-off between different aspects, including cooling
efficiency, tritium self-sufficiency, material considerations, and system complexity [5,6].

In the last few years, ENEA has focused its R&D efforts on the Water-Cooled Lithium
Lead (WCLL) BB solution [7], which relies on pressurized water as coolant and lithium-lead
(PbLi) enriched at 90% in 6Li as breeder, neutron multiplier, and tritium carrier.

The BB direct testing in ITER facility is not possible, since the reactor will be operated
at different conditions with respect to the ones expected for DEMO [8]. In particular, lower
neutron wall load and neutron fluence are foreseen, as well as a relatively short pulse phase
(hundreds of seconds) compared to the one assumed for DEMO (two hours). Nevertheless,
several studies showed that significant feedbacks can be obtained by testing in ITER some
mock-ups, i.e., TBMs, provided with the same structural and breeding materials supposed
to be used in DEMO blanket. For this reason, during the third ITER council (2008), the
so-called ITER Test Blanket Module program was established [4]. Initially, a test of six
mock-ups was planned. The chosen options were discussed in [4]. In 2018, the R&D
strategy was strongly revised and the number of tested modules lowered to four. Also,
the selected blanket concepts were changed, with the insertion of WCLL option. The ITER
WCLL Test Blanket System (TBS) design incorporates several ancillary systems: the Water
Cooling System (WCS), the Coolant Purification System (CPS), the PbLi loop, and the
Tritium Extraction System (TES) [9], each serving specific functions.

The WCS is responsible for establishing and maintaining the appropriate operating
parameters of the coolant during various TBM operational states. Additionally, it transfers
thermal power from the WCLL TBM to the Component Cooling Water System (CCWS),
acting as an ultimate sink. Finally, it provides containment for both water and radioactive
products and ensures the effective implementation of the WCLL TBS safety function.

The CPS is a continuously operating purification loop. It extracts activation products
to ensure adequate activity levels, manages coolant chemistry, removes dissolved gases,
and preserves the pressure boundary.

The PbLi loop is a ferritic-martensitic steel closed loop working in forced circulation.
Its primary functions include supplying and maintaining the PbLi at suitable operational
conditions for the TBM, facilitating PbLi circulation, removing impurities, extracting tritium
from the alloy, serving as confinement for radioactive products, and contributing to the
implementation of safety provisions within the WCLL TBS.

TES is tasked with extracting tritium from the stripping gas, concentrating it, and
directing it to the tritium processing system. It also monitors the chemical composition and
physical properties of the stripping gas while removing eventual solid particles.

ENEA, as a EUROfusion [10] consortium partner, is actively participating in the Work
Package Breeding Blanket (WPBB) activities by designing and subsequently constructing an
experimental infrastructure named W-HYDRA, made up of different facilities serving mul-
tiple purposes: Water Loop (WL), STEAM, and LIthium FUSion 5 Mod 4 (LIFUS5/Mod4).

WL is a medium/large-scale water facility that provides a test bed for the WCLL BB,
hosting several test sections and mock-ups for investigating the WCLL BB phenomena and
components while representing a platform for the ITER WCLL TBM at full scale.

STEAM [11] is a water facility conceived to experimentally investigate the DEMO
Balance of Plant (BoP) [12] and steam generator mock-up [13,14], with a particular focus
on the pulse-dwell-pulse operation and the low power states. WL and STEAM will share
the same buildings, supporting structures, and some components, such as the pressurizer.
Such components will be equipped with manual isolation valves placed both on the surge



Energies 2023, 16, 7746

30f21

and spray line, assuring the separation between the two facilities. As a result, STEAM and
WL cannot be operated at the same time.

LIFUS5/Mod4 [15] is a PbLi loop that aims at reproducing the geometry and opera-
tional conditions of the TBS to simulate and characterize its behavior during an in-box Loss
of Coolant Accident (LOCA) of high-pressure water in high-temperature and low-pressure
PbLi fluid. LIFUS5 will be located in a separate hall with respect to WL and STEAM but
will have an interface with the WL to perform water/PbLi interaction tests. The connection
between WL and LIFUS5/Mod4 will be realized in correspondence with the LIFUS5 test
section, reproducing a portion of the WCLL TBM Breeding Zone. The test section envisages
cooling double-walled tubes (DWT) immersed in PbLi. Water flowing in DWT is provided
by WL. This is a unique feature since it allows investigation of the PbLi—water interaction
with an integral test facility.

2. Water Loop Facility Objectives and Description

Water Loop is a “low power branch” of the W-HYDRA platform conceived and
sized to serve as a comprehensive Integral Test Facility for the WCS of the ITER WCLL
TBM. Its design replicates the functions, layout, and components of the WCS to enable
full-scale thermal-hydraulic and structural testing of WCLL TBM mock-ups and their
ancillary system. The primary objectives include characterizing specific components,
assessing overall circuit performance, evaluating procedures, and gathering essential data
for validating models and numerical codes.

Furthermore, the flexibility of the facility will allow the thermal-hydraulic and thermo-
mechanical testing of various BB sub-components using specifically designed mock-ups,
such as First Wall (FW), Breeding Zone (BZ), manifolds, etc. The FW test section will
allow the investigation of the cooling system based on water at PWR conditions flowing
in asymmetrically heated squared channels. The BZ manifold, instead, aims at testing the
mass flow distribution among the parallel channels fed by the manifold. The experimental
campaigns of both the mock-ups will provide experimental data useful for the validation
and verification of the numerical models used during the design phase. Both nominal and
accidental conditions will be addressed by experimental campaigns adopting the same
control logics of the ITER WCS. This approach allows the verification and validation of the
numerical models set up during the preconceptual and conceptual design phases. Notably,
Loss of Coolant Accident (LOCA) and Loss of Flow Accident (LOFA) scenarios occurring
in the ITER WCS circuit are going to be investigated to collect valuable information on the
system behavior.

The WL, whose main parameters are collected in Table 1, is a three-loop facility
capable of delivering water at pressurized water reactor (PWR) conditions to a test section
placed within a vacuum chamber. Specifically, the WL provides water at 15.5 MPa and
295 °C, matching the thermal-hydraulic requirements of both the WCLL BB and TBM. The
same test section can be also coupled with the LIFUS5/Mod4 facility to investigate the
water/PbLi reaction. To replicate the heat flux experienced by both the TBM and blanket
FW, the WL features an electron beam (EB) gun installed in the dedicated vacuum chamber.
This EB gun can deliver a nominal power of 0.5 MW /m? on an area of 0.8 m? and up to
5 MW /m? on around 10% of the mock-up surface in short transient. This infrastructure will
be used to reproduce the heat flux acting on the First Wall of the DEMO BB due to plasma
radiation during the flat-top operation. Moreover, the presence of an EB gun facilitates
the investigation of various effects, such as thermal cycling fatigue, as well as localized
overheating of FW regions, assessing the response of coolant, structural materials, and
armor materials.
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2.1. WL Primary System
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The pressure is regulated by a steam pressurizer (PR , on top of which a PORV and an
SRV allow the discharge of steam in the relief tank in case of overpressures. An electric
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allow the discharge of steam in the relief tank in case of overpressures. An electric heater
is placed inside the pressurizer to supply heat and increase the pressure in case of low
pressure, while a spray system is activated in case of high pressure.

The loop will be operated at 2.0 MPa, with water temperatures ranging from 65 °C
to 128 °C. The design pressure for this circuit has been set at 2.5 MPa, while the design
temperature is equal to 220 °C.

2.3. WL Tertiary System

The tertiary loop, represented by the green solid lines in Figure 1, serves as the ultimate
heat sink of the W-HYDRA platform. Thermal power is transferred to this loop via the heat
exchanger HX3 and it is subsequently dissipated into the environment through a cooling
tower (Tower). Circulation within the loop is ensured by a pump and a regulation valve is
envisaged to regulate the mass flow rate. Since the cooling tower is designed to operate
with an open cycle, water is going to be continuously integrated with the support of a
water treatment system.

3. Numerical Analyses in Support of the Design
3.1. Pipe Stress Analysis in Support of the Design

A pipe stress analysis has been performed on the Water Loop configuration shown in
Figure 2 with the primary aim of verifying its structural stability and to optimize the layout.
A try-and-fail approach has been followed to assess and design the support system. When
necessary, further supports were installed and modifications to the existing ones have
been carried out to minimize the displacements while reducing the stress level induced to
the piping.

3.1.1. Numerical Model, Loads, and Boundary Conditions

The study has been carried out using the commercial code ROHR2 v33 [16]. The ASME
BPVC Sect. III [17] has been adopted for the piping structural verification, considering
Class II for the loop components. The assessed loading scenario is classified under Cat. I of
the considered code.

Numerical models for pipe stress analyses in ROHR? are set up as a series of 3D beam
elements that create a depiction of the piping geometry, showing good accuracy of the
results while requiring much less computational effort than 3D solid elements.

In ROHR2, loads can be divided into primary (composed by piping and component
dead loads, internal operating pressure, and additional occasional loads such as earthquake
or window loads) and secondary (linked only to the thermal expansion associated to the
operating temperature) loads.

Two static load cases have been analyzed: a dead load scenario and a plasma/normal
operation state (POS/NOS) Cat. I scenario, which is aligned with the ITER WCLL-TBM
Water Coolant System (WCS) loading conditions [18,19]. The combination of global loads
considered in the two cases are listed in Table 2.

Table 2. Combination of loads for the considered cases.

Dead Load POS/NOS Cat. I
Thermal expansion X
Acceleration due to gravity X X
Forces due to internal pressure X X

According to the standards, the verification of the stress level considers different
combinations, as follows:

- Primary loads or sustained loads (SSL), which include the primary loads related to
the load case “Dead Load” (i.e., gravity and internal pressure);
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Following a try-and-fail iterative approach, a set of supports has been determined,
adopting hangers and combinations of rigid supports, as shown in Figure 6. The provided
support system has been implemented and improved in view of the results of the structural
analysis. The symbols shown in Figure 6 represent the different types of connections,
supports, and concentrated loads applied to the piping model.
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Moreover, interfaces with other systems have been modeled imposing proper
mechanical restraints. Regarding special components, “unreinforced fabricated tee” and
“plain bend pipe” components have been adopted for tee junctions and bends,
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Figure 9. Dead load. Displacement field.
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a large displacement is obtained in correspondence with the pipe connected to the TBM,
mainly due to the combination of high temperature and its significant length. However,
the displacement could not be restrained in order to limit the thermal stresses. Concerning
the stress analyses, the ASME III criteria are satisfied everywhere, either for secondary
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Maximum displacement 4666 (mm) X:5.56/Y:51.40/7:5.19
Maximum equivalent stress 5562 (Mpa) 163.6
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decreases. The fluid contraction leads to a reduction in the pressurizer liquid level, causing
the pressure to drop below the PRZ heaters’ set point (15.4 MPa).
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10 kW to explore safer operational strategies during the rapid power fluctuations, with the
aim of preventing system depressurization during the pulse phase. Specifically, in “case
0” (black in Figures 24-26) the heater set point has been switched from 295 °C to 311.5 °C
(i.e., the TBM average temperature, calculated as (295 + 328)/2 = 311.5 °C) during the dwell
phase to limit the fluid density reduction. As a result, both cold and hot leg temperature
tends to 311.5 °C during the dwell phase, meaning that the temperature gradient that the
hot leg should experience is halved between cold and hot leg. With the ramp up, heater
set point is restored at 295 °C. Therefore, the cold leg (CL) temperature drops to 295 °C
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To avoid the temperature peak, further analyses have been performed, reverting
the heater set point from 311.5 to 295 °C before the dwell phase ends. In particular, this
modification has been implemented 90 s, 190 s, 290 s, 390 s, and 490 s before the pulse
(b.p.) to allow the HL temperature to return to its nominal value. Results indicate that CL
temperature (Figure 24) undergoes a thermal cycling of approximately half of the nominal
(pulse phase) AT (i.e., 16.5 °C). In contrast, the HL (Figure 25) experiences a AT increasing
with the heater anticipation time, up to its nominal (pulse phase, i.e., 33 °C) value for
b.p. greater than 290 s. However, this allows the HL temperature to not exceed its limit.
Regarding loop pressure, except for “case 07, the longer the 311.5 °C set point is maintained,
the less significant the depressurization is; switching the set point to 295 °C only 90 s before
the pulse contains the pressure reduction above 15.2 MPa but, nonetheless, it results in a
pressure peak that determines the spray intervention (Figure 26).

Regardless of how the circuit is managed, pressure fluctuations triggering spray
activation are inevitable. The most reasonable choice would be to install an electric heater
at the TBM outlet to maintain 328 °C as a fixed set point for the hot leg temperature, thus
avoiding pressure excursions associated with density variations. However, this would
result in a significant increase in the complexity of the facility and in an increase in the cost.
For this reason, the adoption of 40 kW electric heaters in the pressurizer is preferred among
the strategies considered because it exhibits lower pressure cycling (the same overpressure
as the other but a contained depressurization).

4. Conclusions

Water Loop, as a part of the W-HYDRA infrastructure, represents a comprehensive
platform for ITER WCLL TBM WCS testing at the full scale. It will provide a test bed for the
WCLL BB, hosting several mock-ups for the investigation of phenomena and components.
It is strategic for the development of relevant design, technology, and licensing of ITER’s
WCLL WCS.

The pipe stress analysis of the Water Loop piping system has been performed under
the normal operation loading conditions of the ITER WCLL-TBM WCS. The supports
system has been implemented and modified to achieve dual objectives: minimizing dis-
placements while mitigating stresses within the piping system. The outcomes of the pipe
stress analysis reveal that the system exhibits overall stability and functionality, with no
significant concerns. However, localized areas displayed elevated stress levels. To enhance
the structural response of the system in these specific stress-prone regions, minor modifica-
tions have been proposed. These layout adjustments have been introduced and assessed,
showing benefits in the predicted stress and displacements.

Thermal hydraulic analyses have been performed to investigate the facility response
to the rapid transitions between pulsed and dwell phases, with a particular focus on
the pressurizer behaviour. During the dwell phase, the power reduction determines the
hot leg temperature decrease, approaching the cold leg temperature. The correspondent
density variation causes the pressurizer pressure to decrease, triggering the PRZ electrical
heaters. In correspondence with the pulse, the increase in hot leg density leads to an
overpressure, which is, in turn, dealt by the spray. Several sensitivity analyses have been
performed, revealing that, while it is impossible to prevent pulse overpressure, the extent
of the depressurization can be limited by increasing the PRZ heaters” maximum power or
by modifying the heater set point during the dwell phase.

Further thermal-hydraulic and thermo-mechanic analyses will be performed to fi-
nalize the design of the main components and the layout of the WL facility. The facility
construction is supposed to be completed by the end of 2024 and commissioning tests
will follow.
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