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A B S T R A C T

Android robots that resemble humans closely, but not perfectly, can provoke negative feelings of dislike and
eeriness in humans (the “Uncanny Valley” effect). We investigated whether category confusion between the
perceptual categories of “robot” and “human” contributes to Uncanny Valley aversion. Using a novel, validated
corpus of 182 images of real robot and human faces, we precisely estimated the shape of the Uncanny Valley and
the location of the perceived robot/human boundary. To implicitly measure confusion, we tracked 358 parti-
cipants’ mouse trajectories as they categorized the faces. We observed a clear Uncanny Valley, though with some
interesting differences from standard theoretical predictions; the initial apex of likability for highly mechanical
robots indicated that these robots were still moderately dislikable, and the Uncanny Valley itself was positioned
closer to the mechanical than to the human-like end of the spectrum. We also observed a pattern of categor-
ization suggesting that humans do perceive a categorical robot/human boundary. Yet in contrast to predictions
of the category confusion mechanism hypothesis, the locations of the Uncanny Valley and of the category
boundary did not coincide, and mediation analyses further failed to support a mechanistic role of category
confusion. These results suggest category confusion does not explain the Uncanny Valley effect.

1. Introduction

Android robots have rapidly entered our social sphere. We now entrust
them with providing therapy to children with autism and older adults,
coaching patients on health behavior change, and collaborating with as-
tronauts in space stations (Rabbitt, Kazdin, & Scassellati, 2015; Weisberger,
2018). Yet human-robot interactions can be fraught with social peril. Ro-
bots that closely resemble humans but are not perfectly human-like can
elicit unexpectedly negative emotional reactions in human viewers, jeo-
pardizing the robots' social success. This “Uncanny Valley” theory (Mori,
1970) has dominated discussion of human reactions to anthropomorphic
robots in both popular culture and research literature. Specifically, the

theory posits that as android robots increasingly resemble humans, their
likability improves until a point at which it abruptly drops to a negative
value because the robots become dislikable and eerie (Fig. 1). As the robots’
human-likeness continues to increase past this “Uncanny Valley”, they
again become likable and eventually become maximally likable as they
become indistinguishable from humans. The Uncanny Valley does seem to
occur in real android robots that were intentionally designed to interact
with humans (Mathur and Reichling (2016); Slijkhuis (2017); Lischetzke,
Izydorczyk, Hüller, and Appel (2017); Jung and Cho (2018)).

With android robots increasingly becoming everyday technology,
there is a pressing need to understand the psychological mechanisms
underlying the Uncanny Valley effect. Some hypotheses posit relatively
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high-level social and affective mechanisms: robots in the Uncanny Valley
might prime awareness of one's own mortality (Ho, MacDorman, &
Pramono, 2008), prompt dehumanization responses similar to that di-
rected at human targets of prejudice (Wang, Lilienfeld, & Rochat, 2015),
or trigger impulses to avoid pathogens (MacDorman, Green, Ho, & Koch,
2009). In contrast, according to a longstanding lower-level hypothesis
known as “category confusion”, there is a deep-seated perceptual dis-
tinction between the categories “human” and “non-human”, and an-
droids that are difficult to categorize as one or the other cause aversion
due to the categorization difficulty itself (Jentsch (1906, pp. 195–198);
English translation: Jentsch (1997)). That is, negative reactions to robots
in the Uncanny Valley may be a special case of general aversion to
cognitive inhibition caused by competing perceptual representations
(Ferrey, Burleigh, & Fenske, 2015; Freeman & Johnson, 2016).

Similar mechanisms may underlie confusion occurring between
categories of gender, race, age, sexual orientation, attitude, attractive-
ness, skin tone, accent, and relationship type (Fiske & Taylor, 2008). If
there is indeed a general aversion to category confusion, the category
boundaries most relevant to the Uncanny Valley – those demarcating
“human” vs. “non-human” and “animate” vs. “inanimate” – might also
elicit an enhanced response given humans' specialized adaptions for
face perception (Kanwisher, 2000). Indeed, stimuli depicting inanimate
objects across a spectrum of realism, such as morphs between a pho-
tograph of a car and a computer-generated rendering of the car, seem to
elicit weaker Uncanny Valley effects than stimuli depicting humans and
humanoids (e.g., MacDorman and Chattopadhyay (2016)'s Fig. 5;
Schwind, Leicht, Jäger, Wolf, and Henze (2018)), though stimuli de-
picting animals do seem to elicit Uncanny Valley effects (e.g.,
MacDorman & Chattopadhyay, 2016; Schwind et al., 2018).

Supporting some predictions of the category confusion explanation
for the Uncanny Valley, human viewers may indeed perceive a catego-
rical boundary between human and various near-human stimuli (Looser
& Wheatley, 2010; Weis & Wiese, 2017), and mid-range stimuli seem to
elicit the most confusion based on implicit measures such as reaction
time and eye-gaze direction (Cheetham, Wu, Pauli, & Jancke, 2015,
2013; MacDorman & Chattopadhyay, 2016; Mathur & Reichling, 2016;
Yamada, Kawabe, & Ihaya, 2013). However, it remains unclear whether
confusion at the category boundary actually causes negative emotional
responses to ambiguous faces or is merely an epiphenomenon. The me-
chanistic account would predict that the point on the nonhuman-human
spectrum eliciting maximum confusion should coincide with the point
eliciting the most negative social and affective responses; some studies
have preliminarily supported this prediction (Mathur & Reichling, 2016;
Yamada et al., 2013), but others have not (Cheetham et al., 2015, 2014;
Looser & Wheatley, 2010; MacDorman & Chattopadhyay, 2016).

The apparent conflict between these findings may partly reflect
methodological limitations (Kätsyri, Förger, Mäkäräinen, & Takala,
2015; Lay, Brace, Pike, & Pollick, 2016). First, many studies to date have
used as few as three stimuli spanning only a limited, very human-like
region of the nonhuman-human spectrum (approximately points 7–9 in

Fig. 1). If all stimuli are more human-like than the point eliciting the
most negative Uncanny Valley reactions, then affective patterns to these
stimuli might increase monotonically with human-likeness rather than
showing a characteristic Uncanny Valley curve (as seen in Cheetham,
Suter, and Jancke (2014, 2015); Looser and Wheatley (2010);
MacDorman and Chattopadhyay (2016)). Stimuli whose truncated range
precludes observing the Uncanny Valley itself may also disrupt assess-
ment of category confusion in the Uncanny Valley. Second, most studies
have generated stimuli through digital image morphing, a method that
risks producing unrealistic transitional images exhibiting, for example,
partially transparent facial features or incompatible combinations of
features that would be avoided in real-world robot design (Kätsyri et al.,
2015; Kawabe, Sasaki, Ihaya, & Yamada, 2017). It is plausible that these
unrealistic features themselves, rather than the stimuli's degree of
human-likeness, might produce artifactual confusion or aversion. Sta-
tistical methods used in previous research have rarely assessed a me-
chanistic role of category confusion, instead focusing on certain down-
stream predictions of the category confusion mechanism hypothesis, for
example by assessing the association between confusion and emotional
responses. Two studies more directly assessed whether reaction time, a
coarse measure of confusion, statistically mediated the relationship be-
tween human-likeness and ratings of eeriness or weirdness, but with
differing findings (Carr, Hofree, Sheldon, Saygin, & Winkielman, 2017;
Mathur & Reichling, 2016). Carr et al. (2017) reported mediation, but
that study used only three stimuli; Mathur and Reichling (2016) did not
detect mediation, but this was a secondary analysis of reaction times in a
mechano-humanness rating task rather than a binary categorization task.

The present study aims to: (1) provide the most precise estimate to
date of the shape of the Uncanny Valley curve in real-life robots and hu-
mans; (2) estimate the degree of human-likeness marking the perceptual
category boundary between “non-human” and “human”; and (3) rigor-
ously assess whether category confusion is a mechanism for Uncanny
Valley effects. We first assembled a large corpus of face images of socially
interactive robots that have actually been built. We minimized variation
on potential confounders such as the face's perceived emotion (Lay et al.,
2016) and ensured that the faces were well-distributed across the full
spectrum of human-likeness, enabling precise estimates of the Uncanny
Valley curve and of the location of the perceived boundary between the
categories "robot" and "human". For improved generalizability, we re-
cruited participants at six collaborating sites in four countries. Participants
rated each face on human-likeness and likability, and they attempted to
rapidly categorize each face as “robot” or “human” while we collected
measures of category confusion. We assessed confusion using validated
measures based on mouse-tracking (Freeman & Johnson, 2016; Mathur &
Reichling, 2016) to supplement coarser existing measures based on reac-
tion time. We assessed for statistical mediation as predicted by the me-
chanistic account of category confusion in a manner that accommodated
the expected nonlinear relationships between human-likeness, confusion,
and likability. Subsequent sections of this paper are structured as follows:
we will describe methods for stimulus validation, for measurement of
category confusion, and for participant recruitment, then describe statis-
tical methods and results for each of the three aims in turn, then conclude
with a general discussion.

2. Data collection methods

All methods and statistical analyses were preregistered in detail; the
Supplement (Section 1.2) describes and justifies some deviations from this
protocol. All measures and experiments are reported, and we determined
sample sizes in advance. All data, materials, analysis code, and the pre-
registration are publicly available and documented (https://osf.io/2v6f4/).

2.1. Face stimuli

We selected stimuli depicting the faces of real robots designed for
social interaction, as well as faces of real humans. To support assessing

Fig. 1. The hypothesized Uncanny Valley, adapted from Mori (1970).
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a potential role of category confusion in mediating the relationship
between human-likeness and likability, we attempted to select stimuli
in a manner that would minimize confounding of the relationships
between human-likeness, confusion, and likability (VanderWeele,
2015). For example, if displaying more positive emotion causes a face
to be perceived as more human-like and also causes the face to be
perceived as more likable, then perceived emotion could act as a con-
founder that would compromise causal conclusions from mediation
analysis (VanderWeele, 2015).

We identified face images using an objective Internet search process
similar to that of Mathur and Reichling (2016). In addition to applying
Mathur and Reichling (2016)'s inclusion and exclusion criteria (re-
produced in the Supplement, Section 1.1), we applied the following
inclusion criteria to further minimize variation on potential con-
founders. First, the faces had to be photographed in frontal view.
Second, the faces had to be perceived as displaying neutral emotion,
defined as having a mean rating between −20 and + 20 on a visual
analog scale ranging from −100 to +100. Third, the faces had to be
densely spread over the entire spectrum from extremely mechanical to
extremely human-like, rather than concentrated in only certain parts of
the spectrum. Specifically, on a continuous scale of “mechano-human-
ness” (MH) score ranging from −100 (“extremely mechanical”) to
+100 (“extremely human-like”), we required that there be no 50-point
span of MH score occupied by fewer than 20 faces.

To collect face stimuli, we first reviewed the existing set of 80 robot
faces from Mathur and Reichling (2016); these faces had existing esti-
mates of MH score. We discarded images that failed the more stringent
inclusion criteria used here (e.g., because the photo was a 3/4 view or
the face displayed too much emotion). For failed images, we searched
the Internet to try to identify alternative photos of the excluded robot
that did meet the criteria. The stimuli in Mathur and Reichling (2016)
were somewhat limited by their sparse coverage of the very human-like
range (i.e., MH score above about +90); to resolve this limitation in the
present stimuli, we also obtained images of actual human faces from
www.shutterstock.com, an online image bank. To obtain these human
faces, we performed a broad search using terms such as “portrait”,
“face”, and “unemotional”, attempting to select an assortment of faces
meeting the same visual criteria as used for the robot faces and span-
ning a range from unmistakably human to somewhat artificial in ap-
pearance. The faces appearing unmistakably human included those that
seemed unusually "imperfect" due, for example, to particularly promi-
nent or asymmetric facial features. The faces appearing somewhat ar-
tificial included those that seemed unusually "perfect" due, for example,
to symmetry, lack of flaws, or heavy use of makeup.

To ensure that the resulting robot and human faces were adequately
densely distributed throughout the MH spectrum, we iterated between
finding additional candidate images that preliminarily appeared to meet
the inclusion criteria and testing the candidate images for perceived
emotion and MH score using groups of pilot participants. At least 26 pilot
participants (mean number of participants: 40) rated each candidate face
on perceived emotion and MH score. We ultimately included 182 faces,
comprising 122 robots and 60 humans (Fig. 2). The final validated
corpus of images, along with summary measures of their ratings on all
analyzed variables in this study, is publicly available for by-attribution
use in future research (https://osf.io/2v6f4/). The faces had mean MH
score −12.3 (−53.5 for the robots and 71.5 for the humans) and had
mean likability −5.4 (−32.9 for the robots and 50.5 for the humans).

2.2. Measures of human-likeness, confusion, and likability

We measured human-likeness by asking, “How mechanical versus
human-like does this face look?”; participants responded using a bipolar
visual analog scale ranging from−100 to+100 with the endpoints labeled
“extremely mechanical” and “extremely human-like” (Mathur & Reichling,
2016). We refer to this measure as “mechano-humanness” or “MH” score.
We measured likability by asking participants to “Estimate how friendly

and enjoyable (or creepy) it might be to interact with the robot in some
everyday situation, such as asking a question at a museum's information
booth”; participants responded on a similar visual analog scale with the
endpoints labeled “Less friendly; more unpleasant and creepy” and “More
friendly and pleasant; less creepy” (Mathur & Reichling, 2016).

We used validated open-source software (Mathur & Reichling, 2019)
to collect five established measures of category confusion (e.g., Freeman,
Ambady, Rule, and Johnson (2008)). Participants viewed the faces se-
quentially and were asked to rapidly categorize each face as “robot” or
“human” by clicking on one of two buttons presented on the left and
right sides of the window (Fig. 3). (Methodological details of the cate-
gorization task are available in Mathur and Reichling (2019).) Ambig-
uous stimuli are thought to activate mental representation of both ca-
tegories simultaneously, leading to dynamic competition that manifests
in real time as unstable mouse trajectories (Freeman & Johnson, 2016).
That is, because the participant is continuously or alternately attracted to
both categories, the mouse trajectory may contain frequent direction
changes and may diverge substantially from a direct path from the start
position to the location of the category button ultimately chosen.

Therefore, similarly to Freeman et al. (2008), as primary measures of
confusion, we collected as primary measures of confusion: (1) the
number of times the participant's mouse changed directions horizontally
during categorization (x-flips); (2) the maximum horizontal deviation
between the participant's mouse trajectory and an ideal trajectory con-
sisting of a straight line from the participant's initial cursor position to
the finally chosen category button (maximum x-deviation; red solid line in
Fig. 3); and (3) the area between the ideal and actual trajectories (pink
shading in Fig. 3). We additionally measured: (4) the peak speed of the
participant's cursor (ambiguous stimuli tend to produce higher peak
speeds, reflecting abrupt category shifts (Freeman, Pauker, & Sanchez,
2016)); and (5) the total reaction time for the trial (ambiguous stimuli
tend to produce longer reaction times). Because the latter two measures
have limitations as measures of category confusion (Freeman et al.,
2016), we made an a priori decision to designate them as secondary
measures. Each participant provided measures of MH score, confusion,
and likability in that order for all 182 faces. To minimize the possibility
of task interference or memory effects due to a participant's repeated
exposure to each face, we collected each measure in a separate wave of
data collection spaced by approximately one week. Within each wave,
the order of the faces was randomized for each participant. At the end of
the first wave, participants also completed basic demographic measures
of age, sex, education level, and race/ethnicity. At the end of each wave,
participants reported any technical or comprehension problems.

2.3. Participants

We collected data at six colleges and universities in the United States,
Hungary, the Netherlands, and Italy; we recruited the data collection sites
through the authors’ previous collaborations and the online platform
StudySwap (https://osf.io/meetings/StudySwap). Supplement Table S1
describes characteristics of the sites. Aggregating across sites, we analyzed
data from 358 participants, who were 72% female with mean age 21.5
years; further demographic characteristics are described in Supplement
Table S2. Each site aimed to collect data on at least 50 English-speaking
participants in a quiet lab or classroom on lab-provided computers that were
pre-tested for accurate collection of mouse-tracking data. Labs incentivized
participation using various monetary compensation, course credit, or vo-
lunteer schemes. All participants completed the study using the same
Qualtrics questionnaires provided by the lead authors, MBM and DBR. Each
lab secured its own ethics approval or waiver as appropriate to its location.
We determined sample sizes in advance based on considerations detailed in
the preregistered protocol (https://osf.io/mu5xj/registrations).

Based on a priori criteria, we excluded participants who did not com-
plete all three waves of the questionnaire, whose data indicated technical
problems (e.g., reflecting rare, idiosyncratic timing issues that caused no
times to be recorded for a participant, or caused timing to stop prematurely;

M.B. Mathur, et al. Computers in Human Behavior 103 (2020) 21–30

23

http://www.shutterstock.com
https://osf.io/2v6f4/
https://osf.io/meetings/StudySwap
https://osf.io/mu5xj/registrations


Fig. 2. Robot and human face stimuli displayed in ascending order of mean mechano-humanness (MH) score. Boxed faces are those with MH scores closest to the MH
scores associated with: (A) the initial likability apex of Uncanny Valley curve (estimation described in Section 3); (B) the likability low point of Uncanny Valley; (C)
the robot/human category boundary (estimation described in Section 4); and (D) the final apex of likability.
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Mathur and Reichling (2019)), or for whom there were known data col-
lection errors (e.g., the waves of data collection were run in the wrong
order). Supplement Fig. S1 details the number of participants excluded for
each reason. Additionally, we excluded individual trials in which the value
of any confusion measure was larger than its 75th percentile plus 1.5 times
its interquartile range or smaller its 25th percentile minus 1.5 times the
interquartile range; we made this decision because the confusion measures
could potentially take on extreme values if, for example, a participant made
an uncontrolled cursor movement. We did not exclude trials in which the
participant chose the wrong category for the face (e.g., selected “human”
when presented with a robot) because we expected many faces to be quite
hard to judge. After all exclusions, the analysis dataset comprised 358
participants, totalling 55,430 ratings of the 182 faces.

3. Estimating the shape of the Uncanny Valley

3.1. Statistical methods

Throughout, one author (MBM) performed all statistical analyses in
R (version 3.5.1). All analyses described in the main text were con-
ducted with means by face as the unit of analysis2. In all analyses, we
adjusted for a face's mean perceived emotion rating, as estimated

during stimulus validation, because we suspected that emotion might
statistically confound the relationship between MH score and likability.
We first estimated the Uncanny Valley curve by fitting ordinary least
squares models that regressed likability on polynomial terms for MH
score (e.g., MH, MH2, MH3, etc.). We mean-centered MH score in
analysis, but we report and plot results on the uncentered scale for
interpretability, except where otherwise noted. We used Akaike's In-
formation Criterion (AIC) to select the lowest-order and best-fitting
polynomial model (Akaike, 1974). We weighted each data point by its
inverse-variance of likability to account for the fact that some faces
were rated with more precision than others, although unweighted
analyses yielded very similar results (Supplement, Section 2.3).

3.2. Results

Fig. 4 shows the best-fitting and most parsimonious model for the
relationship between MH score and likability, which was a six-degree
polynomial in MH score. As predicted by the Uncanny Valley theory,
estimates from this model indicated that as faces progressed from ex-
tremely mechanical (MH score near −100) to somewhat less mechan-
ical, likability tended to increase to a point, reaching an initial apex of
−18.0 for faces with an MH score of −80.9. After this initial apex, as
faces continued to become more human-like, likability began to de-
crease, dropping to its overall lowest point of −67.4 for faces with an
MH score of −23.6. Beyond this Uncanny Valley, as faces continued to
become more human-like, their likability once again tended to increase
monotonically, ultimately reaching a maximum of 59.6 for faces nearly
indistinguishable from humans (i.e., those with an MH score of 93.2).
Thus, all key features of the theorized Uncanny Valley were apparent in
these stimuli. As a post hoc analysis suggested during peer review, we
conducted analyses stratified by participant sex, yielding nearly iden-
tical results (Supplement, Section 2.3).

4. Estimating the category boundary location

4.1. Statistical methods

We next estimated the location of the category boundary, defined as
the MH score at which the proportion of participants categorizing the
face as “human” is closest to 50%. To do so, we used unweighted or-
dinary least squares regression to model the proportion of participants
categorizing each face as “human” as a polynomial function of MH
score, again choosing the best-fitting and most parsimonious poly-
nomial using the AIC. For this analysis, we made a post hoc decision to
exclude the 54 faces (30%) that were never categorized as “human”
because this large mass of faces with a 0% probability would have been
challenging to fit accurately using a smooth polynomial model, and
regardless, faces so distant from the category boundary would have
contributed little to statistically estimating the boundary location3. (No
faces had a 100% probability of being categorized as human.) We used
the estimated coefficients from this model to estimate the category
boundary location.

4.2. Results

Fig. 5 shows the best-fitting model for the relationship between a
face's MH score and its probability of being categorized as “human”. As
expected, the estimated probability of a face's being categorized as
“human” increased monotonically with increasing MH score. We esti-
mated that the category boundary occurred at an MH score of 42.5.

Fig. 3. Mouse-tracking measures of category confusion (reproduced from
Mathur and Reichling (2019)).

2 For statistical efficiency, we had planned to analyze data at the individual
trial level rather than aggregating by face. However, a comparison of in-
dividual-level versus face-level estimates of the Uncanny Valley (Supplement,
Section 2.3) suggested substantial attenuation of the relationship between MH
score and likability in the individual-level data. This strongly suggested that
participants' individual ratings of MH score are essentially noisy measurements
of a face's “true” MH score and hence that conducting analyses at the individual
level would result in downward-biased estimates of the relationship between
MH score and likability, a phenomenon that is well-characterized in the lit-
erature on nondifferential exposure measurement error (Thomas, Stram, &
Dwyer, 1993). This bias is largely mitigated through aggregation as presented
in the main text (Prentice & Sheppard, 1995).

3 A sensitivity analysis in which we did not exclude these faces yielded a very
similar estimate of the boundary location.
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5. Assessing category confusion as a mediator

5.1. Statistical methods

To investigate whether category confusion might be a mechanism of
the observed Uncanny Valley effect, we conducted separate mediation
analyses for each of the primary and secondary measures of category
confusion, treating MH score as the exposure, the confusion measures

as the mediators, and likability as the outcome. To improve the com-
parability of the direct and indirect effect estimates, we standardized
MH score and all mediators for these analyses (i.e., mean-centered them
and divided by their standard deviations). In addition, as a simple
method to consider in aggregate the three mediators pre-specified as
primary measures of confusion (i.e., x-flips, maximum x-deviation, and
area), we conducted a final mediation analysis on a composite measure
of confusion constructed by summing the z-scores for these three
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primary confusion measures, which were very highly correlated4

(Pearson's r from 0.91 to 0.99).
Estimating causal mediation effects relies on certain no-confounding

assumptions (e.g., VanderWeele (2015)). To this end, during stimulus
validation, we had attempted to eliminate many sources of confounding
by selecting stimuli that were comparable on graphical features and that
were almost emotionally neutral; additionally, in analysis, we controlled
for a face's mean emotion as rated during stimulus validation. We con-
ducted mediation analyses using a simulation-based method that in-
volves fitting a model for the mediator as a function of the exposure and
a model for the outcome as a function of the mediator and the exposure
(Imai, Keele, Tingley, & Yamamoto, 2011; Tingley, Yamamoto, Hirose,
Keele, & Imai, 2014). For each mediator model, we used generalized
additive models (GAM) with the identity link to regress the measure of
category confusion on a spline basis for MH score. For the outcome
models, we similarly used GAM to model likability as a function of each
mediator and MH score. The outcome models additionally allowed for
nonlinear interactions between MH score and the candidate mediator via
a tensor product term, which we dropped from the model if its inclusion
worsened the model's AIC. We chose these models in order to flexibly
accommodate the expected nonlinearities that characterize the Uncanny
Valley, as well as the possibly interactive relationship between MH score
and confusion. Because the category confusion measures were often
skewed or bimodal, suggesting non-normal errors, we estimated all
confidence intervals and p-values using nonparametric bootstrapping.

5.2. Results

Figs. 6 and 7 respectively plot MH score versus each confusion mea-
sure, and each confusion measure versus likability, along with GAM fits
for each relationship. MH score appeared to have nonlinear and non-
monotonic relationships with most of the confusion measures; the GAM
models for the three primary mediators and their composite estimated
that the confusion measures peaked at unstandardized MH scores of 34.3
for x-flips, 95.3 for area, 95.3 for maximum x-deviation, and 95.3 for their
composite (Fig. 6, dashed vertical lines). Results were similar for the two
secondary confusion measures, namely speed and reaction time. Con-
sidering the outcome models, likability did not appear to increase
monotonically as the confusion measures increased; rather, the relation-
ships appeared nonlinear and variable across confusion measures (Fig. 7).

Table 1 presents results of the mediation analyses, in which coeffi-
cient estimates represent estimated differences in likability on its ori-
ginal scale ranging from −100 to +100. The direct effects represent
effects of MH score on likability that occurred independently of each
mediating confusion measure; these ranged from 30.0 (95% CI: [12.6,
39.5]) to 32.7 (95% CI: [19.7, 44.9]) for the primary raw measures (x-
flips, maximum x-deviation, and area) and 30.0 (95% CI: [8.9, 45.0])
for the composite measure. The indirect effects represent effects of MH
score on likability occurring because of mediation by each confusion
measure, and the percent mediated represents the percent of the total
effect of MH score on likability that is due to mediation by each con-
fusion measure. The estimated indirect effects were approximately an
order of magnitude smaller than the estimated direct effects, ranging
from −0.6 (95% CI: [-3.6, 2.1]; estimated percent mediated: −2%) to
2.8 (95% CI: [-1.9, 15.4]; estimated percent mediated: 8%) for the three
primary confusion measures and 2.2 (95% CI: [-5.8, 20.7]; estimated
percent mediated: 7%) for their composite. (Note that negative esti-
mates for the percent mediated occur when the direct and indirect

effects are in different directions.) Results for the two secondary con-
fusion measures were qualitatively similar.

In summary, the confusion measures varied somewhat in their re-
lationships with MH score. For two of the three primary confusion
measures, as well as their composite, faces nearly identical to humans
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Fig. 6. MH score vs. confusion relationships. The red dashed line represents fitted
values from a GAM model as used as in mediation analysis. The vertical dashed line
marks the MH score associated with maximum confusion, as estimated by GAM. ∗:
primary confusion measure. (For interpretation of the references to colour in this
figure legend, the reader is referred to the Web version of this article.)
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Fig. 7. Confusion vs. likability relationships. The red dashed line represents
fitted values from a GAM model without interactions between MH score and
mediators. The vertical dashed line marks the value of the confusion measure
associated with maximum likability, as estimated by GAM. ∗: primary confusion
measure. (For interpretation of the references to colour in this figure legend, the
reader is referred to the Web version of this article.)

4 Note also that analyses handling multiple mediators separately essentially
assume that the mediators do not affect one another in a causal sequence, which
seems reasonable here given that we measured them at the same time
(VanderWeele, 2015). However, it is conceivable that the confusion measures
in fact did affect one another in extremely rapid succession; this possibility was
another motivation for aggregating the mediators into a composite measure.
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(MH scores near +100) produced the most confusion. For the final
primary confusion measure, faces at a lower MH score of 34.3 produced
the most confusion. Despite these variations across confusion measures,
all indicated that confusion peaked for robots that were considerably
more human-like than those that were most dislikable (i.e., those occu-
pying the lowest point of the Uncanny Valley, estimated to occur at an
MH score of −23.6). The relationships between the confusion measures
and likability suggested that increased confusion was not clearly and
monotonically associated with decreased likability, as the category
confusion hypothesis might have predicted. Indeed, the mediation ana-
lyses suggested that any mediation by confusion was likely very minimal,
with results quite consistent across confusion measures.

6. Discussion

The first two aims of our study were to precisely estimate the shape
of the Uncanny Valley curve and the location of the boundary between
the categories “robot” and “human”. To this end, we developed and
validated a publicly available corpus of 182 images of real, socially
interactive robots as well as humans. These closely controlled faces
showed all key features of the theorized Uncanny Valley: an initial in-
crease in likability as faces progressed from extremely mechanical to
somewhat less mechanical, followed by a classic “Uncanny Valley” low
point as faces became considerably more human-like and markedly
dislikable, followed by a gradual increase in likability to its eventual
maximum as faces became nearly indistinguishable from humans.

Our estimated Uncanny Valley curve also differed from traditional
predictions. The initial apex of likability for unmistakably mechanical
faces was negative (likability=−18.0; Fig. 4) rather than markedly
positive as Mori (1970) originally postulated (c.f. Fig. 1), indicating
that these robots were still somewhat disliked, and very few individual
faces in this region did achieve positive likability ratings. This sug-
gests that attempting to avoid negative reactions by deliberately de-
signing android robots that are unmistakably mechanical (Duffy,
2003; Mori, 1970) might severely stunt the robots’ social success.
Additionally, the lowest point of the Uncanny Valley occurred not for
faces nearly indistinguishable from humans, as Mori (1970) originally
theorized, but rather for faces perceived to be still predominantly
mechanical (i.e., MH score=−23.6). These findings may help direct
future research toward exploring hypothesized mechanisms of the
Uncanny Valley that are consistent with this precisely estimated shape

and in particular its interesting deviations from the usual theoretical
predictions.

In the categorization task, the relationship between the faces'
human-likeness and their probabilities of being categorized as “human”
suggested that humans do perceive a perceptual categorical boundary,
as opposed to a smooth continuum, between the properties of “robot”
and “human”. That is, typical of categorical perception (e.g., de Gelder,
Teunisse, and Benson (1997); Etcoff and Magee (1992)), faces in most
regions of the human-likeness spectrum were reliably classified as ei-
ther “robot” or “human”, but faces within a steeply sloped region
around the category boundary elicited much less stable categorizations
(Fig. 4). This boundary zone is where category confusion is thought to
occur. It is interesting that our estimated category boundary occurred at
an MH score of 42.5, corresponding to faces perceived to be about 71%
human on the 200-point MH scale, rather than 50% as one might pre-
dict by analogy with classic psychophysical studies of category confu-
sion (Harnad, 1987). Conceivably, this off-center position of the cate-
gory boundary might relate to the fact that faces' positions on the MH
scale were necessarily determined based on participants’ subjective
ratings rather than objective metrics, since the faces represented real
robots rather than constructed stimuli. However, casting some doubt on
this interpretation, previous studies using morphing methods to gen-
erate objectively quantified mixtures of robot and human faces reported
similarly located category boundaries in the range of 60–70% human
(Cheetham, Suter, & Jäncke, 2011; Weis & Wiese, 2017).

Critically, the Uncanny Valley and the estimated category boundary
(at MH score=42.5) did not coincide, instead occurring in distinct re-
gions of the human-likeness spectrum. Maximally dislikable faces (MH
score=−23.6) were almost always categorized as “robots”; in contrast,
unstable categorization occurred primarily at higher MH scores from
approximately 0 to 75. Conversely, maximally ambiguous faces were not,
on average, disliked. This discrepancy casts doubt on the category con-
fusion hypothesis, which would predict that the most ambiguous faces
would be most disliked. For the third aim of our study, we assessed ca-
tegory confusion as a possible mechanism for Uncanny Valley effects by
conducting mediation analyses treating human-likeness as the exposure,
confusion as the mediator, and likability as the outcome. These analyses
did not support mediation by confusion, with indirect effects typically an
order of magnitude weaker than direct effects.

These analyses have some limitations. Ideally, we would have
measured perceptions of human-likeness, confusion, and likability as
they occurred in real time, within a span of milliseconds. This hy-
pothetical design would have clarified, for example, the direction of
causation between perceptions of human-likeness and likability.
However, such a design would be logistically infeasible, requiring
participants to perform three different rating tasks within milliseconds.
Furthermore, designs in which participants rate all three characteristics
in quick succession may introduce task interference or demand char-
acteristics. Our three-wave design was intended to minimize these types
of bias, but cannot rule out reverse causation. Additionally, as dis-
cussed, all mediation analyses rely on no-confounding assumptions. We
tried to minimize confounding by selecting closely matched stimuli and
controlling for perceived emotion in analyses. Given the very small size
of the indirect effects, it seems unlikely that residual confounding
would have masked meaningfully strong mediation effects.

These findings suggest that category confusion is not a viable ex-
planation for the Uncanny Valley. One promising alternative hypothesis,
called “feature inconsistency” or “perceptual mismatch”, postulates in-
stead that inconsistent realism across features in a face (for example,
mechanical-looking eyes and mouth on an otherwise human-like face)
drives Uncanny Valley reactions (MacDorman & Chattopadhyay, 2016).
This hypothesis is subtly, but importantly, distinct from category confu-
sion. For example, two faces occupying the same position relative to the
category boundary (i.e., having the same MH score) could nevertheless
have different amounts of feature inconsistency; the more consistent face
might have all moderately human-like features, whereas the less consistent

Table 1
Analysis of category confusion measures as mediators of the relationship be-
tween MH score and likability. Direct and indirect effects are presented for a
contrast representing an increase in MH score from its mean to half a standard
deviation above its mean. All mediators and MH score were standardized.

Confusion variable Statistic Estimate [95% CI] p-value

Primary measures
x-flips Direct effect 32.7 [19.7, 44.9] < 0.00001

Indirect effect −0.6 [−3.6, 2.1] 0.68
% mediated −2 [−12, 7] 0.68

x-deviation Direct effect 31.3 [15.8, 44.7] 0.006
Indirect effect 0.9 [−5.9, 13.0] 0.62
% mediated 3 [−22, 41] 0.62

Area Direct effect 30 [12.6, 39.5] 0.004
Indirect effect 2.8 [−1.9, 15.4] 0.17
% mediated 8 [−6, 48] 0.17

Composite Direct effect 30 [8.9, 45.0] 0.03
Indirect effect 2.2 [−5.8, 20.7] 0.33
% mediated 7 [−19, 65] 0.33

Secondary measures
Reaction time Direct effect 36.7 [16.3, 49.2] 0.004

Indirect effect −5 [−12.1, 10.0] 0.49
% mediated −16 [−53, 33] 0.49

Peak speed Direct effect 29.1 [15.4, 43.1] 0.002
Indirect effect 3.4 [−3.3, 10.6] 0.13
% mediated 10 [−11, 34] 0.13
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face might have some highly mechanical and some highly human-like
features. Future work could use rigorous statistical analyses and well-
controlled, realistic stimuli, such as the public corpus from the present
study, to assess whether feature inconsistency is associated with Uncanny
Valley reactions independent of MH score, and whether inconsistency is a
mediator of the relationship between MH score and likability.

To elucidate the mechanisms and boundary conditions of the Uncanny
Valley, we would also suggest holistic consideration of negative reactions
to mid-range stimuli in general, including existing work outside the im-
mediate scope of the Uncanny Valley literature. For example, heuristically,
patterns in the categorization and social judgment of interracial human
faces (Freeman et al., 2016) seem to resemble the Uncanny Valley in an-
droid robots. Might such effects share fundamental mechanisms with the
Uncanny Valley? A key step will be to examine which potentially related
effects share the distinctive subjective quality of Uncanny Valley reactions,
a farrago variously described as “eerieness”, “creepiness”, and “repul-
siveness” (Ho &MacDorman, 2010; Moore, 2012). Suggestive evidence for
or against proposed mechanisms might also arise from continued in-
vestigation of whether the Uncanny Valley is experienced universally
(Koopman, 2019) and investigation of individual-level moderators of
sensitivity to its effects, such as an individual's frequency of exposure to
android robots, attitudes toward robots, and affective states (MacDorman
& Entezari, 2015; Łupkowski & Gierszewska, 2019).

Overall, our findings suggest that although humans do perceive a
category boundary between “robot” and “human”, the location of this
boundary does not coincide with the Uncanny Valley itself, and cate-
gory confusion produced by this boundary does not seem to explain
Uncanny Valley aversions. It is striking that, despite the decades-long
prominence of the Uncanny Valley theory and robot designers’ so-
phisticated attempts to circumvent it, the robots we sampled — which
were purposefully designed for social interaction — nevertheless were
dislikable on average (mean likability=−32.9) and showed a promi-
nent Uncanny Valley. These findings point to the continued importance
of attempting to elucidate the mechanisms underlying the effect.
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