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ract

ossibility to obtain optimized components with a reduced weight is the main driver of space and

c industries in seriously considering the metal additive manufacturing (AM) technology for produc

te the incontrovertible advantages offered by this manufacturing technique, the material produc

ly affected by the presence of internal defects, a poor surface quality, and process-induced res

es. These features strongly affect the fatigue performance and reproducibility of AMed parts, lim

doption of deterministic criteria for fatigue assessment. A probabilistic approach is therefore ne

e analysis of critical and structural components. To this aim, a fully probabilistic finite element

processor, ProFACE, was developed by part of the authors to assess the fatigue strength and cr

ons of complex components in the presence of process-induced defects. A wide benchmark activity

rted by the European Space Agency (ESA) to test the software capabilities for the life predictio

onents manufactured in AlSi10Mg by L-PBF. After tuning ProFACE parameters based on the re

ned on standard fatigue specimens, the software was used to estimate the fatigue life of the compon

ning a good description of the experimental dataset for both volumetric and surface defects. The

was then used to explore the effect of the variability of the most significant parameters affecting fa

th of AlSi10Mg AMed components.

ords: Additive manufacturing, fatigue, defects, as-built surface, failure probability, residual stress
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enclature

crack depth

inverted slope of the SN curve

number of cycles to failure

knee point of the SN curve

failure probability

normalized failure probability

target failure probability

reliability of the i -th element of the chain,

referred to volume or surface

stress ratio

effective stress range

load ratio

Y Murakami’s boundary correction factor

δ scale parameter of the LEVD

λ location parameter of the LEVD

∆Kth,lc fatigue crack threshold

∆S applied stress range

∆σw fatigue stress range limit with respect to

material defectology

∆σw,0 fatigue stress range limit for defect-free mat

σRS measured residual stress

√
area square root of the defect area

√
area0 El-Haddad parameter

√
areacr critical defect’s square root area

eviations

additive manufacturing

additively manufactured

cumulative density function

critical initial flaw size

computed tomography

damage tolerance

eddy current

European Space Agency

fatigue crack growth

finite element

force range versus the number of cycles to

failure curve

GEV generalised extreme value distribution

HCF high cycle fatigue

HIP hot isostatic processing

LEVD largest extreme values distribution

LF loading factor

L-PBF laser powder bed fusion

MTC Manufacturing Technology Centre

NDE non-destructive evaluation

PDT probabilistic damage tolerant

PoD probability of detection

PT penetrant testing

SEM scanning electron microscope
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stress intensity factor

stress range versus the number of cycles to

failure curve

UTS ultimate tensile stress

XRD X-ray diffraction
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troduction

l additive manufacturing (AM) is nowadays considered a full-fledged technology taken into considera

any industrial applications. In the recent years, most companies have switched from building dem

rs to actual production, and the number of AM parts currently in service has sensibly increased

most of the largest aerospace, automotive, and biomedical industries have now developed internal d

ices and acceptability standards based on years of lessons learnt, growing process control capabil

uge amount of data collected and analyzed. For aerospace parts, the development of such know-ho

ted to bring an increase of AM part criticality as this technology matures and gains widespread ac

[1]. Despite this, the number of AM applications of critical or structural parts remains very lim

is mostly due to insufficient regulatory framework for qualification and certification. Due to the

on quality coupled with low production volumes and strive for mass reduction, the space indust

g the effort for closing this gap and space regulators are continuing the development of enabling

and methods [2, 3]. At the same time, additional standardization efforts are ongoing, driven by o

izations among which ASTM and ISO [4, 5].

he main challenges of AM technology with respect to other legacy manufacturing methods are m

d to damage tolerance and fracture control for mitigating catastrophic hazards resulting from the gr

unknown pre-existing crack-like defect [6]. In fact, AM structural parts are prone to fatigue fa

ated from anomalies despite several improvements are being introduced in the latest AM mach

sensors integration, which allows for a more robust implementation of in-situ monitoring and pro

ol methodologies [7, 8, 9]. Therefore, a defect tolerant design becomes of primary importance at

ign and component qualification.

s a general statement, anomaly types can be subdivided in two categories: process anomalies

ial anomalies. The first class refers to those process-induced anomalies which cause evident qu

, e.g., build stop, build line skipped, cracking or deformation caused by residual stresses during coo

ne hand, it is fundamental that the anomalies falling in this class are always avoided in service

al, this can be obtained via non-destructive evaluation (NDE) and in-situ monitoring. On the o

the occurrence of such defects is usually minimized by the presence of a consolidated process,

ction plan, and process simulation. Material anomalies due to AM processes can be further distingui

lumetric or surface. The first category comprehends all those anomalies that can occur anywhe

uild, e.g., keyhole porosity, lack of fusion, inclusions [10, 11, 12]. Several works have been perfor

del the effects of volumetric defects on fatigue based on fracture mechanics models [12, 13, 14, 15

ich crack growth rate and thresholds account for the short crack effect (i.e., they are dependen

t size). As for surface anomalies, this category comprehends all those anomalies that can occur on

resence of a free surface, e.g., surface microcracks and protrusions, localised stresses caused by co

e roughness, or porosity placed below the outer skin. Also for these surface features a number of pa

shown the applicability of fracture-based approaches [16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26].
4
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robabilistic damage tolerance approaches

ue to the random nature of material anomalies (not specific to AM materials), the FAA Advisory Cir

-1 defining damage tolerance requirements for engine life limited parts states that “the probabi

ach to damage tolerance assessment is one of two elements necessary to appropriately assess dam

nce” [27]. In this regard, the most simple semi-probabilistic approach is the standard option for dam

nce assessments in which the initial flaw size is conservatively assumed considering that the part con

rgest anomalies that the NDE can miss with a 90 % probability of detection (PoD) and 95 % confid

ssessment is then performed adopting a minimum safety factor η = 4 for the service life [28, 29].

he upper level of probabilistic analysis is to consider a fully probabilistic approach. The recent

ent by NASA [3] reports a complete probabilistic damage tolerant (PDT) analysis as an accep

of compliance for fracture control of critical parts. To support such an assessment, an approp

cterization of material anomalies is needed for developing the size distribution and frequency o

nce of material anomalies. As discussed in [1], this information can be used to define an exceed

for a given class of material defects, which is the key input for probabilistic fracture mechanics-b

ments such as the one defined in the FAA Advisory Circulars 33.14-1 [30] and 33.70-2 [31] for sp

of material or manufacturing defects. In probabilistic terms, this input anomaly exceedance curve

fined by inverting the PoD capability of the NDE methods adopted [3]. However, it should be n

his procedure has two main drawbacks: (i) the level of conservatism might be, in some cases, exces

ultiple NDE techniques are usually necessary to cover all the possible surface and volumetric ano

, and the determination of a robust PoD for a generic geometry might become extremely challen

xpensive.

he second alternative available is deriving an exceedance curve based on the real anomaly distribu

interesting to highlight that the determination of an anomaly distribution for hard-alpha grain

um disks required years of collaboration by certification agencies, major aircraft engine manufactu

teel companies. On the other hand, characterizing anomalies in AM materials can be substant

due to the higher occurrence of anomalies, relatively low cost of in-house specimens production,

itation of more advanced NDE as X-ray micro computed tomography (CT) [10, 32, 33, 34, 35]. O

nomaly distribution is known, statistical means can be successfully adopted to infer the critical d

or larger volumes [10, 11, 36, 35]. Despite this approach might well cover the verification of a

quality with respect to a qualified target for the selected AM machine and process (e.g., by ana

tness samples [37]), the question remains if the distribution in the samples can cover the intr

ility of a complex component geometry when a detailed micro-CT characterization on the full pa

chievable. NASA draft [3] requires cut-ups on a sacrificial part to ensure that possible feature-depen

facturing issues are not present or covered by analysis. Such an approach would allow character

aly distributions in selected areas (e.g., highly stressed or complex to manufacture regions) with

f verifying buy-in with the qualified process curve or obtaining a more conservative anomaly exceed
5



Journal Pre-proof

curve73

B rials.74

Resid d be75

accou ered76

one o cent77

result role78

as im sibly79

the b ould80

be ca81

M FE82

struct and83

the u tigue84

mode ined85

with tage86

of im rack87

growt with88

analy89

T tion90

and t and91

qualifi92

1.2. S93

T n of94

ProFA oped95

by Po atic96

of Pr ware97

(that fects98

and s ence99

of def with100

an ap101

T the102

frame sted103

in th erial104

prope105

� ially106

107
Jo
ur

na
l P

re
-p

ro
of

option to be used for PDT analysis of the specific regions of interest.

esides material anomalies, other sources of variability affect the fatigue resistance of AMed mate

ual stresses, microstructural variations, and anisotropy are other important factors that shoul

nted in the fatigue assessment [12, 38, 39, 40, 41]. Among these variables, residual stresses are consid

f the weakest points in the component assessment due to their uncertainty/variability [12]. Re

s [17, 42] for the fatigue strength of as-built surfaces in AlSi10Mg show that residual stresses play a

portant as surface features at the fracture origin. In this regard, the probabilistic approach is pos

est suited to account for so many sources of variability without the excessive conservatism that w

used by classical deterministic approaches based on safety factors.

any different approaches are available in the literature for probabilistic assessment based on a

ural analysis and the presence of defects/anomalies: i) approaches based on weakest-link concepts

nderlying assumption of Weibull distributions [43, 44, 45]; ii) weakest-link approach based on a fa

l combined with extreme value statistics for defects [46]; iii) explicit crack-growth simulations comb

Monte Carlo simulations [47, 48, 49, 50, 51, 52]. The weakest-link approaches have the advan

plicit analytical formulations that drastically reduce the computational time, while the explicit c

h simulations can precisely describe the life from the local stress field and they can be combined

ses of defect detectability [53].

he real challenge is to apply these approaches using as an input the test campaign for process qualifica

he data available from the component tests [2], so that they could become a support to design

cation of components.

cope of the paper

his is the topic of the research activity presented in this paper, where we discuss the applicatio

CE (Probabilistic Fatigue Assessment of engineering Components with dEfects), a tool devel

litecnico di Milano for the fatigue assessment of AMed components [46]. Figure 1 shows the schem

oFACE with the indications of the inputs/outputs and the methods. The basic inputs of the soft

is a post-processor of FE analyses) are the process signature, expressed by the distribution of de

urface features due to the AM process and a suitable probabilistic model for fatigue strength in pres

ects (modelled as short cracks). The failure probabilities of the finite elements are then calculated

proach based on extreme value statistics and then combined through a weakest-link model.

he upgraded ProFACE 2.0 version (including surface features and residual stresses) was tested in

work of a benchmark activity funded by ESA, in which special demonstrators were printed and te

e machined and as-built surface states, along with fatigue coupons aimed at calibrating the mat

rties and establish the anomaly distributions [54]. This paper is structured as follows:

Section 2: the test campaign aimed at generating a set of fatigue data on specimens and on a spec

designed benchmark component;
6
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Figure 1: Schematic of the computational flow of ProFACE.

Section 3: the new features of the software, with its capabilities to handle the presence of res

stresses and the distribution of superficial features associated to the as-built surface state;

Section 4: application of ProFACE to the ESA benchmark campaign by analysing specimens

components;

Section 5: a sensitivity analysis on the two most significant variables, i.e., the residual stresses

anomaly distributions.
7
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enchmark experimental database

his section summarizes the experimental results obtained in the framework of a benchmark act

en ESA, the Manufacturing Technology Center (MTC, Coventry) and Politecnico di Milano [54].

mark activity was aimed at preparing an experimental database for validating fracture-based fa

ments and probabilistic analyses through the ProFACE software. Duties for the benchmark camp

the following: MTC was in charge of project management, specimen and component manufactu

cnico di Milano was in charge of tests on specimens, life prediction models and analysis with ProFA

performed X-ray diffraction (XRD) measurements, fatigue tests and roughness measurements on be

components. More details on all activities, along with the experimental database, are extens

ibed in [54]. The test results are presented here for the sake of: i) providing input data for ProF

ses; ii) allowing for comparison of predictions with real experimental data.

est pieces and test campaign

he benchmark activity employed fatigue specimens and benchmark components, see Figure 2,

manufactured by L-PBF in AlSi10Mg. No thermal treatment was carried out on test pieces

rinting. The benchmark components (in the following named as wishbones) were designed by Po

der to manufacture a relatively simple part (similar to isostatic mounting devices adopted in s

try) featuring a competition of three critical locations, to reproduce the condition of multiple fa

al regions in optimised AM components. Details of the stress state in the critical locations are g

].

cylindrical specimen geometry (diameter of 6 mm) was adopted for the determination of the

am for both machined and as-built conditions (Figure 2.a), with a shape compliant to ASTM E466

ard. A total of 23 specimens were manufactured and successively tested in the as-built condition, w

17 specimens were used to characterise the machined condition. The specimens were produced

different AM builds together with the benchmark components, whose geometry is depicted in Figure

mong the 30 benchmark components manufactured, one half was tested in the as-built condition, w

cond half was tested after surface machining. Machined wishbones were printed with a material

to allow that both machined and as-built parts had the same nominal dimensions. Other spec

etries were also manufactured to measure the crack growth rates (single edge bending specimens)

nsile behaviour. More details on test specimens and test conditions are reported in [54].
8
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(a) (b)

Figure 2: Specimens tested: a) cylindrical specimens and b) benchmark component.

Table 1: Mean AlSi10Mg tensile properties obtained from the tensile tests [54].

Property Mean

Ultimate Tensile Stress 469 MPa

Yield Stress 258 MPa

Elastic Modulus 69.5 GPa

Elongation at fracture 8.34 %

esidual stress measurements

he residual stresses were measured on the fatigue specimens by means of an AST X-Stress 3000 por

diffractometer using the sin2 ψ method. The measurements were taken in the mid axial length

ted in four symmetric positions along the circumference. The stress component parallel to the loa

ion was considered and reported in Table 2 together with its deviation. The machined specim

yed compressive stresses, while the as-built specimens were characterised by tensile stresses.

Table 2: Results of the measurement of the residual stress for the cylindrical fatigue specimens.

Condition σRS [MPa] Deviation [MPa]

Machined -76 -9

As-built 60 15

he residual stresses of the wishbone demonstrators were measured by means of a Bruker D8 Disc

ctometer equipped with VANTEC-500 area detector with a Cu-Kα radiation at 40 kV, 50 µm a

collimator size. The magnitude and sign were seen to differ depending on the position on the wish

nstrators and on the surface condition (machined versus as-built). A summary of the measurem
9
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rmed on the wishbone demonstrators is provided in Table 3. Compressive residual stresses were meas

e front surface (σfront
RS ) of the machined wishbone demonstrators (first view in Figure 2.b), while te

es were found on the lateral surfaces σside
RS (second view in Figure 2.b). As for the as-built wish

nstrators, all residual stresses were measured to be in tension. A comprehensive database of al

al stress measurements performed can be found in [54].

Table 3: Results of the residual stress measurements performed on the wishbones.

Condition σfront
RS [MPa] Deviationfront [MPa] σside

RS [MPa] Deviationside [MPa]

Machined -100 23.5 60 30

As-built 60 10.9 60 10.9

niaxial fatigue of standard specimens

gure 3 shows the S-N curves obtained from the cylindrical machined and as-built specimens. The

conducted in laod-control at load ratio of RL = 0.1 under a uniaxial Instron ElectroPuls E10000 mac

ped with a 10 kN load cell.

he run-out condition was set at 5 × 106 cycles, however one test for each condition was also exte

1 × 107 cycles. The equation N = A · ∆SB was used to fit the data points corresponding to fai

ding to the least square method (ASTM-E739 standard [56]), while the Dixon up and down method

to calculate the endurance limits [57]. The experimental data-points were fitted with a three param

sian distribution considering a constant standard deviation σlogN ; the parameters obtained are repo

ble 4. The S-N curves showed that the as-built condition is detrimental to the fatigue performanc

ular the endurance limit was observed to decrease from ∆σw = 152 MPa to 48 MPa.

eference [54] contains all the images of the fracture surfaces captured by the scanning electron micros

). The analyses of the fracture surfaces highlighted the features that originated the failures. Small p

efects were observed near the surfaces of machined specimens. These defects remained after the surf

ining and were characterised by equal depth and length. Oppositely, the failures of the as-built specim

triggered by shallow surface defects represented by the typical features observed on as-built surfac

0Mg manufactured by L-PBF.
10
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Figure 3: Results of the fatigue tests of the uniaxial cylindrical specimens [54].

Table 4: Summary of the fitting constants of the S-N curves shown in Figure 3.

Condition A B σlogN σlogS

Machined 19.9 -6.54 0.1537 0.0235

As-built 13.53 -4.09 0.1251 0.0302

enchmark component fatigue results

he tests performed on the benchmark components were conducted on two different machines depen

e maximum load of the test: i) an Instron ElectroPuls E10000 machine equipped with a 10 kN

i) a servo-hydraulic fatigue testing system Instron 8802 equipped with a 250 kN load cell. As fo

rical fatigue specimens, the tests were conducted at a load ratio of RL = 0.1, while the frequency ra

en 9 Hz and 20 Hz, depending on the test machine used. The run-out condition was set to 1×107 cy

plete break of the wishbone was considered as the test failure condition. The benchmark compon

did not show any evident damage after the fatigue test were successively re-tested at higher load

late the force range versus the number of cycles to failure (F-N) curves and reveal the killer defect

he F-N curves of the benchmark components are reported in Figure 4.a. Four load levels were select

nite life region for the as-built condition and three for the machined condition. Figure 4.b indicate

s of maximum stress according a static finite element (FE) analysis [54]. Accordingly, the F-N cu

corroborated with the point of failure for all the tests. The failure positions are also summarise

5. The data shown indicate that the majority of failures occurred at the location P2 for the mach

tion, while the location that occurred more frequently was P3 for the as-built condition.
11
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(a) (b)

P2 P3

P2

N/A
P1

P3

P3

P2

P3

P3

P3P2

P3

P1

P2

P3

4: Fatigue results and failure locations of the wishbones: a) machined and as-built wishbones’ results and b) sche

failure locations [54].

Table 5: Number of failures for the critical locations of the benchmark components as indicated in Figure 4 [54].

Number of failures

Benchmark component Location P1 Location P2 Location P3

Machined 1 9 2

As-built 0 3 10

nalysis of defects

he dimension of defects at the fracture origin of the standard laboratory specimens can generall

tically described with the largest extreme value distribution (LEVD) whose cumulative density fun

e expression reported in Equation (1):

FLEVD(x) = exp

[
− exp

(
−x− λ

δ

)]

x is the defect size, λ is the location (i.e. the 36.8-th percentile) and δ the scale parameters. Mo

the standard specimens to a load-bearing component, the fatigue strength decreases; this phenomen

n as scaling effect [58] and it is linked with a higher probability of finding a large defect inside a mat

e which is bigger than the one of the standard specimens. The defect distributions that caused

failure of machined and as-built wishbones are shown in Figure 5.a and Figure 5.b respectively, w

tted parameters are reported in Table 6. These two distributions are not fully consistent with t

in fatigue specimens, showing a larger average defect for the benchmark components. This is consi

ith larger component material volume (and surface). To properly account for this scaling effect in

e analysis, a statistical-based approach is required.
12
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he two techniques for handling this effect in terms of failure probability for a given material vol

ly a FE volume, are: i) a weakest-link approach where the failure probability is calculated for any d

aterial volume and the material volume is considered a series system; ii) an extreme value appr

ich the failure probability is calculated for the maximum defect occurring in the material volum

e demonstrated that the two approaches are equivalent [59]. ProFACE adopts the latter approac

lating the failure probability of FEs.

(a) (b)

5: Comparison of the LEVD defect distributions: a) machined specimens and wishbones and b) as-built specimen

nes.

6: LEVD parameters of the machined and as-built specimens and wishbones with the relative errors on the estima

Type λ [µm] λup [µm] λlo [µm] δ [µm] δup [µm] δlo [µm]

Machined surface

Specimens 65.9 69.0 62.7 7.9 11.7 5.4

Wishbones 74.8 79.9 69.8 13.1 19.0 9.0

As-built surface

Specimens 165.0 194.2 135.8 43.6 83.5 22.8

Wishbones 209.6 234.4 184.9 40.5 73.3 22.4

racture-based life predictions

s it happens in most of the optimised load-bearing components, the benchmark components are feat

multiple locations of similar criticality from which a crack can nucleate and propagate. As show

n 2.4, three critical locations were found in this experimental campaign (Figure 4, [54]). For each

a deterministic life prediction was implemented considering fatigue crack growth calculations base
13
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erage killer defect (Figure 6.a from [54]), local stress distributions from FE analyses, and experim

al stress profiles. In detail, the crack growth model was based on the NASGRO propagation equa

suitable description of the short-crack effect (see Section 3 for details).

he comparison with the experimental results confirms that the approach based on fracture mech

pts can be successfully adopted for the life prediction of both the fatigue specimens and benchm

onents. However, we have to remark that fatigue crack growth calculations are accurate only whe

riables considered (killer defect distribution, crack location, residual stresses) can be properly meas

essed, as in the case of the fatigue specimens and benchmark components in [54].

he limitation of this deterministic approach is evident when considering that multiple prospective c

ons exist in the component, as well as variability in the key parameters (defect size, residual s

butions), and different material volumes which are subjected to the scaling effect. Even considering

ility of life predictions at a single component region (as schematically reported in Figure 6.b), it w

possible to implement the crack growth analyses for the entire component.

his limitation further supports the application of a probabilistic approach and the application o

CE software [46] for its capabilities to predict the fatigue performance of wishbones from the i

obtained on specimens.

(a) (b)

(b)

P1
P2

P3

P1
P2

P3

Prediction
R=0.1

Prediction
tensile σRS

6: Results of the FCG propagation with NASGRO model of the critical locations against the experimental resul

lt benchmark components (from [54]) and b) scheme of the statistical variability of each as-built components locati
14
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roFACE: inputs and models

he backbone of ProFACE is the weakest-link model, based on which the component is considered

of small sub-parts, each connected to the others with their own failure probability. According to

l, the loaded component fails if one element of the chain fails. The ingredients required to implem

pproach are a fatigue strength model which links the stress associated with each sub-part with

sion of the critical defect (acr), and a suitable defect distribution. The aim of this section is to des

ain fatigue and statistical models at the base of ProFACE, considering the common case in which

ial is affected by the presence of residual stresses and featured with a rough external surface.

atigue model for defective materials

he common approach in the technical literature to link the fatigue strength with a known defect

adoption of the Kitagawa-Takahashi diagram, that can be described with the El-Haddad model

model can be extended to the finite fatigue life regime considering that the S-N curve, at the fa

coincides with the Kitagawa diagram as shown in [13, 46, 61]. The main hypothesis of the formula

sed in [46] to compute the critical defect size
√

areacr is that the material manifests a fatigue

which no failure can happen. Actually some structural materials, including aluminium, do not dis

ked endurance strength, showing instead a S-N curve characterised by two slopes in the region b

fter the knee point Nk,σ. A value of 22 for the S-N curve’s slope k∗σ after the knee point Nk,σ re

tted for the AMed AlSi10Mg alloy to describe the experimental data in [13], which is in line with

in [62, 63]. In view of this fatigue behaviour of the AlSi10Mg alloy, the method to compute the cr

t in ProFACE was modified as:

√
areacr =

√
area0 ·





[(
Nk,σ
Nf

)1/B

· ∆σw0

∆S

]2

− 1



 with B =




kσ Nf ≤ Nk,σ

k∗σ Nf > Nk,σ

∆σw,0 is the fatigue limit of the defect-free material, ∆S the applied stress range, Nf the num

les to failure, and B the inverted slope of the S-N curve in the two fatigue regimes. The param

0 represents the boundary between long and short cracks, adopting an El-Haddad model [13], it

mputed through Equation (3):

√
area0 =

1

π
·
(

∆Kth,lc

Y ·∆σw0

)2

∆Kth,lc is the fatigue threshold for long cracks and Y the shape factor for irregular cracks, whi

to 0.65 for superficial defects and 0.5 for volumetric ones.

he size of the critical defect
√

areacr depends on the effective stress ratio Reff that results from

position of the mechanical and residual stresses. This can be modeled considering a Kitagawa diag

dent on stress ratio. The dependence of ∆σw0 (fatigue limit of smooth specimens) can be obtained

or simple engineering models to describe the Haigh diagram [64, 65]. The dependence of the fa
15
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old for long cracks on the stress ratio is instead modelled with the NASGRO equation, which ca

on experimental fatigue threshold tests or imported from databases. Details of the parameters o

e strength model adopted for the AlSi10Mg are available in [54]. It is of some importance to rem

oth the slope kσ and the knee point Nk,σ of the S-N curve in the HCF regime may also depend on

s of effective stress ratio [17, 66].

schematic representation of the normalized S-N curve for the AlSi10Mg considered in this work a

nce load ratio of 0.1 is reported in Figure 7.a, while the Kitagawa diagrams obtained with Equatio

rious number of cycles to failure are shown in Figure 7.b. Slightly different crack growth mo

8, 69] provide similar maps, as well as crack growth analyses based on ∆J [70]. Equation (2

∆S = f
(√

area, Nf , R
)

enable the calculation of the critical defect size acr at any location for a g

ination (∆S, Nf , R) (see Equation 4 Subsection 3.2.1).

(a) (b)

𝑘σ

1

1

𝑘σ*

𝑁𝑘,σ

7: Schematic of the finite fatigue life model adopted in ProFACE for a general stress ratio R = 0.1: a) normalize

and b) generalised Kitagawa curves as a function of the number of cycles to failure.

onsidering the 50 % percentile of the LEVD of the killer defects for the machined and as-built specim

ble 6, Equation (2) can be inverted to compute the stress range versus the number of cycles to fai

curves, which depend on the effective stress ratio, were obtained for the tested specimens and comp

the experimental data in Figure 8.a and Figure 8.b for machined and as-built specimens, respecti

ffective S-N curves overlap with the experimental data. One important remark is that the maxim

of the fatigue cycle plus the tensile residual stress was higher than the yield limit for the maximum

investigated. This determines the local elastic shake down that might completely relax the residual s

This effect is not considered in the calculation, and can thus be the reason for the distance between

imental data and the computed mean S-N curve for the high stress range region of Figure 8.b (as-

ens).
16
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(a) (b)

8: Comparison between the finite fatigue model with the experimental results of the cylindrical specimens: a) mac

rical specimens and b) as-built cylindrical specimens.

nput random variables

he two key ingredients of ProFACE probabilistic model are: i) the distribution of defects/inhomogene

o manufacturing process (volumetric defects and surface features) that can randomly occur in

ial; ii) the inherent dispersion of the strength model represented by the Kitagawa diagram.

Defects and size effect

s for the defect distribution, the ProFACE’s algorithm adopts an approach based on the statisti

es in which the reliability for a given volume Vi (or the i-th finite element) can be calculated as:

Ri,Vi
=
[
Famax,Vi

(acr)
]

acr is the critical defect size for a stress and number of cycles calculated according to Equation (2)

,Vi
is the distribution of the maximum defect over Vi that can be conveniently described with diffe

ods [58]. This approach inherently describes the size effect because amax,Vi
increases with the mat

e. In fact, if we consider the distribution of the maximum defect amax for two material volumes V1

F (amax,V2
) =

[
F (amax,V1

)
]V2/V1

F is the generic cumulative density function (cdf) of the maximum defect distribution over a ce

e. This transformation, which is the base of extreme value statistics, is also the key ingredie

CE in combination with Equation (4). The software adopts this approach, instead of assuming a g

bution for the fatigue strength (see [44, 45, 71]), because it allows us to consider any suitable physic

threshold model (dependent on defect size) and to properly describe the distribution of maxim

t in a given reference volume V0 [11, 58, 72].
17
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has been shown that the effect of the roughness in net-shape AM parts can be treated as an equiv

ated superficial defect [17, 66, 73]. In the new implementation of ProFACE, the same concept prese

lumetric anomalies is applied to surface defects, whose distribution on two prospective areas S1 an

be described as:

F (amax,S2) =
[
F (amax,S1)

]S2/S1

ing this transformation to the collected surface defects detected on specimens and wishbones, it c

en that the experimental data-points were correctly described with equivalent negative expone

butions considering the most stressed area (Figure 9.a). The software allows the user to describe

bution of defects considering different options: LEVD, generalised extreme value distribution (G

ixed distributions for data sampled with block maxima; log-normal, negative-exponential, and We

ta described in terms of parent distribution or Peak Over Threshold maxima sampling.

(a) (b)

9: The two basic statistical variables in ProFACE: a) distribution of surface defects modelled as LEVD distributio

relationship between scatter of σlogN and that of ∆σw.

Inherent fatigue strength variability

dopting a probabilistic model allows considering the inherent variability of the material properties (a

the dependence on defects), which is essential to cover the uncertainty of the fatigue strength m

refer to the S-N model described above, it is clear that a variability of the fatigue life σlogN is dir

d to the dispersion of the fatigue strength σlog ∆σw , as schematically shown in Figure 9.b. More

ering that the dispersion of the log-normal distribution corresponds to the coefficient of variation

rsion of the fatigue strength can be expressed by adopting the algebra of random variables as:

(
σlogN/k

)2

=

(
σlog ∆σw0

)2

+

(
∂σw

∂a

)2

· CV2
a

opting this formulation to the data of machined specimens, a scatter of σlog ∆σw0
= 0.03 was calcul

value is consistent with the variability of ∆Kth reported in ASTM-E647, and with the experim
18
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e scatter measured on specimens.

ailure probability of a component

Weakest-link discretization

he weakest-link model implemented in ProFACE was originally elaborated for volumetric defects

a special development for calculating the surface volume where the randomly occurring defects ha

ated as surface cracks (Y = 0.65), [46].

ased upon the analogy between the typical rough surface of AM parts with equivalent elongated def

ew ProFACE version schematises a component as in Figure 10.a. The external surface affected by

ness is colored in red, the internal volume whose defects featured by a shape factor of Y = 0.

sented in green, while the volume on which the volumetric defects with a shape factor of Y = 0.5 be

ored in blue. Each of the three parts can be then discretised in sub-areas and sub-volumes as sh

ure 10.b, with their own reliability that is function of the area or the volume. The reliability o

onent (under a given load and number of cycles) can be thus calculated as:

Rcomp,tot =

NE,surf∏

i=1

Ri,A ·
NE,Vsurf∏

i=1

Ri,Vsurf
·
NE,Vint∏

i=1

Ri,Vint

NE is the generic number of elements used to discretise the component, distinguished in super

urf), those belonging to the region dominated by the superficial random defects (NE,Vsurf
) and t

ging to the volumetric internal defects (NE,Vint). Each of these elements is featured by its own reliab

ly superficial reliability of the i-th superficial element Ri,A, the reliability of the i-th volume governe

ndom defects Ri,Vsurf
and finally the reliability of the i-th volume governed by the volumetric int

ts Ri,Vint
.

(b)(a)

10: Schematic of the analysis performed by ProFACE: a) distinction between volumetric and superficial analysis a

st link applied to both volumes and surfaces.

his method is at the bases of ProFACE [46], in which the stresses computed at the FE’s integration p

their associated volume are considered for the application of Equation (4) to random volumetric def
19
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ilar approach is then adopted for surface features. First the stress tensor is reconstructed on the su

and a “nodal area” is computed by considering the dual graph to the surface FE triangulariza

eakest-link approach can then be applied considering the stress tensor at each surface node, wit

area.

Calculation of failure probability

he application of Equation (8) allows to calculate the reliability of the component considering

m occurrence of volumetric defects and surface features described by their extreme value distribut

ffect of other random variables (in this application the variability of the fatigue strength) can the

nted with a numerical integration of the type:

Rcomp =

∫ ∞

0

Rcomp(∆σw0) · f(∆σw0) · d∆σw0

Rcomp(∆σw0) is the reliability calculated for a given ∆σw0 value and f(∆σw0) is the probab

ty function of the variable ∆σw0. Other variables that can be considered with a similar computat

e by ProFACE are: i) a random variable for the applied load (to represent the uncertainty of the m

ptions); ii) variability of the residual stresses (see Section 5.1).

he software calculates Pf = 1−Rcomp over a grid of F-N values chosen by the user. To provide an

computational time, it takes about 917 s on a typical engineering workstation for calculating Pf

of 1000 points for the FE model of 1/4 of the wishbone. The Pf surface is then suitably interpo

otting the F-N diagrams of the component with percentiles 2.5 %, 50 %, 97.5 % of the component
20
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pplication of ProFACE

oFACE was used to estimate the fatigue life of standard uniaxial fatigue specimens and wishb

th machined and as-built state. These two different external surface states are featured by a diffe

lation of defects as well as different residual stress fields. The analyses were performed considering

t distributions obtained from the dimension of the defects at the fracture origin of the specimens

sidual stress fields evaluated from the experimental measurements (see Tables 2 and 3).

ylindrical samples

niaxial fatigue specimens, whose geometry is depicted in Figure 2.a, were numerically simulated

us Standard/2018. The material behaviour is assumed linear-elastic, since the specimens are te

e HCF regime; the adopted Young’s modulus is reported in Table 1, while the Poisson’s ratio

ered equal to ν = 0.33 as reported in technical engineering books for a general aluminium alloy at r

erature [64]. Exploiting the problem symmetries, only one eighth of the full geometry was analyze

sing the appropriate boundary conditions. A static force of 250 N (i.e., 1 kN for the full geom

pplied on a reference point coupled with the gripping cylindrical surface at the top. The geom

iscretised with quadratic tetrahedral FEs, with a global mesh size of about 1 mm and a refined m

f about 0.2 mm in the gauge section; the mesh comprises 63 503 nodes and 41 919 elements in t

r the hypothesis of linear-elastic behaviour, the calculations performed for different applied load

e conditions can be based on this unique FE analysis by multiplying the reference stress field by

efined loading factor (LF).

compressive residual stress field was measured on the machined specimens having a nominal mean v

MPa on the external surface oriented along the main specimen’s axis, Table 2. It should be noted

ical outcome of residual stress measurement is a 2D plain stress tensor associated to the surface u

. To be compliant with the experimental measurements, the residual stress tensor was remappe

surface node in the Cartesian reference system of the simulated geometry to guarantee that the prin

al stress direction is tangent to the component’s external surface. Being the external surface o

ens machined, only the volumetric defects were considered; referring to the scheme of Figure 10.b

st-link was then applied to the green and blue volumes. As a simplifying hypothesis, only the g

e of the scheme of Figure 10.b was considered affected by the compressive residual stress field, w

ternal (blue) volume was considered to be unloaded and subjected only to the external loading cy

s-built specimens are affected by tensile residual stresses, with a nominal value of 60 MPa measure

rface, Table 2. As experimental evidences showed that all failures originated from roughness-re

e features, the simulations with ProFACE were performed by applying the weakest-link on the ext

rface of Figure 10.b, considering both the tensile residual stresses and the distribution of surface def

s case, the material volume controlled by the internal defects near the external surface (i.e., green

ure 10.b) was considered with the same residual stress. With this calculation scheme, a compet
21
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en superficial features and volumetric defects near the surface is possible, even though surface de

gnificantly larger than the volumetric ones. The residual stress tensor was re-mapped on the su

also for as-built specimens.

he 95 % bilateral scatter bands estimated by ProFACE are compared with the experimental re

gure 11. The estimations obtained for the machined specimens (Figure 11.a) considering the e

idual stresses fit reasonably well with the experimental results, while neglecting the residual str

ded conservative predictions compared to the experimental data-points. As for the as-built specim

re 11.b), the fatigue limit is well estimated considering the residual stresses, while the estimation

rvative by increasing the stress range, with the experimental data-points closer to the results obta

cting residual stresses. This might be explained with the residual stress relaxation during the fa

g; at high stress ranges the sum of the maximum stress reached in the fatigue cycle with that res

asily overcome the yield limit of the material, resulting in an elastic shake-down that can compl

e the residual stress field [42, 66].

(a) (b)

11: Failure probability estimated by ProFACE for the cylindrical specimens: a) machined fatigue specimens a

lt fatigue specimens.

enchmark components

he capabilities of ProFACE were finally tested to evaluate the fatigue performances of the wish

onents. A reference FE simulation was first performed with Abaqus Standard/2018 considering

etry of the printed parts shown in Figure 2.b. The simulated model was obtained by exploiting

etries of the part, hence considering only one-fourth of it. The top head of the wishbones featur

d, which guarantees a mechanical connection with the testing machine. The bottom part was conne

e testing machine by means of a pin. To simulate these constraints, the internal cylindrical surfa

ead was tied to a reference point, onto which a maximum force of 1 kN was applied (i.e., 4 kN fo

model); the cylindrical part of the wishbone’s leg was tied with a second reference point, positi
22
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e intersection of the pin hole axis and the X-symmetry plane. All the degrees of freedom of the n

internal cylindrical surface of the leg were constrained to the reference point except the displacem

the X-direction, being the connection pin free to slide inside the holes. This reference point was

ate around the X-axis, while all the others degrees of freedom were fixed. A schematic of the simu

l with the boundary conditions and the applied reference force is shown in Figure 12.a and Figure

ifferently from the simulations performed on the cylindrical specimens, the hypothesis of havi

al residual stress field constant along all the external surfaces of the machined wishbones is not v

dering the experimental measurements performed by means of XRD in [54], and reported in Tab

ain surfaces were identified on the components with different values of residual stresses, namely

ront as shown in the schematic of Figure 12.c.

(a) (b)

F F

X-symmetry

Z-symmetry

(c)

Front

Side

12: Scheme of the numerical simulations of the wishbones: a) frontal view of the load and boundary conditions; b)

f the load and boundary conditions and c) zones of the application of different residual stress field.

achined wishbones were simulated considering a compressive residual stress field with a nominal v

0 MPa on the front surface and 60 MPa in tension on the side surface. Regarding to the as-

mark components, XRD measurements highlighted no particular difference between the side and

ficial values, hence a nominal tensile residual stress of 60 MPa was adopted. For the application o

st-link, the same approach used for the fatigue specimens was adopted for the benchmark compon

nally, the ProFACE probabilistic estimates of both machined and as-built components were perfor

ing the defect distributions obtained from the experimental campaign on the specimens. The nume

ations obtained considering a 95 % bilateral scatter bands are compared with the experimental re

ure 13.a and Figure 13.b for machined and as-built components, respectively.
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(a) (b)

Figure 13: ProFACE analysis of wishbone specimens: a) machined wishbones and b) as-built wishbones.

he estimations of the machined wishbones considering the effect of residual stresses in Figure 13.a

to overlap well with the experimental data; the estimations obtained neglecting the residual s

were also satisfactory for the high force range levels. The numerical results obtained for the as-

ones in Figure 13.b considering the tensile residual stress field were found to fit well the experim

points in the fatigue limit zone, resulting, instead, in conservative estimations for the high levels of

s. These results reflect, in general, those found for the uniaxial fatigue specimens. Also for a

e residual stress field, stress relaxation is likely to occur at the highest stress levels.
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oftware outputs

the preliminary fatigue design of a load-bearing component, it can be useful to visually identify

critical locations for different scenarios. To fulfill this need, several visualization outputs are avai

oFACE for the designer, which are:

normalized failure probability;

critical defect;

defect that ensures a user defined failure probability.

he normalized failure probability Pf,norm provides a qualitative evaluation of the failure probabili

oint of the component. This quantity is calculated considering a reference volume Vref = 1 mm, w

s performing a direct comparison of different regions of the component regardless the mesh size. Pf

puted considering the average material parameters, hence no variability is introduced in the calcula

he estimation of the prospective critical defect size in a certain location of the component is an impor

ation, as it affects both part strength and the necessary accuracy of NDE. This quantity depend

ial properties and applied stress only. The critical defect is computed inside ProFACE and showe

tour map; this is defined as the critical defect computed with Equation (2) with a safety margin on

t fatigue life that, in this analysis, was taken η = 4 [2, 3, 74]. The contour map of the defect size ca

valuated in ProFACE referring to a predefined failure probability Pf,target, which might be a progra

cation requirement. This quantity is calculated by using the fatigue strength model (see Section 3)

ponds to the target failure probability (referring to the variability of ∆σw0). Future implementa

eing developed with more refined approaches addressing the sizing error of a prospective NDE.

he results obtained for the wishbones are shown in Figure 14, while the normalized failure probabi

uted for the three failure locations are compared with those experimental in Table 7. The norma

e probabilities in Table 7 were computed for the machined component considering a force rang

11.93 kN and a fatigue life of Nf = 87 000 cycles, that corresponds to the mean experim

e life for that applied force range. The estimations obtained resulted to be aligned to those obta

imentally, considering the number of failures due to each critical location over the total numb

ones tested.

he critical defect map, shown in Figure 14.a with a schematic of the calculation flow respect to the ta

as calculated for the as-built component considering a force range of ∆F = 4.76 kN and a target fa

Nf,target = 25 000 cycles. The minimum critical defect size results approximately
√

areacrit = 300

corresponds to almost the 90 % percentile of the defect distribution for as-built components [54].

e probability at Nf,target = 25 000 cycles results to be Pf = 5.5× 10−5, while the failure probabili

100 000 cycles (4 times the target life) is approximately 2.4 %. The latter value is surely larger

could be calculated by experiment, but it reflects the conservatism of the life predictions.
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is interesting to consider the map from the point of view of NDE or prospective surface treatm

ion. In details, most component regions have a critical defect size larger than 1 mm, a size that c

sily detected by NDE. Moreover, the critical defect of 300 µm only occurs at locations P2 and P3.

ation of a local surface treatment in these regions (i.e., able to remove the surface features or to in

pressive residual stress) would result in a large improvement of the whole component failure probab

he critical defect size map for a predefined failure probability of Pf,target = 1 × 10−4 was comp

e as-built component as showed in Figure 14.b, with a schematic representation of the target fa

bility with the target life, considering again force range of ∆F = 4.76 kN and a target fatigue li

25 000 cycles. As it can be seen, the minimum defect becomes min
[√

areaPf=1×10−4

]
= 441 µm, w

er than that evaluated for Pf = 5.5× 10−5.

area

areacrit

(a)

(b)

areaPf,target=1e−04

area

areaPf
Pf

14: ProFACE visual outputs of the as-built benchmark component: a) schematic of the critical defect size consid

y margin on the target life of η = 4 and the critical defect size map computed for the wishbone at ∆F = 4.76 kN

get = 25 000 cycles and b) schematic of the critical defect size considering a predefined target failure probability an

l defect size map at a target failure probability of Pf,target = 1 × 10−4 at ∆F = 4.76 kN and Nf = 25 000 cycles.
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7: Comparison between the experimental and numerical estimation of the normalised failure probabilities of f

ns of the wishbones schematically reported in Figure 4.b

P1 P2 P3

Experimental 0.04 0.48 0.48

Numerical 0.09 0.25 0.65
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nsitivity analysis

tigue tests are typically affected by a certain level of uncertainty. Besides the presence of manufactu

ts, variability of the material resistance ∆σw0, and possible uncertainty on the applied stress, w

all included in the first version of ProFACE [46], other variables might affect the final life predic

previous section it was shown how the effect of residual stresses can influence the fatigue resistan

ens and components. Moreover, it is well known that residual stress measurements suffer from

tability and non-negligible uncertainty. Similarly, also the defect population caused by the AM pro

vary, especially from the point of view of defect occurrence rate, for example related to the pos

e platform [75, 76, 77].

herefore, the question arises on how the uncertainty of these two inputs might effect the componen

ction, which is the topic of this section.

ariability of residual stresses

analyse the effect of the uncertainty of residual stress measurements in machined wishbones, ana

r to the ones in Section 4.2 were repeated by applying the maximum or minimum measured valu

ifferent locations [54]. The surfaces named front in Figure 12.c showed a different residual stress

the side ones. Hence, two analyses were performed varying once at a time the applied residual s

The residual stress values adopted are reported in Table 8 and schematically showed in Figure

ASGRO curve for the long crack threshold fitted for the AlSi10Mg considered in this work [54], sh

trend in the positive stress ratio region. Due to this, the fatigue estimations of ProFACE are m

sible to a variation of the residual stress in tension, and hence this analysis was not reported fo

ilt wishbones.

Table 8: Summary of the residual stress values adopted for the sensitivity analyses on machined wishbones.

Analyses σfront
RS [MPa] σside

RS [MPa]

1 -100.0 0.0

2 -100.0 130.0

3 -50.0 65.0

4 -150.0 65.0

he obtained numerical estimations are compared with the experimental results in Figure 15. It ca

that the variation of the residual stress field on the front surfaces has basically no effect in the obta

urves (Figure 15.b), while the variation of residual stress field in the side surfaces (Figure 15.c) imp

umerical estimations, especially in the endurance limit region. The most stressed zones of the wish

cated on the side surfaces, this can explain the higher variation of fatigue estimations by varying

al stress values there.
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onsidering that the variability of the residual stresses on the front surfaces has negligible effec

umerical fatigue estimations obtained, only the variability of side surfaces was considered, while

ge residual stress was maintained on the front surfaces. The two extremes of the residual stress v

gure 15.c where numerically discretised supposing an uniform distribution of residual stress in

paced values. The results obtained were averaged to calculate a failure probability representative o

tical variability of the residual stresses. Figure 15.d compares the bilateral 95 % scatter bands ag

xperimental results. The estimations were found to fit fairly well the experimental data-points, w

ms the benefit of studying fatigue performances of an AMed components from a probabilistic poi

(a) (b)

(d)(c)

-50/-150 MPa

0/+130 MPa

15: Numerical estimations of the machined wishbones considering the residual stress variability: a) schematic o

ility of the measured residual stresses onto the side and front surfaces; b) sensitivity analysis considering the variabi

idual stresses onto the front surface; c) sensitivity analysis considering the variability of the residual stresses onto th

e and d) ProFACE results obtained from a series of analyses considering a uniform distribution of the residual stres

efect distribution

y applying Equation (5) to the volumetric defects detected on machined specimens and wishbon

e seen that the LEVD estimated from specimens (applying Equation (5)) is the lower bound of d
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bution estimated from components. It is known that defect distribution depends on the local the

y [78] and on the gas shielding flow [79]. Accordingly, it looks reasonable that the printed wishb

have defects more scattered than those of specimens’ gauge volume.

account for this ineluctable variability of defect population, sensitivity analyses were carried

ering the upper bound of the distribution of defects in Table 6 (red line in Figure 16.a) considerin

ones a LEVD distribution with parameters:

λ̃ = 75 µm δ̃ = 18 µm

analyses with two scenarios (defect distribution inferred from specimens’ data and upper boun

one data) showed that the effect in terms of average fatigue life is not significant (Figure 16.b), b

e appreciated that the upper bound distribution provides a more conservative scenario for a prospe

due to the larger defect size scatter. From this point of view, the key parameter of the LEVD is

trols the scatter.

is of some importance to remark that the upper bound value for the ProFACE simulations could

estimated as the value corresponding to the upper 99 % confidence from the defect data on specim

ing sampling distributions of LEVD estimators [80, 81]. This means that a proper statistical ana

defect data from specimens could have provided a realistic upper bound scenario.

mitations and future developments

he hypotheses on which the software is based (namely the description of fatigue life through the

ed S-N diagram in Figure 7) limit its present capabilities to engineering applications in HCF. ProF

at covering the present gap between simple weakest-link analyses and detailed probabilistic crack gr

with a quick post-processor based on defect-tolerance concepts. Future developments, aimed at kee

ain peculiarity, will extend its capabilities in the following directions:

extension to multiaxial fatigue to include the conclusions reached in recent fatigue campaign

AlSi10Mg and Ti6Al4V [82, 83];

maps ∆σw0 −Nf obtained by integration of the NASGRO crack propagation equation with term

including elasto-plastic crack driving force [13];

criteria for defect/flaw assessment that consider the combination of different load cases and load spe
30
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(a) (b)

(d)(c)

16: Sensitivity to defect distribution parameters: a) fitting of the distributions with different parameters (specimen

rmed to the volume of wishbones through Eq. (4)); b) effect of the parameters’ distribution for the 50 % percenti

te; c) 95 % bilateral scatter bands for the average defect distribution and d) 95 % bilateral scatter bands for the

defect distribution.
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onclusions

Med metal parts have opened new design possibilities to solve engineering problems based on geom

ization and high structural strength over weight ratio. However, there is the need (reflected in guida

oped by NASA and ESA) of design rules able to account for the presence of volumetric and su

alies, and the presence of residual stresses. If fracture-based life estimations work well for A

ials at the specimen level, the application of similar approaches to components is not so straightfor

equires probabilistic tools for considering many key parameters such as loads, material prope

alies, residual stresses, and their variability.

overcome these limitations, the probabilistic software ProFACE was developed to estimate the fa

th and failure probability of load-bearing components manufactured by AM. The aim of this work

end the capabilities of the software and validate it on a wide benchmark test campaign on specimens

onents. By comparing the numerical estimations with the experimental results, the following conclu

e drawn.

The fatigue strength of both uniaxial fatigue specimens and wishbones is highly affected by the st

tical variability of volumetric defects (for machined parts) and superficial features (for as-built pa

This effect is accounted by a weakest-link approach, which incorporates extremes value distribu

for both volumetric and superficial defects.

Beside the influence of anomalies, residual stresses play the major role in determining the fa

strength of AMed parts made of as-built Al-alloy components. This effect is managed by adopti

fatigue strength model that depends on the defect size and the effective stress ratio calculated from

local residual stress field and the stress tensor due to component loads.

The typical sources of variability and experimental uncertainties were then tackled via ProFACE s

lations. The obtained results were found to describe fairly good the experimental data-points obta

highlighting the flexibility of probabilistic approaches during the design phase.

The ProFACE post-processor was shown to provide fast and fairly accurate estimates of the fa

probability of AM components, as well as various visualization options that can be a valuable asse

both the design and verification phases.
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Highlights

• Fatigue performances of AMed parts are strongly influenced by random
parameters.

• To handle these random features a probabilistic fatigue postprocessor was
developed.

• The main software’s features were tested and compared to experimental
data-points.

• The failure probability of AMed components was correctly estimated by
the software.

• The software showed to be a suitable tool for the qualification of AMed
parts.
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