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a b s t r a c t

This brief addresses the design of a Nonlinear Model Predictive Control (NMPC) strategy for exponen-
tially incremental Input-to-State Stable (ISS) systems. In particular, a novel formulation is devised,
which does not necessitate the onerous computation of terminal ingredients, but rather relies on
the explicit definition of a minimum prediction horizon ensuring closed-loop stability. The designed
methodology is particularly suited for the control of systems learned by Recurrent Neural Networks
(RNNs), which are known for their enhanced modeling capabilities and for which the incremental ISS
properties can be studied thanks to simple algebraic conditions. The approach is applied to Gated
Recurrent Unit (GRU) networks, providing also a method for the design of a tailored state observer
with convergence guarantees. The resulting control architecture is tested on a benchmark system,
demonstrating its good control performances and efficient applicability.

© 2023 Elsevier Ltd. All rights reserved.
1. Introduction

Model Predictive Control (MPC) is today a well-established
ontrol strategy, largely studied from the methodological point
f view and widely adopted in many engineering applications
Rawlings, Mayne, & Diehl, 2017). Given the necessity of a dy-
amical representation of the system under control, not always
vailable in practice, a huge interest has risen on the design of
earning-based MPC regulators relying on black-box models de-
ived from data (Hewing, Wabersich, Menner, & Zeilinger, 2020).
n this context, Recurrent Neural Networks (RNNs) have recently
ained increasing interest, showing to be particularly suited for
epresenting nonlinear dynamical systems (Mohajerin & Waslan-
er, 2019). This motivated the wide use of RNNs for predictive
ontrol, e.g., in process industry (Lanzetti et al., 2019), and in
hemical applications (Wu, Rincon, & Christofides, 2020).
Despite their potentialities, few theoretical results have been

stablished on the stability properties of RNN-based control sys-
ems. Considering RNNs in open-loop configurations, sufficient
onditions to enforce the exponential Incremental Input-to-State
tability (δISS) during their training process have been derived
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Aguiar under the direction of Editor André L. Tits.
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in Bonassi, Farina, Xie, and Scattolini (2022b). This property plays
a crucial role in RNNs, ensuring that state trajectories asymptoti-
cally depend solely on the applied inputs, implying that modeling
performances are independent on the network state initializa-
tion. On the other hand, guaranteeing the closed-loop stability
of RNN-based MPC regulators is still an open challenge, given
the heterogeneity of RNN architectures and their high nonlin-
earity. In fact, classic methods to attain closed-loop stability of
Nonlinear MPC (NMPC) regulators rely on the definition of ad-
ditional ingredients, such as a terminal cost function, a terminal
constraint set, and a local stabilizing control law (Mayne, Rawl-
ings, Rao, & Scokaert, 2000). These ingredients can be onerous
to compute (Magni, De Nicolao, Magnani, & Scattolini, 2001)
and, moreover, they may need to be online redefined when-
ever the closed-loop system reference changes (Köhler, Müller,
& Allgöwer, 2019).

In the context of designing NMPC laws with stability guar-
antees for RNN models, several approaches have been proposed,
albeit tailored to specific classes of RNNs. For example, Bugliari
Armenio, Terzi, Farina, and Scattolini (2019b) and Terzi, Bonassi,
Farina, and Scattolini (2021) propose a NMPC strategy for Long
Short-term Memory (LSTM) network and Echo State Network
(ESN) models, respectively, by exploiting their specific structure
for the definition of suitable terminal costs. The design of a
closed-loop stable NMPC regulator for Neural Network AutoRe-
gressive eXogenous (NNARX) architectures with one hidden layer
is presented in Patan (2014). The same RNN class in a multi-layer
framework is considered in Bonassi, Farina, Xie, and Scattolini

(2022a), where a zero-terminal constraint is imposed to ensure
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losed-loop NMPC stability, avoiding the online computation of
he terminal constraint set at the price of more conservative
erformances. On the other hand, the NMPC design for Gated
ecurrent Units (GRUs) networks is presented in Bonassi, Oliveira
a Silva and Scattolini (2021), however involving the online com-
utation of terminal ingredients and assuming the existence of
n auxiliary control law. For continuous-time single-layer RNN
rchitectures, a stabilizing MPC strategy is presented in Wu, Tran,
incon, and Christofides (2019), where the terminal ingredients
re replaced by explicit constraints on a Lyapunov function.
In view on the fact that existing RNN-based NMPC solutions

ith stability guarantees are tailored to specific network archi-
ectures, the present work proposes a closed-loop stable NMPC
trategy that can be applied to any generic nonlinear system,
rovided that it features exponential δISS. This property can
e effectively enforced to notable RNN architectures by adding
uitable constraints to the training problem, as shown in Bonassi
t al. (2022b). The proposed strategy ensures closed-loop stability
ithout requiring the definition of terminal ingredients, as in
lassic NMPC methods (Mayne et al., 2000), thus yielding a more
fficient NMPC design procedure. In addition to the general for-
ulation of the proposed strategy, we also discuss how this can
e applied to the GRU networks, characterized by advanced mod-
ling performances and efficient training procedure, as shown
n Zarzycki and Ławryńczuk (2021). To this end, we propose a
ethodology for designing a nominally convergent observer for
lack-box GRU models.
The paper is structured as follows. The control problem is

ormulated in Section 2, and the proposed NMPC strategy is
escribed in Section 3. Section 4 presents the synthesis of the con-
rol architecture for GRU networks, and the design of a suitable
tate observer. The approach is tested on a referenced chemical
rocess in Section 5. Conclusive considerations are derived in
ection 6.

otation

Given a vector v ∈ Rn, we denote by v′ its transpose, by [v]i
ts ith component, and by ∥v∥p its p-norm. Moreover, given a
quare matrix A, ∥v∥

2
A is used to indicate the quadratic form v′Av.

e denote the Hadamard product between two vectors v and w

s v ◦ w. The time index k of time-varying vectors is reported
s a subscript, e.g. vk. Sequences of vectors spanning from the
ime index k1 to k2 ⩾ k1 are indicated by vk1:k2 , i.e. vk1:k2 =

vk1 , vk1+1, . . . , vk2}. The ℓp,q norm of a sequence is defined as
vk1:k2∥p,q =

 [∥vk1∥p, ∥vk1+1∥p, . . . , ∥vk2∥p]
′
q. A notable case is

he ℓp,∞ norm, for which ∥vk1:k2∥p,∞ = maxk∈{k1,...,k2} ∥vk∥p. Given
a matrix A, ∥A∥p is used to indicate its induced p-norm, whereas
ς̄A and

¯

ςA denote its maximum and minimum singular values,
respectively. Finally, we denote by σ (x) =

1
1+e−x and by φ(x) =

anh(x) the sigmoidal and tanh activation functions, respectively.
ote that for vector arguments, these functions are intended to
e applied element-wise.

. Control problem

Consider a discrete-time nonlinear system described by

:

{
xk+1 = ϕ(xk, uk)
yk = g(xk)

, (1)

here uk ∈ Rnu , xk ∈ Rnx , and yk ∈ Rny are the input, state,
nd output vector, respectively. It is assumed that the input is
onstrained in a compact set U ⊂ Rnu , and that the system (1)
dmits an invariant set X ⊆ Rnx , that is, x ∈ X H⇒ ϕ(x, u) ∈ X
or any u ∈ U .
2

The generic system (1) can represent many different RNN
rchitectures (Bonassi et al., 2022b). Note that, in that case, the
efinition of the invariant set X is related to the considered
NN class, see, e.g., Bonassi, Farina and Scattolini (2021), Bugliari
rmenio, Terzi, Farina, and Scattolini (2019a) and Terzi et al.
2021) where an invariant set is proposed for LSTMs, GRUs, and
SNs, respectively. It is furthermore assumed that system (1) is
xponentially δISS according to the following definition.

efinition 1 (Exponential δISS). System (1) is exponentially δISS
f there exist constants µ > 0 and λ ∈ (0, 1), and a K∞ function
γ , such that, for any pair of initial states xa,0 ∈ X and xb,0 ∈ X
and any pair of input sequences ua,0:k ∈ U0:k and ub,0:k ∈ U0:k, it
olds that

xa,k − xb,k∥2 ⩽ µλk
∥xa,0 − xb,0∥2 + γ (∥ua,0:k − ub,0:k∥2,∞), (2)

here xα,k = xα,k(xα,0, uα,0:k) denotes the state trajectory of (1),
nitialized in xα,0 and fed with the input uα,0:k, for α ∈ {a, b}.

This stability property implies that, within the invariant set X ,
he effect of initial conditions on state trajectories asymptotically
anishes, and that the closer two input sequences are, the smaller
s the maximum ℓ2 distance between the resulting state trajecto-
ies. This rather strong stability property has been investigated
or RNN models (Bonassi et al., 2022b), and theoretically-sound
raining strategies to obtain exponentially δISS RNN models have
een proposed, see Bonassi, Farina et al. (2021), Bugliari Armenio
t al. (2019a), and Terzi et al. (2021). Notably, these works allow
o conservatively compute values µ and λ, as function of the
etwork’s weights, that satisfy (2). This computation is illustrated,
or GRU networks, in Section 4: we here assume that these values
xist and can be computed.

.1. Problem statement

Given the exponentially δISS system (1), an output-feedback
ontrol architecture is designed. The control goal is to steer the
lant’s output to a (piece-wise) constant setpoint ȳ, while fulfill-
ng the input constraint uk ∈ Ũ , where Ũ ⊆ U denotes a compact
et, potentially more tight than U . To address this regulation
roblem, it is first necessary to assume the existence of a feasible
quilibrium corresponding to the output setpoint.

ssumption 1. Given the output reference ȳ, there exist x̄ ∈

nt(X ) and ū ∈ Int(Ũ) such that the triplet Σ̄ = (x̄, ū, ȳ) is a
easible equilibrium, i.e. such that x̄ = ϕ(x̄, ū) and ȳ = g(x̄).

Therefore, considering a setpoint ȳ that fulfills Assumption 1,
he control problem can be stated as follows.

roblem 1 (Regulation Problem). Given the model (1) and the out-
ut setpoint ȳ, steer the system to the equilibrium Σ̄ by means
f a control action that satisfies the input constraint uk ∈ Ũ .

.2. Proposed control architecture

We propose to address Problem 1 by means of the NMPC
rchitecture depicted in Fig. 1, which requires (i) the design of
n exponentially converging state observer, and (ii) the synthesis
f a state-feedback NMPC control law.
Considering a generic state observer,

:

{
x̂k+1 = ϕo(x̂k, uk, yk)
ŷk = go(x̂k)

, (3)

he definition of weak exponential observer follows.
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Fig. 1. Scheme of the considered control architecture.

Definition 2 (Weak Exponential Observer Magni, De Nicolao, &
cattolini, 2004). The observer (3) of system (1) is said to be a
eak exponential observer if there exist constants µo > 0 and

˜ o ∈ (0, 1) such that, for any initial state x0 ∈ X , given the
equence of applied input u0:k ∈ U and the sequence of measured
utput y0:k(x0, u0:k), it holds that

x̂k(x̂0, u0:k, y0:k) − xk(x0, u0:k)∥2 ⩽ µoλ̃
k
o∥x̂0 − x0∥2. (4)

The design of observer satisfying Definition 2 is not restrictive
or the considered RNN-based models. Indeed, observers with
onvergence guarantees have been proposed in Terzi et al. (2021)
nd Bugliari Armenio et al. (2019a) for ESNs and LSTMs models,
espectively. The synthesis procedures described in the above ref-
rences rely upon the models’ δISS to design and optimally tune
he state observers. For the design of state observers for GRUs
he reader is addressed to Section 4, where a novel synthesis
echnique is devised.

The second of the control architecture of Fig. 1 is a state-
eedback NMPC law (Rawlings et al., 2017). To this end, we
ropose an NMPC law that addresses Problem 1, and we pro-
ide explicit sufficient conditions on its design parameters that
uarantee the closed-loop stability of the scheme.

. Proposed nonlinear MPC formulation

According to the predictive control paradigm (Rawlings et al.,
017), the proposed NMPC law is defined by formulating the
nderlying Finite Horizon Optimal Control Problem (FHOCP) to
e solved at every discrete time step k, based on the predictive
odel of the system (1), allowing to predict the future state tra-

ectories throughout the prediction horizon N , given the current
tate estimate x̂k yielded by the observer (3) and the applied
nput.

For the sake of clarity, at time k, we denote by uk:k+N−1|k =

uk|k, . . . , uk+N−1|k} the sequence of future inputs applied
hroughout the prediction horizon N = {0, . . . ,N − 1}, and by
k:k+N|k = {xk|k, . . . , xk+N|k} the predicted state trajectory, where
k|k = x̂k. Note that the term xk+t|k denotes the predicted state at
ime k+t given the input sequence uk:k+t−1|k. Under this notation,
he FHOCP can therefore be stated as follows.

min
k:k+Nc−1|k

{
Jk =

N−1∑
τ=0

(
∥xk+τ |k − x̄∥2

Q + ∥uk+τ |k − ū∥2
R

)
(5a)

+ VΣ̄ (xk+N|k)
}

.t. xk|k = x̂k (5b)

xk+τ+1|k = ϕ(xk+τ |k, uk+τ |k) ∀τ ∈ N (5c)

uk+τ |k ∈ Ũ ∀τ ∈ N (5d)

n the above formulation, the dynamics of the predictive model
s embedded by means of the constraints (5c). With constraint
3

(5b), the predictive model is initialized at the state estimate x̂k
yielded by the observer (3). The input constraint is enforced
via (5d). The quadratic cost function Jk in (5a) penalizes the
deviation (throughout the horizon) of the predicted state tra-
jectory from x̄, and the deviation of the input sequence from
ū. These terms are weighted by the positive definite matrices
Q and R, respectively. The term VΣ̄ (xk+N|k) is the terminal cost,
and is commonly designed to approximate the cost-to-go from
xk+N|k to the target equilibrium x̄. Albeit designing such term is
generally onerous (Magni et al., 2001), the exponential δISS of
model (1) is here leveraged to retrieve a general formulation of
VΣ̄ (xk+N|k) which ensures that the MPC law is closed-loop stable.
In particular, we consider a terminal cost defined as

VΣ̄ (xk+N|k) =

M∑
τ=0

xk+N+τ |k − x̄
2
S , (5e)

where xk+N+τ |k, with τ ∈ {0, . . . ,M}, denotes the evolution
of (1), from the end of the prediction horizon (i.e., k + N)
for M steps in the future, under the constant input ū. That is,
xk+N+τ+1|k = ϕ(xk+N+τ |k, ū) , ∀τ ∈ {0, . . . ,M − 1}. Explicit suffi-
cient conditions on the choice of the positive scalar M , named
simulation horizon, and of the weight matrix S are detailed later.

According to the receding horizon principle, at time k the
optimal control sequence u⋆

k:k+N−1|k is computed by solving the
FHOCP (5), and the first optimal control input uk = u⋆

k|k. This
implicit procedure yields the NMPC control law uk = κMPC(x̂k).

Theorem 1. A sufficient condition for the closed-loop stability of
the NMPC law uk = κMPC(x̂k) associated to the FHOCP (5) is that the
weight matrices Q and S are designed so that

ς̄Q <
¯

ςS (6a)

and that the simulation horizon M satisfies

M >
1
2
logλ

(
¯

ςS − ς̄Q

µ2ς̄S

)
− 1. (6b)

Proof. See Appendix A.1.

It is worth to highlight that the design of the terminal cost is
arbitrary, as the weight matrix S is chosen freely (subject to (6a)).
Secondly, (6b) represents an explicit condition on the simulation
horizon of the system beyond the prediction horizon.

Remark 1. The existence of an M large enough to guarantee
closed-loop NMPC stability has been considered in Magni et al.
(2001) and Soloperto, Koehler, and Allgower (2022), but an ex-
plicit lower bound was not provided. In fact, the attainment
of nominal closed-loop stability guarantees via a suitably long
horizon has also been discussed in Boccia, Grüne, and Worth-
mann (2014), where it has been proven that terminal cost and
terminal constraint could be removed if quasi-infinite horizons
are adopted. Seen through these lenses, the proposed NMPC for-
mulation can be seen as a quasi-infinite horizon formulation, with
control horizon N and prediction horizon N +M , where the min-
imum provenly-stabilizing prediction horizon is now explicitly
known.

4. Application to GRUs

In order to illustrate how the proposed control architecture
can be practically adopted for RNNs enjoying the δISS property,
we consider below the case of Gated Recurrent Units (GRUs). For
this architecture, in the following we describe how to synthesize
the control elements discussed in the previous sections, namely

the exponentially converging state observer and the state-
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eedback NMPC law guaranteeing the asymptotic stability of the
losed-loop, to address Problem 1.
Finally, let us reiterate that the proposed strategy can also be

pplied to all other RNN architectures, for which δISS guarantees
re available (Bonassi et al., 2022b). One might thus consider a
ISS LSTM alongside with the converging state observer proposed
n Terzi et al. (2021).

.1. Gated recurrent units

Consider the following nonlinear discrete-time state–space
ystem, describing a single-layer GRU model,

(Φ) :

{
xk+1 = zk ◦ xk + (1 − zk) ◦ rk
yk = Uo xk + bo

. (7a)

he vector xk ∈ Rnx represents the GRU’s state, uk ∈ Rnu its input
ector, and yk ∈ Rny its output. Note that the state dimensionality
x matches the number of units of the layer, which is a design
hoice of the model. The term rk is the so-called squashed input,
hich reads as

k = φ(Wr uk + Ur fk ◦ x + br ). (7b)

he terms zk in (7a) and fk in (7b) are named update and forget
ates, respectively. These gates are functions of the inputs and
tates, squashed by the sigmoidal activation function:

k = σ (Wzuk + Uzxk + bz),
fk = σ (Wf uk + Uf xk + bf ).

(7c)

t is worth noticing that the shallow GRU model (7) falls into
he general form (1) and that it depends on the set of weights

= {Wz,Uz, bz,Wf ,Uf , bf ,Wr ,Ur , br ,Uo, bo}. These weights
parametrize the model and need to be tuned during the so-called
training procedure.

At this point, it is worth recalling from Bonassi, Farina et al.
(2021) the regional stability properties enjoyed by shallow GRUs.
To this end, it is first necessary to define an invariant set with
respect to which such properties are stated. The following cus-
tomary assumptions concerning the boundedness of the model’s
input and of the model’s initial state candidates are required.

Assumption 2. The input of model (7) is unity-bounded, i.e.,

uk ∈ U = {u ∈ Rnu : ∥u∥∞ ⩽ 1}. (8)

Assumption 3. The initial state of the shallow GRU (7) belongs
to an arbitrarily large, but finite, set

X = {x ∈ Rnx : ∥x∥∞ ⩽ x̌}, (9)

with x̌ ⩾ 1.

Assumption 2 is customary when working with neural net-
works, see Bengio, Goodfellow, and Courville (2017), and can be
easily satisfied by means of normalization procedures as long
as the input is saturated. In closed-loop operation, this is en-
sured by constraining the control variable, see (5d). Concerning
Assumption 3, in Bonassi, Farina et al. (2021) it has been shown
that (9) represents an invariant set of the GRU.

In this context, the stability properties of (7c) have been ana-
lyzed in Bonassi, Farina et al. (2021), where a sufficient condition
on the weights Φ guaranteeing the GRU’s exponential δISS has
been devised. Specifically, this condition consists of a nonlin-
ear inequality on Φ , which can be readily enforced during the
training procedure to ensure that the trained network enjoys the
δISS property. Relying on these existing results, we henceforth
assume that (7) has been trained accordingly, so that it enjoys
the exponential δISS property in virtue of Bonassi, Farina et al.
4

(2021, Theorem 2). Note that such theorem not only guarantees
the existence of the exponential δISS-related constants, i.e. µ and
λ, but it can be exploited to provide an explicit estimate of such
values, by means of the following proposition.

Proposition 1. Given the exponentially δISS GRU (7), a conserva-
tive estimate of µ and λ of (2) is

µ =
√
nx, (10a)

λ = max(κx(σ̌z), κx(1 − σ̌z)), (10b)

where the function κx(·) is defined as

κx(z) =z + (1 − z)
(1
4
x̌∥Uf ∥∞ + σ̌f

)
∥Ur∥∞ +

1
4
(φ̌r + x̌)∥Uz∥∞,

(11)

nd the terms σ̌f , σ̌z , and φ̌r read as

ˇf = σ (∥Wf Uf x̌ bf ∥∞), (12a)

ˇz = σ (∥Wz Uz x̌ bz∥∞), (12b)
ˇ r = φ(∥Wr Ur x̌ br∥∞). (12c)

roof. See Appendix A.2.

Knowing µ and λ, the NMPC law proposed in Section 3 can be
ynthesized by means of a suitable choice of the FHOCP’s design
arameters, i.e., the weight matrices (Q , R, S), the prediction
orizon N , and the simulation horizon M , such that Theorem 1
s fulfilled.

.2. GRU observer design

In the spirit of Bonassi, Oliveira da Silva et al. (2021) and Terzi
t al. (2021), to define a state estimate x̂k with convergence guar-
ntees, we propose to adopt a Luenberger-like structure that re-
embles that of the GRU model (7) whose state is to be observed.
ence, the state observer candidate reads as

(Φo) :

{
x̂k+1 = ẑk ◦ x̂k + (1 − ẑk) ◦ r̂k
ŷk = Uox̂k + bo

, (13a)

here x̂k ∈ Rnx denotes the observer’s state, whereas its gates ẑk
nd f̂k, and the squashed input r̂k are defined as

ˆk = σ (Wzuk + Uz x̂k + bz + Lz(yk − ŷk)),

f̂k = σ (Wf uk + Uf x̂k + bf + Lf (yk − ŷk)),

r̂k = φ(Wruk + Uf f̂k ◦ x̂k + bf ).

(13b)

verall, the set of weights of the GRU observer (13) is Φo =

∪ {Lz, Lf }, where Φ is the set of fixed weights of the GRU
ystem to be observed, while the observer’s tuning parameters
re the gains Lf and Lz , which allow to improve the future state
stimation x̂k+1 based on the known innovation, i.e., yk − ŷk. For
ompactness, the state observer (13) may be denoted as

(Φo) :

{
x̂k+1 = ϕo(x̂k, uk, yk; Φo)
ŷk = g(x̂k; Φo)

. (14)

t is here assumed that the initial state of the observer lies in X .
his assumption, justified by the fact that such set is the invariant
et of the system to be observed, allows to readily apply (Bonassi,
arina et al., 2021, Lemma 2) to guarantee that X is also an
nvariant set of the state estimate x̂k.

heorem 2. Consider the observer gains Lz and Lf . If there exists
o ∈ (0, 1) such that, ∀z ∈ [1 − σ̌z, σ̌z],

(z, L , L ) < λ , (15a)
o z f o
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here

o(z, Lz, Lf ) =z + (1 − z)
(1
4
x̌∥Uf − LfUo∥∞ + σ̌f

)
∥Ur∥∞

+
1
4
(φ̌r + x̌)∥Uz − LzUo∥∞

(15b)

and σ̌z , σ̌f , and φ̌r defined as in (12), then (13) is weak exponential
observer.

Proof. See Appendix A.3.

Note that, according to (15a), λo provides a bound on the
worst-case convergence rate of the observer.

Unfortunately, while Theorem 2 allows to certify the expo-
nential convergence of the designed observer (given Lz and Lf ),
t does not provide guidelines on how to tune these weights. In
he following we therefore recast the observer design problem
s a convex optimization program, with the aim of computing
he gains that attain the smallest possible worst-case convergence
ate λo.

roposition 2 (Optimal Observer Tuning). The gains Lz and Lf of the
state observer (13) allowing to fulfill Theorem 2 while ensuring the
fastest worst-case convergence rate λo can be computed by solving
the following convex optimization problem

λo, L⋆
z , L

⋆
f = arg min

λ̃o,Lz ,Lf
λ̃o

s.t. κo(σ̌z, Lz, Lf ) ⩽ λ̃o

κo(1 − σ̌z, Lz, Lf ) ⩽ λ̃o

0 < λ̃o < 1

, (16)

here κo(z, Lz, Lf ) is defined as in (15b).

Proof. See Appendix A.4.

It is worth noticing that the exponential δISS of the GRU model
(7) entails the existence of a feasible solution to the optimiza-
tion problem (16). Indeed, considering the suboptimal open-loop
observer, corresponding to Lz = Lf = 0nx,ny , one has that
o(z, Lz, Lf ) = κ(z), and hence λo = λ ∈ (0, 1). The open-loop

observer thus represents a feasible solution to (16).

5. Numerical results

The proposed control framework is tested on the pH neu-
tralization process described in Henson and Seborg (1994), and
depicted in Fig. 2. The system is composed of two tanks. Tank
2 is fed by the acid flowrate q1, and its output is the flowrate
q1e. The hydraulic dynamics of Tank 2, being much faster than
the others involved, are neglected, i.e. q1 = q1e. Tank 1 is fed
by three flows, namely the acid flowrate q1e, the buffer flowrate
q2, and the alkaline base flowrate q3. The terms q1 and q2 cannot
be manipulated and represent disturbances. The alkaline flowrate
q3 can be modulated via a controllable valve, and thus represents
the control variable. The output of the reactor tank is the fixed
flowrate q4, from which the pH is measured. The control objective
is to regulate the pH of the output flow to the (piecewise) con-
stant setpoint. The resulting model is a third-order nonlinear SISO
system, whose equations and parameters are reported in Henson
and Seborg (1994).

The system has been identified using a single-layer GRU model
with nx = 7 neurons according to the procedure illustrated
in Bonassi, Farina et al. (2021), where the exponential δISS of
the network is also enforced. The dataset used to carry out the
training procedure consists of approximately 25 h of operation,
collected from a simulator of the system with a sampling time
 a

5

Fig. 2. Schematic of the pH process benchmark system.

Fig. 3. Open-loop simulation of the trained δISS GRU model (red solid line)
compared to the ground truth (blue dotted line), tested on an independent
validation dataset.

of 15 s. Note that the simulated output measurements have
been corrupted by white noise. The modeling performances of
the trained GRU model have been tested on an independent
validation dataset, showing the remarkable results depicted in
Fig. 3.

Then, a state observer in the form (13) has been designed, by
tuning the weights Lz and Lf as illustrated in Proposition 2. In
particular, the observer synthesis amounts to solving (16), which
has been performed using CVX, yielding λo = 0.93. The NMPC’s
FHOCP (5) has been formulated in accordance with Theorem 1.
The state weight matrix has been selected as Q = Inx,nx , the
input weight matrix as R = 0.25, and the terminal weight as
S = 2Q . Note that the selected weights are positive definite
and satisfy (6a). Considering a prediction horizon N = 20, in
order to choose the simulation horizon M related to the terminal
cost, the criterion (6b) can be adopted, using µ and λ defined
in (10). However, due to their conservativeness (λ = 0.997), an
excessive simulation horizon would be required, i.e., M ⩾ 440.
We thus opted for numerically estimating λ ∈ (0, 1) such that
(2) holds, with µ =

√
7 fixed, for a sufficiently large number of

pairs of state trajectories. Such trajectories have been generated
by simulating the model (7) with random pairs of initial states
within X and random input sequences extracted from U0:T , with T
ufficiently high. Note that this numerical approximation is made
ossible by the fact that the existence of such λ is guaranteed
y the model’s exponential δISS. Considering 105 trajectories1 of

1 Note that this approach can be readily extended to MIMO systems, as long
s the number of simulated trajectories is large enough to explore the set U .
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Fig. 4. Closed-loop performances of the proposed control architecture: plant’s
output (red solid line) compared to the piecewise-constant reference signal
(black dashed line).

length T = 300, the bound λ ≈ 0.9 has been computed which,
wing to (6b), implies M ⩾ 15. The simulation horizon M = 20
as been therefore selected.
The closed-loop performances of the designed control archi-

ecture have been tested using a piecewise-constant reference
ignal spacing the region of interest, considering the input con-
traint Ũ = U . Note that at every setpoint change, only the target
equilibrium (1) needs to be recomputed. In Fig. 4, the resulting
closed-loop output trajectory is compared to the reference signal.
It is apparent that the proposed control architecture is able to
accurately steer the output to the setpoint with negligible steady-
state tracking error (in the range ±0.02 pH). At the same time, the
input saturation constraint is respected, see Fig. 5.

Notably, the computational burden of the proposed architec-
ture is rather low: the solution of the FHOCP (5) took 0.2 ± 0.05
s per timestep using CasADi, which is well below the sampling
time.

6. Conclusions

In this brief we presented an approach for designing nonlinear
model predictive control laws with guaranteed closed-loop stabil-
ity for Incrementally Input-to-State Stable (δISS) systems. In this
framework, an explicit condition on the design of the terminal
cost which ensures the attainment of the desired closed-loop
properties was provided. The proposed approach is particularly
suitable for synthesis based on systems learned by Recurrent
Neural Networks (RNN) models, in light of recent findings con-
cerning their δISS properties. Therefore, we demonstrated how
this control law can be synthesized for a popular class of RNNs,
i.e. Gated Recurrent Units. Future research efforts will be aimed
at extending the proposed theoretical framework to include state
constraints and offset-free output regulation, and at validat-
ing the proposed control strategy on experimental lab appara-
tuses.
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Fig. 5. Control action requested by the proposed scheme (red solid line) and its
saturation (black dashed line).

Appendix. Proofs

A.1. Proof of Theorem 1

Consider the optimal solution of (5) at time k. Let us denote
the optimal control sequence as u⋆

k:k+N−1|k = {u⋆
k|k, . . . , u

⋆
k+N−1|k},

and let NS = N + M . The corresponding optimal state trajectory,
indicated by x⋆

k:k+NS |k
= {x⋆

k|k, . . . , x
⋆
k+NS |k

}, is given by the evolu-
tion of the predictive model (1), initialized in xk|k = x̂k (see (5b)),
fed by u⋆

k:k+N−1|k and, after the prediction horizon, by the constant,
auxiliary control law ū. Then, the optimal cost function J⋆k reads
as

J⋆k =

N−1∑
τ=0

(
∥x⋆

k+τ |k − x̄∥2
Q +∥u⋆

k+τ |k − ū∥2
R

)
+

NS∑
τ=N

∥x⋆
k+τ |k − x̄∥2

S . (A.1)

The goal of the proof is to show that J⋆k is a Lyapunov function for
the closed-loop system. To this end, we start by pointing out that

J⋆k ⩾ ∥x̂k − x̄∥2
Q ⩾

¯

ςQ∥x̂k − x̄∥2
2. (A.2)

As customary in MPC literature (Rawlings et al., 2017), we then
consider a sub-optimal (yet feasible) control sequence constantly
equal to ū, i.e. ũk:k+N−1|k = {ū, . . . , ū}, and we denote by x̃k:k+NS |k
= {x̃k|k, . . . , x̃k+NS |k} the corresponding state trajectory of (1). The
suboptimality of ũk:k+N−1|k and x̃k:k+NS |k entails that

J⋆k ⩽

N−1∑
τ=0

∥x̃k+τ |k − x̄∥2
Q +

NS∑
τ=N

∥x̃k+τ |k − x̄∥2
S

(6a)
⩽ ς̄S

NS∑
τ=0

∥x̃k+τ |k − x̄∥2
2

(2)
⩽ ς̄S

µ2

1 − λ2 ∥x̂k − x̄∥.
2

(A.3)

Combining (A.2) and (A.3) we get that the Lyapunov function
candidate is bounded as

¯

ςQ∥x̂k − x̄∥2
2 ⩽ J⋆k ⩽ ς̄S

µ2

1 − λ2 ∥x̂k − x̄k∥2
2.

At time k + 1 the state observation x̂k+1 is available, and the
optimization problem (5) is solved, yielding the optimal control
sequence u⋆

k+1:k+N|k+1 = {u⋆
k+1|k+1, . . . , u

⋆
k+N|k+1} and the optimal

state trajectory x⋆
k+1:k+NS+1|k+1 = {x⋆

k+1|k+1, . . . , x
⋆
k+NS+1|k+1}. The

corresponding optimal cost function is denoted by J⋆k+1. Let us no-
tice that the optimal control sequence computed at the previous
NMPC iteration can be adopted as a suboptimal solution. Indeed,
let

u = {u⋆ , . . . , u⋆ , ū}. (A.4a)
k+1:k+N|k+1 k+1|k k+N−1|k
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he corresponding suboptimal state trajectory is

k+1:k+N+1|k = {xk+1|k+1, . . . , xk+N|k+1, xk+N+1|k+1}, (A.4b)

where it is worth stressing that xk+1|k+1 = x̂k+1 ̸= x⋆
k+1|k. Owing

to the suboptimality of (A.4), J⋆k+1 can be bounded as

J⋆k+1 ⩽

N−1∑
τ=1

(
∥xk+τ |k+1 − x̄∥2

Q + ∥u⋆
k+τ |k − ū∥2

R

)
+ ∥xk+N|k+1 − x̄∥2

Q +

NS+1∑
τ=N+1

∥xk+τ |k+1 − x̄∥2
S

(A.5)

Letting for consistency x⋆
k+NS+1|k = ϕ(x⋆

k+NS |k
, ū), the following

variable is introduced, ∀τ ∈ {1, . . . ,NS + 1},

ek+τ |k+1 = xk+τ |k+1 − x⋆
k+τ |k. (A.6)

The bound (A.5) can be thus rewritten as

J⋆k+1 ⩽

N∑
τ=1

(
x⋆
k+τ |k − x̄

)
+ ek+τ |k+1

2
Q +

N−1∑
τ=1

u⋆
k+τ |k − ū

2
R

+
(

x⋆
k+N+1|k − x̄

)
+ ek+N|k+1

2
Q

+

NS+1∑
τ=N+1

(
x⋆
k+τ |k − x̄

)
+ ek+τ |k+1

2
S

(A.7)

In light of (A.1) and (A.7), it follows that

J⋆k+1 − J⋆k ⩽ −∥x⋆
k|k − x̄∥2

Q − ∥u⋆
k|k − ū∥2

R + ∆Ja + ∆Jb, (A.8a)

where ∆Ja and ∆Jb read as

∆Ja =

N−1∑
τ=1

((
x⋆
k+τ |k − x̄

)
+ ek+τ |k+1

2
Q − ∥x⋆

k+t|k − x̄∥2
Q

)
+

NS∑
τ=N+1

((
x⋆
k+τ |k − x̄

)
+ ek+τ |k+1

2
S − ∥x⋆

k+t|k − x̄∥2
S

)
(A.8b)

∆Jb =
(

x⋆
k+N|k − x̄

)
+ ek+N|k+1

2
Q − ∥x⋆

k+N|k − x̄∥2
S

+
(

x⋆
k+NS+1|k − x̄

)
+ ek+NS+1|k+1

2
S .

(A.8c)

Let us now derive a bound for the term ∆Ja. By noticing that
∥v + w∥

2
Q = ∥v∥

2
Q + ∥w∥

2
Q + 2v′Qw, it holds that

∆Ja ⩽

N−1∑
t=1

(
∥ek+τ |k+1∥

2
Q + 2(x⋆

k+τ |k − x̄)′Qek+τ |k+1

)
+

NS∑
t=N+1

(
∥ek+τ |k+1∥

2
S + 2(x⋆

k+τ |k − x̄)′Sek+τ |k+1

)
.

(A.9)

Since x⋆
k+t|k belongs to the invariant set X , there exist finite scalars

µa1 > 0 and µa2 > 0 such that (A.9) can be upper bounded as

∆Ja ⩽ µa1ς̄Q

N−1∑
t=1

(
∥ek+τ |k+1∥

2
2 + ∥ek+τ |k+1∥2

)
+ µa2ς̄S

NS∑
t=N+1

(
∥ek+τ |k+1∥

2
2 + ∥ek+τ |k+1∥2

)
.

(A.10)

Analogously, the term ∆Jb can be bounded as

∆Jb ⩽∥x⋆
k+N|k − x̄∥2

Q − ∥x⋆
k+N|k − x̄∥2

S + ∥x⋆
k+NS+1|k − x̄∥2

S

+ ∥ek+N|k+1∥
2
Q + ∥ek+NS+1|k+1∥

2
S

+ 2(x⋆
k+N|k − x̄)′Qek+N|k+1
⋆ ′

(A.11)
+ 2(xk+NS+1|k − x̄) Sek+NS+1|k+1

7

We now show that if (6) holds, then

∥x⋆
k+NS+1|k − x̄∥2

S < ∥x⋆
k+N|k − x̄∥2

S−Q , (A.12)

where S −Q ≻ 0 due to (6a). To this end, let us point out that if

ς̄S∥x⋆
k+NS+1|k − x̄∥2

2 < (
¯

ςS − ς̄Q )∥x⋆
k+N|k − x̄∥2

2, (A.13)

then (A.12) surely holds. Since for τ ⩾ N the constant, auxiliary
control law ū is applied, it holds that

ς̄S∥x⋆
k+NS+1|k − x̄∥2

2
(2)
⩽ ς̄Sµ

2λ2(M+1)
∥x⋆

k+N|k − x̄∥2
2. (A.14)

Under (6b) one can thus guarantee that

ς̄Sµ
2λ2(M+1)

∥x⋆
k+N|k − x̄∥2

2 ⩽ (
¯

ςS − ς̄Q )∥x⋆
k+N|k − x̄∥2

2. (A.15)

By means of a chain of inequalities, this entails that (A.13) holds.
Noting that X is an invariant set, xk+N|k ∈ X holds. Therefore,

there exist finite scalars µb1 > 0 and µb2 > 0 such that (A.11)
can be upper bounded by

∆Jb ⩽ µb1ς̄Q
(
∥ek+N|k+1∥

2
2 + ∥ek+N|k+1∥2

)
+ µb2ς̄S

(
∥ek+NS+1|k+1∥

2
2 + ∥ek+NS+1|k+1∥2

)
.

(A.16)

By applying the bounds retrieved in (A.10) and (A.16) to (A.8),
and recalling (6a), one can guarantee the existence of a finite
µe > 0 such that

J⋆k+1 − J⋆k ⩽ − ∥x⋆
k|k − x̄∥2

Q

+ µe

NS+1∑
τ=1

(
∥ek+τ |k+1∥

2
2 + ∥ek+τ |k+1∥2

)
  

ϱe,k

. (A.17)

To conclude the proof, we show that the term ϱe,k exponentially
converges to zero with the time index k. To this end, let us point
out that, by definition,

ek+1|k+1 = xk+1|k+1 − x⋆
k+1|k

= ϕo(x̂k, u⋆
k|k, yk) − ϕ(x̂, u⋆

k|k),
(A.18)

Being the observer a weak exponential one, it holds that

∥ek+1|k+1∥
2
2

(4)
⩽ µ2

oλ̃
2
o∥x̂k − xk∥2

2. (A.19)

Let now, for the sake of compactness,

u⋆
k+1:k+NS |k = {u⋆

k+1|k, . . . , u
⋆
k+N|k, ū, . . . , ū}.

For any t ∈ {2, . . . ,NS + 1} by definition we have that

ek+t|k+1 = xk+t|k+1 − x⋆
k+t|k, (A.20)

where xk+t|k+1 = xk+t (xk+1|k+1, u⋆
k+1:k+t|k) and x⋆

k+t|k = xk+t
(x⋆

k+1|k, u
⋆
k+1:k+t|k).

In view of the model’s exponential δISS, the term ∥ek+t|k+1∥2
can be bounded as

∥ek+t|k+1∥
2
2

(2)
⩽ µ2λ2(t−1)

∥xk+1|k+1 − x⋆
k+1|k∥

2
2

(A.19)
⩽ µ2µ2

o λ̃2
oλ

2(t−1)
∥x̂k − xk∥2

2.

(A.21)

Therefore, owing to (A.19) and (A.21), and since the observer is
exponentially converging, there exists µϱ > 0 such that

ϱe,k ⩽ µϱ∥x̂k − xk∥2
2 ⩽ µϱλ̃

2k
o ∥x̂0 − x0∥2

2. (A.22)

That is, the perturbation term ϱe,k of (A.17) exponentially con-
verges to zero. The nominal closed-loop asymptotic stability can
be therefore proven following Scokaert, Rawlings, and Meadows
(1997). □
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.2. Proof of Proposition 1

Consider two state trajectories, xa,0:k and xb,0:k, yield by the ini-
tial states xa,0 and xb,0, and by the input sequences ua,0:k and ub,0:k.
f the GRU is exponentially δISS by Bonassi, Farina et al. (2021,
heorem 2), in view of Bonassi, Farina et al. (2021, (A.23)-(A.24))
he following inequality holds

xa,k+1−xb,k+1∥∞ ⩽ κx(z)∥xa,k−xb,k∥∞ + κ̌u∥ua,k−ub,k∥∞, (A.23)

or any time instant k and any scalar z ∈ [1− σ̌z, σ̌z], where σ̌z is
efined in (12b) and κx(z) reads as (11), for a suitably defined κ̌u.
his implies that, letting

= max
z∈[1−σ̌z ,σ̌z ]

κx(z), (A.24a)

t must hold that

xa,k+1 − xb,k+1∥∞ ⩽ λ∥xa,k − xb,k∥∞ + κ̌u∥ua,k − ub,k∥∞. (A.24b)

Let us now point out that κx(z) consists of a constant term,
i.e. 1

4 (φ̌r + x̌)∥Uz∥∞, plus the convex combination, weighted by
z ∈ [1 − σ̌z, σ̌z] ⊂ (0, 1), of two positive terms. Therefore, the
bsolute maximum of κx(z) happens at the closed boundaries of
, which yields (10b), where λ ∈ (0, 1) is guaranteed by Bonassi,
arina et al. (2021, Theorem 2).
Then, by iterating (A.24b), one gets

xa,k − xb,k∥∞ ⩽ λk
∥xa,0 − xb,0∥∞ +

κ̌u

1 − λ
∥ua,k − ub,k∥∞. (A.25)

ince for any v ∈ Rn it holds that 1
√
n∥v∥2 ⩽ ∥v∥∞ ⩽ ∥v∥2,

nequality (A.25) implies

xa,k − xb,k∥2 ⩽
√
nxλ

k
∥xa,0 − xb,0∥∞

+
√
nx

κ̌u

1 − λ
∥ua,k − ub,k∥∞,

(A.26)

.e., µ =
√
nx. □

A.3. Proof of Theorem 2

Let xk(x0, u0:k) be the state of the system (7), and x̂k(x̂0, u0:k,

0:k) the state estimate yield by the observer (13), where yτ =

(xτ ). In the following, these trajectories are compactly denoted
y xk and x̂k, respectively.
Consider the jth component of the state observation error

t the generic step k + 1. Summing and subtracting the terms
zk]j[x̂k]j and (1 − [zk]j)[r̂k]j we get

xk+1]j − [x̂k+1]j =[zk]j
(
[xk]j − [x̂k]j

)
+

(
[zk]j − [ẑk]j

)
[x̂k]j

+ (1 − [zk]j)
(
[rk]j − [r̂k]j

)
+

(
[zk]j − [ẑk]j

)
[r̂k]j

(A.27)

long the lines of the proof of Bonassi, Farina et al. (2021, Theo-
em 2), we take the absolute value of both sides of (A.27). In light
f the boundedness of the sigmoidal activation function, it holds
hat [zk]j ∈ (0, 1) and [ẑk]j ∈ (0, 1), which leads to

[xk+1]j − [x̂k+1]j
⏐⏐ ⩽[zk]j

⏐⏐[xk]j − [x̂k]j
⏐⏐ +

⏐⏐[zk]j − [ẑk]j
⏐⏐ |[x̂k]j|

+ (1 − [zk]j)
⏐⏐[rk]j − [r̂k]j

⏐⏐
+

⏐⏐[zk]j − [ẑk]j
⏐⏐ |[r̂k]j|

(A.28)

Since following Bonassi, Farina et al. (2021, Lemma 1) one can
asily prove that X is an invariant set for x̂, it holds that

[x̂ ] | ⩽ ∥x̂ ∥ ⩽ x̌. (A.29a)
k j k ∞

8

Moreover, since φ is strictly increasing and Lipschitz continuous,
in view of Assumption 2, it holds that

|[r̂k]j| ⩽ ∥r̂k∥∞ ⩽ max
u∈U

φ(Wruk + Ur x̂k + br )


∞

(12c)
:= φ̌r .

(A.29b)

Exploit the 1
4 -Lipschitzianity of σ and the linearity of output

transformation g(xk),

⏐⏐[zk]j − [ẑk]j
⏐⏐ ⩽ ∥zk − ẑk∥∞ ⩽

1
4
∥Uz − LzUo∥∞∥xk − x̂k∥∞,

⏐⏐[fk]j − [f̂k]j
⏐⏐ ⩽ ∥fk − f̂k∥∞ ⩽

1
4
∥Uf − LfUo∥∞∥xk − x̂k∥∞.

(A.29c)

ince φ is 1-Lipschitz, the following chain of inequalities also
olds true

[rk]j − [r̂k]j
⏐⏐ ⩽ ∥rk − r̂k∥∞

⩽ ∥Ur∥∞

(fk − f̂k) ◦ x̂k + fk ◦ (xk − x̂k)


∞

⩽ ∥Ur∥∞

[
x̌∥fk − f̂k∥∞ + σ̌f ∥xk − x̂k∥∞

]
⩽ ∥Ur∥∞

(1
4
x̌∥Uf − LfUo∥∞ + σ̌f

)
∥xk − x̂k∥∞.

(A.29d)

Applying the bounds Eq. (A.29), from (A.28) one gets⏐⏐[xk+1]j − [x̂k+1]j
⏐⏐ ⩽ κo([zk]j, Lz, Lf )∥xk − x̂k∥∞, (A.30)

where κo = κo(·, Lz, Lf ) is defined as in (15b). Letting

σ̌z = σ (∥Wz Uz x̌ bz∥∞), (A.31)

it is easily proved that [zk]j ∈ [1 − σ̌z, σ̌z] ⊂ (0, 1), see Bonassi,
Farina et al. (2021). In force of (15a), (A.30) is entailed by

∥xk+1 − x̂k+1∥∞ ⩽ λo∥xk − x̂k∥∞. (A.32)

Iterating (A.32) in time, we finally get

∥xk − x̂k∥∞ ⩽ λk
o∥x0 − x̂0∥∞, (A.33)

which, by standard norm arguments, implies the observer’s expo-
nential convergence, in the sense specified by Definition 2, with
µo =

√
nx. □

.4. Proof of Proposition 2

First, let us point out that, as evident from (A.32), λo represents
a bound on the observer’s worst-case convergence rate. There-
fore, the ‘‘optimal’’ gains of the observer are those that entail the
smallest possible λo. The observer design problem is therefore set
up as a min–max optimization problem, where the observer gains
corresponding to the smallest λo are retrieved

λo = min
Lz ,Lf

{
max

z∈[1−σ̌z ,σ̌z ]
κo(z, Lz, Lf )

}
. (A.34)

Notice that the δISS of the underlying GRU model implies that
the optimal solution of (A.34) does indeed satisfy Theorem 2,
i.e. λ̃o ∈ (0, 1). In fact, by taking the suboptimal gains Lz = 0nc ,ny
and Lf = 0nc ,ny and recalling (A.24a), it holds that κo(z, Lz, Lf ) =

κx(z) ⩽ λ < 1, where κx(z) is that defined in (11). By definition
the optimal solution of (A.34) thus λ ⩽ λ < 1, i.e., the optimal
o δ
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g
o

H

K

L

M

M

M

ains L⋆
z and L⋆

f satisfy Theorem 2. Because ∂κo
∂z does not depend

n z, it holds that

max
z∈[1−σ̌z ,σ̌z ]

κo(z, Lz, Lf )

= max
(
κo(σ̌z, Lz, Lf ), κo(1 − σ̌z, Lz, Lf )

)
.

(A.35)

The optimization problem (A.34) can be therefore recast in the
convex optimization problem (16). □
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