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Designing smart devices with tunable shapes has important applications
in industrial manufacture. In this paper, we investigate the nonlinear de-
formation and the morphological transitions between buckling, necking, and
snap-through instabilities of layered DE balloons in response to an applied
radial voltage and an inner pressure. We propose a general mathematical the-
ory of nonlinear electro-elasticity able to account for finite inhomogeneous
strains provoked by the electro-mechanical coupling. We investigate the on-
sets of morphological transitions of the spherically symmetric balloons using
the surface impedance matrix method. Moreover, we study the nonlinear
evolution of the bifurcated branches through finite element numerical sim-
ulations. Our analysis demonstrates the possibility to design tunable DE
spheres, where the onset of buckling and necking can be controlled by ge-
ometrical and mechanical properties of the passive elastic layers. Relevant
applications include soft robotics and mechanical actuators.

1 Introduction

Dielectric elastomers (DEs) are soft smart materials capable of performing large defor-
mations in fast response to electrical stimuli. In the last decades, they have attracted
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considerable attention, from both academia and industry, for many applications at the
core of modern technologies, such as soft robots, artificial muscles, actuators and energy
harvesters [23, 33]. A typical DE actuator consists of a soft elastomer sandwiched be-
tween two compliant electrodes. The actuator deforms when subject to a voltage along
the thickness direction, accompanied by a reduction in the thickness and an expansion
in the area [45, 42]. The DE balloon is widely used as a device configuration for its suit-
ability to enhance the electric-induced deformation and for its versatility in industrial
applications [19, 5]. In some practical applications, the DE devices should be insulated
from their surroundings. For example, a wearable device is capable of delivering haptic
information by adding a soft elastic insulation layer outside the DE actuator, protecting
human skin, enhancing breathability and preventing slippage [25].
A clear advantage of using DEs is the N-shaped constitutive curve between the ap-

plied voltage and the resulting stretch, which characterizes the so-called snap-through
instability [49, 43]. It consists of a sudden increase of the resulting strain as the applied
voltage reaches the local maximum value, as presented in Fig. 1. Taking advantage of
this feature, a giant areal strain can be obtained, as large as 1600% [26, 15].
Due to their geometric and constitutive nonlinearities, as well as to the multi-physics

coupling, DE devices can be modeled as boundary value problems (BVPs) that are
generally difficult to solve. Multiple morphological transitions can occur due to the
presence of many stationary points of the electro-mechanical functional of interest. For
instance, necking (i.e. the local thinning of an elastic body under tension) was initially
identified as a precursor of structural failure of DE devices, which should be avoided [8].
On the contrary, more recent studies have reported that compressive buckling can be
positively used to control shape and surface patterns in functional devices and biological
tissues [34, 47].
In this respect, the buckling of nonlinear elastic, thick-walled balloons has been ex-

tensively studied in the past [17, 16, 9] So far, some efforts have been devoted in the
literature to the study of mechanical behaviors of DE balloons. For example, Alibakhshi
et al. studied the nonlinear vibration and stability of a dielectric elastomer balloon
based on a strain-stiffening model [1]. Jin and Huang investigated the random response
of dielectric elastomer balloons disturbed by electrical or mechanical fluctuation [21].
Sharma et al. developed an energy-based method for estimating the dynamic pull-in
instability parameters of the DE balloon actuator undergoing homogeneous deformation
in [40]. Liang and Cai proposed a study of shape bifurcation of a spherical dielec-
tric elastomer balloon subject to internal pressure and electric voltage [27]. Xie et al.
studied the bifurcation of a dielectric elastomer balloon under pressurized inflation and
electric actuation [46]. Rudykh et al. [38] investigated the response of electroactive
balloons subject to coupled electromechanical stimuli. The inflation deformation of an
electroelastic spherical shell subject to an internal pressure and a radial voltage was
examined in [11]. Mao et al. conducted a 3D analytical study of the small-amplitude
free vibration of a SEA spherical balloon with radially inhomogeneous biasing fields [29].
The bifurcation of finitely deformed thick-walled electroelastic spherical shells subject
to a radial electric field was analyzed in [31]. It should be noted that most existing
works focused on monolayer DE balloons. Recently, layered dielectric composites have
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Figure 1: Nonlinear responses of planar DE actuators subject to a voltage through the
thickness: (a) Electrical breakdown occurs prior to the onset of snap-through
instability (type I); (b) Snap-through instability induces electrical breakdown
of the material (type II); (c) The DEs survives the snap-through instability
(type III). The solid and dashed curves correspond to the voltage-stretch load-
ing curve and the electric breakdown curve of the materials, respectively. The
arrow represents the snap-through path of the material during the deforma-
tion.

gained more and more attention. Osman et al. proposed the approaches for preparing
bilayered polydimethylsiloxane (PDMS) composite for dielectric elastomer applications.
Kumar et al. theoretically studied the dynamic electromechanical behavior of multi-
layered DE composites [24]. Su et al. proposed a dielectric-elastomer bilayer capable of
smart bending deformation [44]. Four different criteria of multilayered soft dielectrics
under plane-strain conditions were compared in [4]. To the best knowledge of the au-
thors, the only related work on the nonlinear response of multi-layered DE balloons was
proposed by [5]. However, the influences of the layered configuration and the applied
electro-mechanical stimuli on the morphological diagram of layered DE balloons are still
unknown. By analyzing the electro-elastic behavior of a spherical piezoceramic sensor
coated by a homogeneous protective layer, it was shown that the existence of the pro-
tective layer can prolong the effective working life of the piezoceramic sensor [3]. It is
unclear whether or not this enhancement can happen in dielectric devices.
Here, we propose a theoretical and numerical study of an incompressible layered

dielectric-elastic balloon subject to the combined action of electrical and mechanical
loads. For simplification, we only consider type III DEs as defined in Fig. 1c, excluding
the possibility of electric breakdown of the material before the onsets of the snap-through
and the necking instabilities. We investigate the possibility to enhance and to control
the electric-induced deformation field by coating an inactive elastic layer outside the DE
balloon.
The article is structured as follows. In Section 2, we derive the governing equations

for the inflation of a layered dielectric-elastic balloon subject to an internal pressure and
a radial voltage. We assume that the elastic and DE layers are perfectly bonded. In
Section 3, we formulate the linear stability analysis of the radially symmetric solution,
using the surface impedance matrix method to implement a robust numerical scheme
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for solving the linearised BVP for a generic constitutive function. In Section 4.1, we
illustrate the solution obtained by assuming a Gent constitutive response. In Section
4.2, we compare the numerical results obtained for elastic monolayer, DE monolayer and
bi-layered dielectric-elastic balloons. In Section 5, we present a post-buckling analysis
of the devices by means of a finite element approximation of the nonlinear problem.
In Section 6, we finally discuss the relevance of our results for enabling a novel design
strategy for tuning shapes of DE devices, together with a few concluding remarks.

2 The electro-mechanical model

In this section, we define the nonlinear BVP describing the response of a spherical
dielectric-elastic balloon to electro-mechanical stimuli, deriving its radially symmetric
solution.

2.1 Nonlinear boundary value problem

Let us consider a thick-walled bi-layered spherical balloon that occupies the domain
B0 ⊂ R3 in its reference configuration. Specifically B0 = Bd0 ∪ Be0, where

Bd0 = {X ∈ R3 | Ri < ∥X∥ ≤ Rm},
Be0 = {X ∈ R3 | Rm < ∥X∥ ≤ Ro},

(1)

as illustrated in Fig. 2. We assume that the inner and outer layers are made of DE and
elastic elastomers, respectively. Throughout the paper, we denote the quantities related
to the inner, interfacial and outer surfaces by the subscripts (•)i, (•)m and (•)o, respec-
tively, and the quantities related to the DE and elastic layers by the superscripts (•)d
and (•)e, respectively. X and x = χ(X) are the reference and the actual position vec-
tors, respectively, with χ : B0 → R3 being the mapping from the reference configuration
to the actual configuration B = χ(B0). Then the displacement field is u = x−X.

Let (eR, eΨ, eΘ) and (er, eψ, eθ) be the corresponding spherical orthonormal bases
in the reference and actual configurations, respectively. Moreover, let (R, Ψ, Θ) and
(r, ψ, θ) be the spherical coordinates in the reference and actual frames, respectively, so
that {

X = (X1, X2, X3) = (R sinΘ cosΨ, R sinΘ sinΨ, R cosΘ),

x = (x1, x2, x3) = (r sin θ cosψ, r sin θ sinψ, r cos θ).
(2)

We denote by F = Gradχ the deformation gradient, where Grad is the material
gradient operator. In the following, we use capital letters for all the differential operators
referring to the reference frame. We assume that both layers are incompressible, so that
everywhere holds the constraint

detF = 1. (3)

We now introduce the true electric field E : B → R3 and the true electric displacement
field D : B → R3. Their Lagrangian counterparts are given by

EL = FTE, DL = F−1D. (4)
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Figure 2: Sketch of a layered dielectric-elastic balloon subject to a radial voltage V
through the DE layer and an internal pressure P at the inner surface: (a)
undeformed and (b) deformed configurations. The upper row depicts the three-
dimensional domains with the respective spherical coordinate systems, and the
lower row shows the corresponding in-plane cross sections with geometrical and
electro-mechanical loading parameters.

Accordingly, the Maxwell equations in the material frame read

CurlEL = 0, DivDL = 0, (5)

or, equivalently, in the material setting

curlE = 0, divD = 0, (6)

where div and curl are the spatial divergence and curl operators, respectively, and Div
and Curl their material counterparts. The first equation is automatically satisfied if we
introduce the electric potential ϕ such that:

E = − gradϕ. (7)

Both in Bd0 and in Be0, the nominal stress S must satisfy the balance equation

Div S = 0, (8)
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while we require that the normal traction and displacement are continuous at the inter-
face between the elastomer and the dielectric layers, that is

lim
R→R−

m

STeR = lim
R→R+

m

STeR. (9)

We postulate the existence of an energy density W in the form

W =

{
W d(F, DL) in Bd0 ,
W e(F) in Be0.

(10)

The dielectric elastomer is assumed to be isotropic. In virtue of the representation
theorem of isotropic functions, the energy density can be generally written as a function
of five invariants, namely W d =W d(I1, I2, I4, I5, I6), where

I1 = trC, I2 =
I21 − tr(C2)

2
, I4 = DL ·DL,

I5 = DL · CDL, I6 = DL · C2DL,

(11)

where C is the right Cauchy–Green tensor, given by C = FTF. The elastomer is also
isotropic and therefore W e =W e(I1, I2).
By standard thermo-mechanical considerations [12], the nominal stress and the La-

grangian electric field can be expressed as

S =
∂W

∂F
− pF−1, EL =

∂W

∂DL
, (12)

where p is a Lagrange multiplier that enforces the incompressibility constraint Eq. (3).
For later convenience, we also introduce the push-forward of the nominal stress in the
actual configuration, i.e. the Cauchy stress tensor

T = FS. (13)

The Maxwell equation (5) and the balance equation (8) are complemented by interface
and boundary conditions. We assume that the inner and the outer surfaces of the DE
layer are coated with compliant electrodes, so that the potential difference between the
surfaces of the dielectric is a fixed applied voltage V , namely

∆ϕ = ϕ(Rm)− ϕ(Ri) = V. (14)

Furthermore, we assume that the inner surface of the bilayer is subject to a pressure P ,
such that

STN = −PF−TN , (15)

where N is the outward normal vector.
In the following, we derive the radially symmetric solution of the BVP given by

Eqs. (3)-(15).
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2.2 Radially symmetric solution

We look for a particular solution of the BVP using the ansatz

r = r(R), θ = Θ, ψ = Ψ, ϕ = ϕ(R). (16)

We introduce the spatial inner, interfacial and outer radii ri = r(Ri), rm = r(Rm) and
ro = r(Ro), respectively. Using spherical coordinates, the deformation gradient reads

F = λrer⊗ER+λθeθ⊗EΘ+λψeψ⊗EΨ =
dr

dR
er⊗ER+

r

R
(eθ ⊗EΘ + eψ ⊗EΨ) , (17)

where λj (j = r, θ, ψ) is the stretch at j−direction of the balloon.
Using the incompressibility assumption Eq. (3) in its local and global forms, we get

dr

dR

r2

R2
= 1 =⇒ r(R) = 3

√
R3 −R3

i + r3i . (18)

We denote the hoop stretch as λ = r/R, so that

λr =
1

λ2
, λθ = λψ = λ. (19)

From Eq. (18), the following relationships hold between the stretches at the inner, in-
terfacial and outer surfaces λi = ri/Ri, λm = rm/Rm and λo = ro/Ro of the balloon,

λm =
[
1 + (td)3

(
λ3i − 1

)]1/3
, λo =

[
1 + (te)3

(
λ3m − 1

)]1/3
, (20)

where td = Ri/Rm and te = Rm/Ro are the aspect ratios of the DE and elastic layers,
respectively. We remark that the limit cases td → 1 and te → 1 correspond to monolayer
elastic and DE balloons, respectively.

The radial electric field generated by the applied potential difference V only exists in
the DE layer. According to our ansatz, the nominal electric field and nominal electric
displacement have the forms

EL = EReR, DL = DReR, (21)

where ER and DR are the only non-zero components of the nominal electric field and
nominal electric displacement, respectively. The corresponding true electric field and
true electric displacement are

E = F−TEL = Erer D = FDL = Drer, (22)

where Er = λ2ER and Dr = λ−2DR are the only non-zero components of the true
electric field and true electric displacement, respectively.

From Eqs. (11) and (19), we obtain the following expressions of the invariants

I1 = 2λ2 + λ−4, I2 = 2λ−2 + λ4, I4 = D2
R, I5 = λ−4D2

R, I6 = λ−8D2
R.
(23)
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By using Eq. (12)2, we get

Er = 2
(
λ2W d

4 +W d
5 + λ−6W d

6

)
DR, (24)

where W s
j = ∂W s/∂Ij , with s = (d, e).

The only non-zero components of the Cauchy stress in spherical coordinates are given
by

T drr = 2
[
λ−4W d

1 + 2λ−2W d
2 +

(
λ−4W d

5 + 2λ−8W d
6

)
D2
R

]
− pd,

T dθθ = T dψψ = 2
[
λ2W d

1 +
(
λ−2 + λ4

)
W d

2

]
− pd, (25)

in the DE layer, and

T err = 2
(
λ−4W e

1 + 2λ−2W e
2

)
− pe,

T eθθ = T eψψ = 2
[
λ2W e

1 +
(
λ−2 + λ4

)
W e

2

]
− pe, (26)

in the elastic layer. Here ps, where s = (d, e), is a Lagrange multiplier associated with
the incompressibility constraint of the s-th layer, which will be determined from the
equilibrium equations and boundary conditions as detailed in the following.
The balance Eq. (8) in the actual configuration imposes

divT = 0. (27)

Under the symmetry assumption made in Eq. (16), Eq. (5)2 becomes

1

r2
∂(r2Dr)

∂r
= 0, (28)

which implies that r2Dr is a constant, and Eq. (27) reads

∂T srr
∂r

=
2

r
(T sθθ − T srr) (s = d, e). (29)

By introducing the reduced energy functions defined by

W d
sph (λ, DR) =W d (I1, I2, I4, I5, I6) , W e

sph (λ) =W e (I1, I2) , (30)

and by substituting Eqs. (23), (24) and (30), we have

Er = λ2
∂W d

sph

∂DR
. (31)

Accordingly, the applied voltage is

V =

∫ rm

ri

λ2
∂W d

sph

∂DR
dr. (32)

8



Similarly, Eq. (29) can be rewritten compactly as

∂T srr
∂r

=
λ

r

∂W s
sph

∂λ
(s = d, e). (33)

Using the boundary conditions

T drr(ri) = −P, T err(ro) = 0, (34)

and Eq. (33), the principal stresses in the radial direction read

T drr =

∫ λ

λi

1

1− λ3
∂W d

sph

∂λ
dλ− P at the DE layer,

T err = −
∫ λ

λo

1

1− λ3
∂W e

sph

∂λ
dλ at the elastic layer. (35)

Note that we have used the following relationship

dr

r
=

dλ

λ (1− λ3)
, (36)

which can be obtained from Eqs. (18) and (19).
The hoop stresses T sθθ = T sψψ can be determined using the following relationship

2(T sθθ − T srr) = λ
∂W s

sph

∂λ
(s = d, e), (37)

which results from Eqs. (29) and (33).
The two layers are perfectly bonded to each other, imposing the continuity of the dis-

placements and normal stresses at the interface, see Eq. (9). As a result, the relationship
between λi, λm, λo and V can be established, using Eq (35), as∫ λm

λi

1

1− λ3
∂W d

sph

∂λ
dλ− P = −

∫ λm

λo

1

1− λ3
∂W e

sph

∂λ
dλ. (38)

Finally, the deformation λi, λm and λo can be fully determined from Eqs. (20), (32)
and (38), once the inner pressure P , voltage V and constitutive lawsW s, with s = (d, e),
are given.

3 Linear stability analysis

Mechanical instabilities may occur in finitely deformed solids, and the onset of buckling
and necking can be predicted by using the theory of incremental deformations super-
posed on a finite strain [20, 18, 50, 29, 6]. In this section, we derive the governing
equations for the analysis of small-amplitude wrinkles superimposed upon the finite de-
formation of the balloon, and develop the surface impedance matrix method applicable
to layered structures to build a robust numerical procedure for solving the resulting
dispersion equations. Here we just give the general governing equations of the deformed
DE elastomer, and we omit the superscript for the sake of notation compactness. Note
that the incremental governing equations for the elastic elastomer can be simply derived
by making the electric field vanish in the given solution.
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3.1 Incremental BVP

Due to the spherical symmetry, the study of axisymmetric modes is sufficient to give a
full insight into the buckling behavior of the material, since the dependence on ψ does not
alter the incremental BVP [17]. Let us superimpose a small axisymmetric incremental
displacement u̇ = u̇r(r, θ)er+u̇θ(r, θ)eθ along with an incremental electric displacement
˙⃗
D = Ḋr(r, θ)e⃗r + Ḋθ(r, θ)e⃗θ over the radially symmetric solution described in Section 2.
Hereinafter the incremental quantity will be denoted by the notation (•̇).
In the following, we adopt the convention of summation over repeated indices. The

linearized incremental forms of the constitutive relations read [10]

Ṡ = A : H+ ΓḊ + pH− ṗI,
˙⃗
E = H : Γ+ KḊ,

Ṡij = AijαβHβα + ΓijαḊα + pHij − ṗδij , Ėi = HαβΓβαi +KiαḊα.
(39)

where H = grad u̇ is the displacement gradient, A, Γ and K are, fourth-, third- and
second-order electro-elastic moduli tensors, respectively, whose components are given by

Apiqj = Aqjpi = FpαFqβ
∂2W

∂Fiα∂Fjβ
, Γpiq = Γipq = FpαF

−1
βq

∂2W

∂Fiα∂Dlβ
,

Kij = Kji = F−1
αi F

−1
βj

∂2W

∂Dlα∂Dlβ
.

(40)

The incremental counterpart of the equilibrium Eqs. (5)-(8) read

div Ṡ = 0, (41)

curl Ė = 0, (42)

div Ḋ = 0. (43)

We introduce an incremental electric potential ϕ̇ = ϕ̇(r, θ) to rewrite the incremental

electric field as
˙⃗
E = − grad ϕ̇, so that Eq. (42) is automatically satisfied.

For the considered deformation, we have

H = grad u̇ =



∂u̇r
∂r

1

r

(
∂u̇r
∂θ

− u̇θ

)
0

∂u̇θ
∂r

1

r

(
u̇r +

∂u̇θ
∂θ

)
0

0 0
1

r
(u̇r + u̇θ cot θ)


. (44)

The incompressibility Eq. (3) at the incremental order reads

div u̇ = 0. (45)
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Having assumed that the applied voltage and pressure are fixed and that the two
layers are perfectly bonded, the following boundary and interfacial conditions apply

Ṡdrr = P
∂u̇r
∂r

, Ṡdrθ =
P

r

(
∂u̇r
∂θ

− u̇θ

)
, ϕ̇ = 0 at r = ri, (46)

Ṡdrr = Ṡerr, Ṡdrθ = Ṡerθ, ϕ̇ = 0 at r = rm,

Ṡerr = Ṡerθ = 0 at r = ro.

3.2 Stroh formulation

We assume the following separation of variables for the incremental fields [30]{
u̇r (r, θ) , Ṡrr (r, θ) , ϕ̇ (r, θ) , Ḋr (r, θ)

}
= {Ur (r) ,Σrr (r) ,Φ (r) ,∆r (r)}Pm (cos θ) ,{

u̇θ (r, θ) , Ṡrθ (r, θ)
}
=

{
Uθ (r)

M
,
Σrθ (r)

M

}
dPm (cos θ)

dθ
,

(47)
where M =

√
m (m+ 1), and Pm indicates the Legendre polynomial of order m, which

satisfies the following identity

d2Pm (cos θ)

dθ2
+ cot θ

dPm (cos θ)

dθ
+M2Pm (cos θ) = 0. (48)

Given the Stroh vector η(r) = (Ur, Uθ, r∆r, rΣrr, rΣrθ, Φ), the governing equations
(39), (41), (43) and (45) can be rewritten in the form of a first-order differential system
as

d

dr
η =

1

r
Gη =

1

r

[
G1 G2

G3 G4

]
η⃗, (49)

where the matrix G ∈ R6×6 is the so-called Stroh matrix. The derivation of Eq. (49)
and the components of the 3 × 3 sub-matrices G1, G2, G3 and G4 are detailed in Sup-
plementary Material.

We introduce the generalized displacement and traction vectors, defined as U =
(Ur, Uθ, r∆r) and S = (rΣrr, rΣrθ, Φ), respectively. Then, using Eq. (47), the in-
cremental boundary conditions (46)1,3 can be rewritten as

S⃗d (ri) = P

−2 M 0
M −1 0
0 0 0

 U⃗d (ri) , S⃗e (ro) = 0⃗, (50)

and the incremental interfacial condition (46)2 can be rewritten as

S⃗d (rm) = S⃗e (rm) , U⃗d (rm) = U⃗ e (rm) . (51)
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3.3 The surface impedance matrix method

Here we exploit the so-called surface impedance matrix method to build a robust nu-
merical procedure to solve the governing equation (49) associated with the incremental
boundary condition (50) and interfacial condition (51).
For each layer, we introduce the conditional impedance matrices Zd(r, ri) and Ze(r, ro)

[32]. In particular, we have

Ss = ZsU s (s = d, e). (52)

Then we can expand Eq. (49) to obtain (with s omitted)

d

dr
U⃗ =

1

r
G1U⃗ +

1

r
G2ZU ,

d

dr
(ZU) =

1

r
G3U +

1

r
G4ZU . (53)

Elimination of U in Eq. (53) gives the following Riccati differential equation for Z

dZ

dr
=

1

r
(−ZG1 − ZG2Z+ G3 + G4Z) . (54)

From the incremental boundary condition (50), we have

Zd (ri, ri) = P

 −2 M 0
M −1 0
0 0 0

 ,
Ze (ro, ro) = 0.

(55)

The marginal stability curves for the layered balloon can be determined as follows.
First, we determine the deformation and material constants for a given voltage V and a
given inner pressure P , based on the results presented in Section 2. Then, we integrate
Eq. (54) in the DE layer from ri to rm, in order to obtain Zd(rm, ri), with the initial
condition (55)1. In the elastic layer, we integrate Eq. (54) from ro to rm to obtain
Ze(rm, ro), with the initial condition (55)2. We finally iterate on the stretch until the
following bifurcation criterion is satisfied

det
[
Ze(rm, ro)− Zd(rm, ri)

]
= 0. (56)

For the considered problem, the critical inner stretch for the onset of a mechanical
instability can be solved from the dispersion equation (56), which is a function of the
applied voltage, the pressure, the mode m, and the material and structural parameters
of the balloon, such that:

λci = λci (V, P,m;µd, µe, ε, td, te). (57)
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4 Marginal stability curves for Gent dielectric-elastomer
balloons

4.1 Constitutive Equations

In order to illustrate the results of the linear stability analysis, we adopt the following
ideal Gent dielectric model [26] and the Gent elastic model [14] to describe the DE and
elastic elastomers, respectively,

W d(F, DR) = −µ
dGd

2
ln

(
1− I1 − 3

Gd

)
+
I5
2ε
, (58)

W e(F) = −µ
eGe

2
ln

(
1− I1 − 3

Ge

)
,

where µs and Gs are the shear modulus and the dimensionless stiffening parameter of
the s-th (s = d, e) elastomer, respectively, ε is the strain independent permittivity of
the DE elastomer. These constitutive laws model the strain stiffening behavior of soft
polymers. In the following, we fix Gd = Ge = 97.2, an experimental parameter collected
for unfilled vulcanized rubber [14, 11]. Note that in the limit of Gs → ∞, the Gent
model reduces to the neo-Hookean model [48, 22].

4.2 Marginal stability curves

We now derive the marginal stability curves to investigate the influence of the presence
of the elastic inactive layer on the deformation and instabilities of the DE active bal-
loon, and explore the possibility of realizing the selection of specific instability mode
in layered DE devices through structural and material design. For this purpose, we
compare the nonlinear responses, as well as the onsets of the snap-through and the
buckling instabilities of a monolayer elastic balloon, a monolayer DE balloon and a
layered dielectric-elastic balloon.
For convenience and generality, we introduce the following dimensionless quantities,

P =
P

µd
, T

s
ii =

T sii
µd

(s = d, e), (59)

V =
V

Rm −Ri

√
ε

µd
, DR =

DR√
µdε

.

4.2.1 Results for a monolayer elastic balloon

We first consider the case of an elastic balloon (V = 0, td = 1) subject to an internal
pressure P , whose results are depicted in Fig. 3. We can see that the P −λi curve of the
balloon is clearly non-monotonic and the snap-through behavior can be observed at the
critical stretches highlighted by the round markers. The stretch λi first increases as the
pressure P (> 0) increases. Once the pressure reaches a critical value, the stretch increase
suddenly and the pressure inside the balloon decreases due to the dramatic increase of the
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Figure 3: Inflation and buckling responses of (a) thick, (b) moderately thick and (c) thin

elastic balloons (V = 0, td = 1), respectively. The cross × and circle • markers
indicate the thresholds for buckling in compression and snap-through instabil-
ities of the material, respectively. The upper row presents the P − λi curve,
and the lower row shows the shape of the balloon at the onset of buckling.
Note that we have set a finite amplitude of the incremental displacement for
the sake of graphical illustration of the buckling pattern.

volume. Due to the strain-stiffening effect of the material, the internal pressure increases
again as the stretch approaches the extensible limit of the material. The snap-through
enables a large strain change in the balloon, which is a desired actuation mechanism
in many engineering applications. It is noted that the critical internal pressure for
triggering the snap-through instability of a thin balloon is smaller than that of a thick
balloon.
On the other hand, buckling may occur in an elastic balloon subject to critical com-

pression (P < 0). Compared with a thick-walled balloon, a balloon with a smaller
thickness is more susceptible to buckling. We note that the critical mode m (i.e. the
first mode to become unstable as the pressure decreases) can be selected by properly
designing the thickness of the balloon. Typically, the outer contour of a buckled thick-
walled balloon maintains the spherical configuration and wrinkles appear on the inner
face (Fig. 3a). While for a thin-walled balloon, buckling affects the whole body (Figs.
3b, 3c).

In Fig. 4, we plot the critical stretch versus the aspect ratio te at different buckling
modes, computed from the dispersion equation (56). Buckling occurs once the stretch
reaches the marginal stability threshold, i.e. the bold black curve in the figure. We
note that the buckling mode m = 1 is not allowed independently of the thickness of the
balloon. The buckling mode m = 2 can occur in moderately thick balloons (0.45 < te <
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Figure 4: Plots of the critical strains of a Gent elastic balloon as functions of the radius
ratio te, shown at different buckling modes m = 1, 2, . . . , 11 (dashed lines).
The bold black line corresponds to the marginal stability curve.

0.7), while for thick balloons (te ≤ 0.45) and thin balloons (te ≥ 0.75), higher mode
(m > 2) are selected, strongly depending on the aspect ratio. We remark that for thick
balloons with te ≤ 0.45, buckling always occurs once the inner circumferential stretch
reaches λci=0.684, which is thickness independent.

We emphasize that a critical compression (P < 0) is required for a Gent elastic balloon
to trigger the onset of buckling, which is different from the DE case presented below.

4.2.2 Results for a monolayer DE balloon

Here, we consider a thin DE balloon (te = 1, td = 0.9) subject to a combination of an
internal pressure P and a voltage V , whose results are collected in Fig. 5. In order to
investigate the effect of the applied voltage on the onset of buckling, we consider the
cases of V = 0.1 and V = 0.3 as illustrative examples.

For a DE balloon subject to a small voltage (V = 0.1), the response is similar to the
case of a purely elastic monolayer presented in Fig. 3. The balloon buckles only when a
critical compression (P < 0) is applied. On the other hand, the snap-through instability
is triggered once a critical inner pressure P (> 0) is applied, and the balloon survives
the snap-through instability, without encountering the buckling failure.
When the applied voltage is sufficiently large (V = 0.3), we see that in addition to

buckling in compression, the possibility of a bifurcation in extension (P > 0) emerges
along the path of the snap-through. In this case, the balloon can not reach a homoge-
neous state characterized by a large strain.
We plot in Fig. 6 the critical stretch λci versus t

d for monolayer DE balloons subject
to either V = 0.1 or V = 0.3. Here we use the notation λVi to denote the inner
circumferential stretch of the balloon induced by the applied voltage only, i.e. considering
P = 0.

For the case V = 0.1, the balloon expands radially to λVi = 1.014, until buckling occurs
at a critical compression. The snap-through instability of the elastomer will be triggered
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Figure 5: Inflation and buckling responses of thin DE balloons (te = 1, td = 0.9) subject

to a fixed voltage: (a) V = 0.1 and (b) V = 0.3. The cross ×, circle • and
square ■ markers indicate the thresholds for buckling in compression, snap-
through and buckling in extension instabilities of the material, respectively.
Inset: the shape of the balloon at the onset of buckling; and the sectional view
of the balloon at necking.

at a critical inner pressure P > 0 (See Fig. 5 (left) for the special case td = 0.9). We note
that no bifurcation occurs during the snap-through process, thus the balloon can achieve
a large actuation strain (In Fig. 6 (left) the snap-through curve is not presented).
For the case V = 0.3, in addition to the buckling in compression, a bifurcation in

tension also occurs. The snap-through occurs prior to the bifurcation, thus snap-through
cannot be exploited to obtain a large actuation strain, since the balloon would lose its
spherical configuration during the snap-through process. As shown in Fig. 5 (right), the
critical mode for the bifurcation in tension is m = 1, and a localized thinning of the DE
occurs, which is the typical feature of necking instability [20, 18]. It is noted that we
can design the buckling mode in compression by properly selecting the thickness of the
balloon, while m = 1 is always the critical mode in tension.
We conclude that due to the electro-mechanical coupling effect, the DE balloon may

undergo snap-through-induced necking, thus limiting its applicability as an actuating
device.

4.2.3 Results for a bi-layered dielectric-elastic balloon

Finally, we investigate the case of a bi-layered dielectric-elastic balloon, as both voltage
and pressure tuning methods are considered.
In Fig. 7 (left) we show the voltage-stretch curves and the necking thresholds of

electro-active bi-layered balloons (P = 0 and 0.06) with td = 0.9 and varying te, µd and
µe. We consider the balloons with fixed material parameter µe/µd = 10. The results
for a monolayer DE balloon are presented here for comparison. We remark that the
snap-through instability always exists in bi-layered balloons, which is independent of
the thickness of the elastic layer. Compared with balloons with a thin elastic layer,
a larger voltage is required to activate the snap-through instability in balloons with a
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Figure 6: Plots of the critical strains versus the radius ratio td for a single layer of DE

(te = 1): (a) V = 0.1 and (b) V = 0.3. The black dashed line depicts the
snap-through instability threshold, the blue dot-dashed line depicts the inner
circumferential stretch λVi of the balloon induced by the applied voltage only,
i.e. considering P = 0. The magenta solid line finally depicts the threshold
for necking. For simplification, here we do not show the instability thresholds
for the different modes m = 1, 2, . . . , 11 (dashed lines as in Fig. 4), but only
present the actual marginal stability curve.

thick elastic layer, increasing the risk of electric breakdown failure. It is worth noting
that for dielectric-elastic balloons with a thin elastic layer (here te = 1 for example), a
bifurcation in tension (i.e. necking instability) occurs after the snap-through instability
is triggered, although the thresholds of the critical stretches for the two mechanical
instabilities are very close. As expected, covering the DE balloon with an elastic layer
with specific thickness (here te = 0.95, 0.85 for example) can suppress the bifurcation in
tension. As a result, the structure can survive the snap-through procedure and achieve
large deformation without necking, thus being suitable for engineering applications as
an actuator. We also notice that as the pressure increases, the critical voltage required
to trigger the snap-through instability decreases.
In order to study the influence of the thickness of the elastic layer on the necking

instability of the bi-layered balloon, we plot the te− log
µe/µd

10 phase diagram on Fig. 7
(right). For P = 0, we can see that the necking may occur when the thickness of the
elastic layer is small. As the thickness of the elastic layer increases (e.g., te < 0.976 for
balloons with µd = µe), the necking of the balloon can be suppressed. As the internal
pressure or the stiffness of the elastic layer (µe = 10µd for example) increase, we notice
a decrease in the critical thickness of the elastic layer required to suppress the necking
instability.
Fig. 8 presents the inflation-stretch curves bi-layered balloons (V = 0.3) with td = 0.9,

µe/µd = 10 and varying te. We remark that for the case of a monolayer DE layer
(te = 1), both buckling and necking can be induced by properly tuning the pressure P .
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Figure 7: Inflation of voltage-activated (P = 0 top, P = 0.06 bottom) dielectric-elastic

balloons with td = 0.9 and varying te. Left: V − λi curve of the balloon at
fixed µe/µd = 10 and varying te, with the square ■ marker indicating the
necking threshold. Right: stability diagram of the balloons with varying te

and log
µe/µd

10 . The black, blue and red curves on the left column correspond
to three specific balloons: balloon A with td = 0.9, te = 1, balloon B with
td = 0.9, te = 0.95, and balloon C with td = 0.9, te = 0.85 (balloon C beyond
the scope of the phase diagram thus is not presented in the plots on the right).

The presence of the elastic layer can not only decrease the risk of buckling but can also
suppress the necking of the balloon. The selection of buckling pattern of the balloons
can be designed by setting the thickness of the elastic layer.
We conclude that for a monolayer DE balloon, the tensile necking may be triggered

during the snap-through process, limiting the actuation strain. The application of the
elastic layer outside the DE layer can enhance the snap-through instability to avoid a
bifurcation in tension, thus can dramatically increase the actuation strain of the balloon.
That is, a monolayer DE balloon is more suitable for making functional devices with
complex surface morphology, while a bi-layered dielectric-elastic balloon is more suitable
as an actuating device as stable large deformation can be achieved.
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Figure 8: Inflation and buckling responses of pressure activated (V = 0.3) dielectric-elastic balloons

with td = 0.9 and varying te. The P −λi curve is shown on the left, and the buckling shapes

are shown on the right. The cross ×, circle • and square ■ markers indicate the thresholds

for buckling in compression, snap-through and buckling in extension, respectively.

5 Fully nonlinear numerical simulations

In this Section, we first implement a numerical scheme to approximate the nonlinear
BVP given by Eqs. (3)-(15). Second, we perform the numerical simulations, discussing
the morphological transitions in the fully nonlinear regime in some cases of practical
interest.

5.1 Variational formulation

We take the displacement field u and the electric potential field ϕ as the unknowns of the
problem. We assume radial symmetry of the solutions performing numerical simulations
of an axis-symmetric section of the balloon, namely on S0 = B0 ∩ (X3 = 0 and X1 > 0).
For the sake of numerical robustness, we use a quasi-incompressible approximation.
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The BVP given by Eqs. (3)-(15) rewrites

S =
∂W ⋆

∂F
, DL = −∂W

⋆

∂EL
,

Div S = 0 in S0

DivDL = 0 in Sd0
STN = −PF−TN , ϕ = 0 if R = Ri

STN = 0 if R = Ro

ϕ = V if R ≥ Rm

u · e1 = 0, e2 · STe1 = 0 if X1 = 0∫
S0

ρu · e2 dX1dX2 = 0

(60)

where (e1, e2, e3) is the canonical vector basis in Cartesian coordinate and ρ =
√
X2

1 +X2
2 .

The last equation in (60) removes rigid body translations along the vertical direction
e2, while the energy density W ⋆(F, EL) is linked to W (F, DL) through the following
Legendre transform

W (F, DL) =W ⋆(F, EL) +DL ·EL. (61)

The boundary value problem given by Eqs. (3)-(15) can be cast into an equivalent
variational formulation. The integral condition in (60) is enforced by means of a Lagrange
multiplier α.

Let us introduce the energy functional

E [u, ϕ, α] = 2π

∫
S0

ρ [W ⋆(F, EL) + αu · e2] dX1dX2. (62)

Then, the solutions of the BVP (3)-(15) must satisfy [7]

δE(u, ϕ, α)[δu, δϕ, δα] + 2π

∫
R=Ri

JρPF−1δu ·N dS = 0. (63)

where J = detF, δE is the first variation of the energy functional E and δu, δϕ, δα are
admissible variations of the unknown fields.
As a compressible counterpart of Eq. (58), we take the energy densities for the DE

and the passive elastomer as follows
W ⋆d(F, EL) = −µ

dGd

2
log

(
1− I1 − 3

Gd

)
+
Kd

2
(log J)2 − εJ

2
EL · C−1EL

W ⋆e(F) = −µ
eGe

2
log

(
1− I1 − 3

Ge

)
+
Ke

2
(log J)2

(64)

where Kd and Ke are parameters regulating the compressibility of each layer and I1 =
J−2/3I1.
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5.2 Mixed finite element implementation

The problem is approximated by means of the finite element method. The computational
domain S0 is discretized by using a triangular mesh. In order to impose homogeneous
boundary conditions on the potential field, we decompose the potential ϕ into two con-
tributions

ϕ(X) = ϕr(X) + ϕinh(X) (65)

where ϕr(X) = V (R − Ri)/(Rm − Ri) if R ≤ Rm, while ϕr(X) = V if R > Rm. Thus,
the unknowns of the problem are u, ϕinh and the Lagrange multiplier α. The fields u and
ϕinh are approximated by means of a mixed finite element formulation, using continuous
piecewise quadratic functions for the displacement field and continuous piecewise linear
functions for ϕinh. In order to trigger the bifurcation, we apply a small perturbation to
the mesh. The expression of the perturbation is given by the critical mode provided by
the results of the linear stability analysis [36].

The numerical scheme is implemented in Python by using the open-source computing
platform FEniCS, version 2019.2 [28]. We use PETSc as a linear algebra back-end. In
order to reconstruct the bifurcation diagram, we use a pseudo-arclength continuation
algorithm [39], where we use the pressure P as a control parameter of the problem. The
nonlinear problem is solved by using a predictor-corrector method. In particular, we
adopt a secant predictor to obtain a first guess of the solution and a SNES Newton
solver as a corrector. The variational formulation, as well as the Jacobian of the lin-
earized problem, are computed by means of the library UFL [2]. We exploit the library
BiFEniCS (https://github.com/riccobelli/bifenics) for the implementation of the
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Figure 9: Post-buckling behavior showing P versus the dimensionless amplitude of the

deformation at the free surface, setting V = 0.3, µe/µd = 10, td = 0.9, and
te = 0.9, 0.95, 1 (blue, orange, and green lines, respectively). The × marker
denotes the theoretical buckling threshold.
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Figure 10: (left) Plot of the actual configuration of the planar section of spherical bilay-

ers, with td = 0.9, te = 0.9, µe/µd = 10. Here, we show a section of the shell,
where on the left we show ∥u∥/Ro, while on the right each layer is identified
using different colors (orange: DE, blue: elastomer). On the right, we show
the corresponding points to each configuration on the bifurcation diagram.

continuation algorithm [37].

5.3 Results of the numerical simulations

In the following, we show the results of simulations for the cases analyzed in Fig. 8.
Specifically, we take td = 0.9 and te = 0.9, 0.95, 1 (the latter case corresponds to a
single DE layer), with µe/µd = 10 and V = 0.3.

We apply a perturbation of amplitude δA = ±10−5Ro. In Fig. 9 we show the bifur-
cation diagram for P < 0. As a measure of the amplitude of the bifurcated pattern, we
use the following scalar dimensionless quantity

A = ± 1

Ro

(
max

|X|=Ro

|u| − min
|X|=Ro

|u|
)
, (66)

where we take a plus or a minus in front of the amplitude depending on the sign of δA.
In the cases te = 0.95, 1, the buckling mode is m = 5, which is symmetric with respect

to the substitution δA → −δA. As expected, the bifurcation diagram for this case is
symmetric with respect to the P -axis. In both cases, the shape of the bifurcation is
a subcritical pitchfork. Conversely, for te = 0.9 the buckling mode is even. In such a
case, the buckling mode is not symmetric with respect to the substitution δA → −δA
. As depicted Fig. 9, the bifurcation related to this case becomes transcritical. In all
the cases, the numerical outcomes are in good agreement with the theoretical buckling
thresholds, as shown in Fig. 9.
In Figs. 10-11, we show the evolution of the buckled configurations for the bi-layered

balloon. In particular, in the case where te = 0.9 we have two possible buckled configu-
rations: in the former we observe the formation of a protrusion along the equatorial line;
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Figure 11: (left) Plot of the actual configuration of the planar section of spherical bilay-

ers, with td = 0.9, te = 0.95, µe/µd = 10, V = 0.3. Here, we show a section of
the shell, where on the left we show ∥u∥/Ro, while on the right each layer is
identified using different colors (orange: DE, blue: elastomer). On the right,
we show the corresponding points to each configuration on the bifurcation
diagram.
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Figure 12: Bifurcation diagram showing P versus the dimensionless amplitude of the

deformation on the free surface A for V = 0.3, µe/µd = 10, td = 0.9, and
te = 1, V = 0.3. The marker × denotes the theoretical buckling threshold.

while in the latter the two poles collapse until we reach the self-contacting configuration
of the shell. Instead, if te = 0.95, 1 the bifurcation diagram is symmetric, and only one
branch will be shown. We observe that the formation of a dimple closes to one of the
poles. The initial amplitude of such a dimple is dictated by the critical buckling mode.
In extension, only the DE balloon (te = 1) undergoes necking. As shown in Fig. 12, the

bifurcation is symmetric with respect to the P -axis, exhibiting a pitchfork bifurcation at
a stretch that is higher than the snap-through threshold, see Fig. 7. Therefore, P first
increases beyond the necking threshold, then decreases before undergoing necking. In
Fig. 13, we show the actual configuration of the DE balloon. We observe a progressive
thinning of the dielectric elastomer, which is a sign of criticality since it is regarded as
a precursor of the DE failure [50].

6 Conclusions

DEs are promising electro-mechanical materials, especially suitable for applications as
soft actuators and functional wearable devices. The mathematical analysis of layered DE
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Figure 13: (left) Plot of the actual configuration of DE balloons, with td = 0.9,

µe/µd = 10, V = 0.3. Here, we show a planar section of the balloon, where
on the left we show ∥u∥/Ro, while on the right each layer is identified using
different colors (orange: DE, blue: elastomer). On the right, we show the
corresponding points to each configuration on the bifurcation diagram.

balloons is of considerable complexity, due to many theoretical and numerical challenges
given by the geometric and material nonlinearities, as well as the electromechanical
coupling. In this paper, we have proposed a theoretical framework for the analysis
of the nonlinear response and the bifurcation diagram of layered dielectric-elastic bal-
loons, reporting complex morphological transitions due to the interplay of snap-through,
buckling, and necking instabilities. After performing a linear stability analysis based on
incremental methods in nonlinear elasticity, we have implemented a numerical algorithm
using an original mixed finite element approach coupled with a pseudo-arclength contin-
uation method to investigate the shape transitions of the balloon in the fully nonlinear
regime. The onset of the bifurcated branches in the numerical simulations are in excellent
agreement with the theoretical marginal stability thresholds.
In the nonlinear regime, we found that axisymmetric odd modes result into pitchfork

bifurcations for balloons subject to negative inner pressure, while even modes are as-
sociated with transcritical bifurcations, as shown in Fig. 9. Not surprisingly, the two
branches associated with such transcritical bifurcation exhibit very different behaviors,
leading to distinct morphologies, see Fig. 10. Conversely, if the shell is inflated we observe
necking, where the critical mode is always equal to one. The finite element simulations
show a progressive thinning of the DE in the nonlinear regime. This is regarded in the
literature as a precursor of failure of the DE [50]. Such a transition takes place in the
unstable region of the snap-through instability, see Fig. 13.
In summary, we have shown that during the snap-through process, a mono-layered DE

balloon may be subject to necking, which limits its applications. A layered dielectric-
elastic balloon allows to overcome this drawback. Our numerical results also demon-
strated that the presence of the elastic layer outside the DE layer has a stabilizing effect
on the contractile buckling, and can suppress the necking induced by the snap-through
instability of the balloon.
In this work, we adopted some simplifications that deserve a final discussion. For

example, the DE and elastic layers of the balloon are taken to be perfectly bonded.
While imperfections may exist in layered structures due to manufacturing problems.
However, they have been found of negligible influence on the mechanical response of the
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structures [13]. In addition, we did not take into account the influences of viscoelasticity
[35] and electric breakdown failure [41], which have been experimentally observed in
DEs, and that will be the focus of future studies. As regards the nonlinear finite element
analysis, other non-axisymmetric modes could also occur. Future efforts will be devoted
to the extension of the proposed numerical scheme to three-dimensional simulations.
Furthermore, it would also been interesting to compare our theoretical results with some
experiments on spherical DE balloons.
Despite making specific constitutive assumptions for illustrative purposes, the findings

in this paper can be generally applied to give new paradigms for the design and fabri-
cation of functional DE devices. Indeed, we have shown that the presence of an elastic
layer can modulate the response of the DE. By tuning the stiffness and the thickness of
the elastic layer, we have sown how either to select the balloon morphological transition
or to delay (or even inhibit) the DE necking.

Data Accessibility. The source code is available on GitHub: https://github.com/
riccobelli/dielectric_elastomer_balloon.
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