
ITAcotron 2: Transfering English Speech Synthesis Architectures and
Speech Features to Italian

Anna Favaro1, Licia Sbattella2, Roberto Tedesco2 and Vincenzo Scotti2
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Abstract

End-to-end deep learning models have pushed
forward significantly many tasks of Natural
Language Processing (NLP). However, most
of these models are trained for languages pro-
viding many resources (such as English), and
their behaviour is hardly studied in other lan-
guages due to resource shortage. To cope with
these situations, it is common practice to em-
ploy transfer learning. With this work, we
wanted to explore the cross-language transfer-
ability of a Text-to-Speech (TTS) architecture
and the re-usability of the surrounding compo-
nents that complete a speech synthesis pipeline.
To do so, we fine-tuned an English version of
the Tacotron 2 TTS, with speaker conditioning,
to Italian (hence ITAcotron 2). The human eval-
uation –carried on 70 subjects– showed that the
language adaptation was indeed successful.

1 Introduction

The development of Text-to-Speech (TTS) synthe-
sis systems is one of the oldest problems in the
Natural Language Processing (NLP) area and has a
wide variety of applications (Jurafsky and Martin,
2009). Such systems are designed to output the
waveform of a voice uttering the input text string.
In the last years, the introduction of deep learning-
based approaches, and in particular the end-to-end
ones (Shen et al., 2018; Ping et al., 2018; Ren et al.,
2019; Hsu et al., 2019), led to significant improve-
ments.

Most of the evaluations carried out on these mod-
els are performed on languages with many available
resources, like English. Thereby, it is hard to tell
whether and how good these models and architec-
tures are general across languages. With this work,
we proposed to study how these models behave
with less-resourced languages.

To evaluate the transferability of a TTS archi-
tecture to a different language, the effectiveness

of training a new model starting from –and fine-
tuning– another one, and to verify the effect on
training convergence, we experimented with En-
glish and Italian languages. In particular, we started
from the English TTS Tacotron 2 and fine-tuned its
training on a collection of Italian corpora. Then,
we extended the resulting model, with speaker con-
ditioning; the result was an Italian TTS we named
ITAcotron 2.

ITAcotron 2 was evaluated, through human as-
sessment, on intelligibility and naturalness of the
synthesised audio clips, as well as on speaker sim-
ilarity between target and different voices. In the
end, we obtained reasonably good results, in line
with those of the original model.

We divide the rest of this paper into the following
sections. In Section 2 we explain the problem and
the available solutions. In Section 3 we present the
corpora employed to train and test out the model. In
Section 4 we explain the structure of the synthesis
pipeline we are proposing and how we adapted it
to Italian from English. In Section 5 we describe
the experimental approach we followed to assess
the model quality. In Section 6 we comment on the
results of our model. In Section 7 we sum up our
work and suggest possible future extensions.

2 Background

Modern, deep learning-based TTS pipelines are
composed of two main blocks: a spectrogram
predictor and a vocoder (Jurafsky and Martin,
2009). These components take care of, respec-
tively, converting a string of characters to a (mel-
scaled) spectral representation of the voice signal
and converting the spectral representation to an
actual waveform. Optionally, input text –apart
from normalisation– undergoes phonemisation to
present the input to the spectrogram predictor as a
sequence of phonemes rather than graphemes.



Recent end-to-end solutions for spectrogam pre-
diction are built with and encoder-decoder archi-
tecture (Wang et al., 2017; Shen et al., 2018; Ping
et al., 2018; Ren et al., 2019). The encoder maps
the input sequence to a hidden continuous space,
and the decoder takes care of generating autore-
gressively the spectrogram from the hidden rep-
resentation. To produce the alignment between
encoder and decoder, an attention mechanism (Bah-
danau et al., 2015) is introduced between these two
blocks.

Among the available architectures for spectro-
gram prediction, Tacotron (Wang et al., 2017), and
in particular its advanced version Tacotron 2 (Shen
et al., 2018), seems to be the most flexible and
re-usable.

Many works have been developed to intro-
duce conditioning into Tacotron, obtaining a fine-
grained control over different prosodic aspects. The
Global Style Token (GST) approach enabled control
over the speaking style in an unsupervised manner
(Wang et al., 2018). Another controllable aspect
is the speaker voice, introduced through additional
speaker-emebeddings extracted through a speaker
verification network (Jia et al., 2018). Finally Suni
et al. (2020) proposed a methodology to control
prominence and boundaries by automatically de-
riving prosodic tags to augment the input character
sequence. It is also possible to combine multiple
techniques into a single conditioned architecture,
as shown by Skerry-Ryan et al. (2018).

Neural vocoders completed the deep learning
TTS pipeline improving consistently the quality of
synthesised voice (van den Oord et al., 2016; Kalch-
brenner et al., 2018; Kumar et al., 2019; Yang et al.,
2021). These vocoders substituted the Griffin-Lim
algorithm (Griffin and Lim, 1983), which was char-
acterised by artifacts and poor audio quality, espe-
cially if compared with newer neural approaches.
These components, differently from the spectro-
gram predictors, do not strictly depend on the input
language. Their primary role is to invert a spectral
representation into the time domain; thus, they are
thought to be language-agnostic.

As premised, the available models are primar-
ily trained and evaluated on English corpora due
to data availability. A general solution for data
scarcity is to leverage a technique called transfer
learning (Yosinski et al., 2014), which consists of
re-using the hidden layers of a pre-trained deep
neural network as inputs for a different task. For

our work, we applied a variant of transfer learning
called fine-tuning, where we used the pre-trained
weights of the network as initialisation for the ac-
tual training on the new task (Yosinski et al., 2014).

3 Corpora

For the scope of this work, we considered three
different corpora of Italian speech. All corpora are
composed of read speech. We reported the main
statistics about the corpora in Table 1. All clips
were re-sampled at 22 050 Hz.

Mozilla Common Voice1 (MCV) is a publicly
available corpus of crowd-sourced audio record-
ings (Ardila et al., 2020). Contributors can either
donate voice by reading a prompted sentences or
validate clips by listening to others’ recordings.
The samples in this corpus have a sample rate of
48 000 Hz.

VoxForge2 (VF) is a multilingual open-source
speech database that includes audio clips collected
from speaker volunteers. The samples in this cor-
pus have a sample rate of 16 000 Hz.

Ortofonico (Ort.) is a subset of the CLIPS3

corpus, a corpus of Italian speech collected for a
project funded by the Italian Ministry of Education,
University and Research. Audio recordings come
from radio and television programs, map task dia-
logues, simulated conversations, and text excerpts
read by professional speakers. The samples in this
corpus subset have a sample rate of 22 050 Hz.

Apart from the three presented corpora, we used
some clips from a private collection of audiobooks
in the human evaluation step. We reported further
details in Section 5.

4 ITAcotron 2 synthesis pipeline

The model we proposed and evaluated is called
ITAcotron 2. It is an entire TTS pipeline, complete
with speaker conditioning, based on Tacotron 2
(Shen et al., 2018; Jia et al., 2018). The pipeline is
composed of a phonemiser, a speaker encoder (used
for the conditioning step), a spectrogram predictor,
and a neural vocoder. We reported a scheme of the
pipeline in Figure 1.

The core part of the model we are presenting
is the spectrogram predictor. We referred to the
Tacotron 2 implementation and weights provided

1https://commonvoice.mozilla.org
2http://www.voxforge.org
3http://www.clips.unina.it

https://commonvoice.mozilla.org
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http://www.clips.unina.it


Table 1: Statistics on the considered corpora for the Italian fine tuning of the spectrogram predictor: Mozilla
Common Voice (MCV), VoxForge (VF) and Ortofonico (Ort.).

Corpus
Time (h) Clips Speakers

Train Validation Test Train Validation Test Train Validation Test

MCV 79.07 26.45 26.42 50 322 16 774 16 775 5151 3719 3743
VF 13.62 1.74 1.75 7176 913 918 903 584 597
Ort. 2.94 0.36 0.32 1436 164 159 20 20 20
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Figure 1: ITAcotron 2 synthesis pipeline.

by Mozilla4 (Gölge, 2020). The model uses a
phoneme encoder to represent the input sequence
to utter, and an autoregressive decoder to generate
the target spectrogram; an intermediate attention
mechanism provides the input-output alignment.
With respect to the original implementation, we
only extended the employed phonemiser5 to ac-
commodate Italian’s accented vowels as additional
input characters. Code and pre-trained weights
for speaker encoder and vocoder came from the
Tacotron 2 same source.

We divided the fine-tuning process of the spec-
trogram predictor into two steps. In this way, we
iteratively improved the output quality.

The former used only the data coming from the
MCV corpus, which constituted the majority of the
available data. Due to the low quality of the input
audio recordings, we leveraged this step mostly
to drive the network’s weights towards the target
language. The noisy and sometimes poorly uttered

4Repository link: https://github.com/mozilla/
TTS, reference commit link: https://github.com/
mozilla/TTS/tree/2136433

5https://pypi.org/project/phonemizer/

clips of this corpus resulted in an awful quality
of the synthesised clips, which sometimes were
impossible to understand. This fine tuning was per-
formed for 52 271 update steps (identified trough
validation) on mini-batches containing 64 clips
each (Other hyper-parameters were left unchanged
from the reference implementation).

The latter fine-tuning leveraged both VF and Ort.
corpora. Audio clips in these corpora had a notice-
able higher quality than those of MCV in terms of
audio cleaning and speaker articulation. As a result,
the outputs of this final stage had significantly less
background noise, and the content was highly intel-
ligible. We performed this second fine-tuning for
42 366 update steps (identified trough validation)
on mini-batches containing 42 clips each (Other
hyper-parameters were left unchanged from the
reference implementation).

To achieve speaker conditioning, we concate-
nated the encoder representation of the spectro-
gram predictor with a speaker embedding. These
embeddings are extracted from a speaker verifica-
tion model (Chung et al., 2020), similar to that of
the reference work by Jia et al. (2018). For the

https://github.com/mozilla/TTS
https://github.com/mozilla/TTS
https://github.com/mozilla/TTS/tree/2136433
https://github.com/mozilla/TTS/tree/2136433
https://pypi.org/project/phonemizer/


vocoder, instead, we adopted the more recent Full-
Band MelGAN (FB-MelGAN) vocoder (Yang et al.,
2021).

Notice that while we fine-tuned the spectrogram
synthesis network, we did not apply the same pro-
cess to the speaker embedding and neural vocoder
networks. We did so because we wanted to observe
the zero-shot behaviour of these networks in the
new language. In this way, we could assess whether
the two models are language-agnostic.

5 Evaluation approach

Similarly to Jia et al. (2018), we divided the eval-
uation process of the fine-tuned model into two
listening tasks:

• evaluation of Intelligibility and Naturalness
(I&N) of the speaker-conditioned synthesised
samples;

• evaluation of Speaker Similarity (SS) of the
speaker-conditioned synthesised samples.

For both tasks we asked subjects to rate different
aspects in a 1 to 5 scale, with 0.5 increments (ITU-
T Recommendation, 1999), of the various stimuli
(i.e. audio clips). We divided the 70 participants
into 20 experimental groups for both listening tasks.
We prompted participants of each group with the
same stimuli.

In the I&N tasks, we assigned each group with 4
clip pairs, for a total of 160 clips among all groups.
Each clip pair was composed of a real clip (ground
truth) coming from one of the corpora (including
an additional private corpus of audio-books) and a
synthetic clip generated in the voice of the ground
truth, but with different speech content (i.e. the
same voice uttered a different sentence). At this
step, we asked subjects to rate the intelligibility
and naturalness of each clip separately. Clips were
presented in a random order (to avoid biases) and
were rated right after listening.

In the SS tasks, we assigned each group with
with 16 clips split into 4 subsets, for a total of 160
clips among all groups. We divided the SS task into
three further sub-tasks. Each subset was composed
of a synthetic clip and three real clips. Subjects
compared the synthetic clip to each of the other
three real clips:

1. real clip containing an utterance in the voice
of the same speaker of the synthetic one (same
speaker comparison sub-task);

2. real clip containing an utterance in the voice of
a different speaker having the same gender of
the speaker of the synthetic one (same gender
comparison sub-task);

3. real clip containing an utterance in the voice
of a different speaker having different gender
of the speaker of the synthetic one (different
gender comparison sub-task).

At this step, we asked subjects to rate how similar
the synthetic voice was to the one we paired it with
(knowing that the fixed clip was synthetic and the
other three real). Real clips were presented in a
random order (to avoid biases), and subjects rated
the similarity after listening to a synthetic-real pair.

6 Results

Table 2: Results of the listening tasks. MOS values are
reported as average ± standard deviation.

Task Sub-task Model MOS

I&N
Intelligibility

ITAcotron 2 4.15± 0.78
Ground truth 4.43± 0.74

Naturalness
ITAcotron 2 3.32± 0.97
Ground truth 4.28± 0.86

SS
Same speaker ITAcotron 2 3.45± 1.07
Same gender ITAcotron 2 2.78± 1.01

Different gender ITAcotron 2 1.99± 1.08

We reported the Mean Opinion Score (MOS)
of each task in Table 2. The overall scores were
satisfying and reflected the intentions and the ex-
pectations underlying this research.

Concerning the I&N evaluation, the first thing
that jumps to the eye is the high intelligibility score,
very close to real clips. This high score provides
clear evidence of how easy it was to understand
the linguistic content of the synthetic clips. The
naturalness score is lower than that of intelligibil-
ity, meaning that it is still possible to distinguish
between real and fake clips.

Concerning the SS evaluation, instead, the thing
that jumps to the eye is the progressive drop in
the MOS value. This reduction is precisely the
expected behaviour: changing the speaker should
lead to lower similarity, especially when the two
speakers have different gender. The value obtained
for the same speaker sub-task seems promising.
The reduction in speaker similarity observed in dif-
ferent speaker sub-task showed that the synthetic



clips’ voice is distinguishable from those of the
same gender. The further drop observed in differ-
ent speaker similarity evaluations underlined that
the network learned to separate even better these
aspects, as we expected considered the general dif-
ference in pitch ranges between the two genders
(Leung et al., 2018).

The figures we obtained are quite similar to those
obtained by Jia et al. (2018) on similar tasks for
English. However, we choose not to report a di-
rect comparison against the work mentioned above
as it focuses on English and the tasks are not per-
fectly comparable with ours. Nevertheless, obtain-
ing scores that are similar to the ones provided by
that work, is a hint that our approach seems sound.

7 Conclusion

This paper showed the approach we followed in
our work to adapt a speech synthesis pipeline from
English to Italian. The procedure is language-
agnostic; however, the spectrogram prediction net-
work requires fine-tuning data in the target lan-
guage. To show how some pipeline components
can be used out-of-the-box (i.e. without language
adaptation), we also introduced a speaker embed-
ding network (to achieve speaker conditioning) and
a neural vocoder. Opinion scores from a human
evaluation session showed that the adaptation was
successful in terms of intelligibility and naturalness.
Concerning speaker conditioning, the result was
not as sharp as for the first evaluation, yet we ob-
tained a satisfying similarity score, matching that
of the reference model.

In future work, to derive speaker discriminative
representations, we could refine the speaker en-
coder on Italian multi-speaker speech data. In do-
ing so, we will assess the impact of employing a
network refined on a target language for deriving
descriptive features for speakers of that language.
Finally, since ITAcotron 2 is not completely able
to isolate the speaker voiceprint from the prosody
of the reference audio, we suggest conditioning its
generative performance on independent auxiliary
representations as in Skerry-Ryan et al. (2018) and
Wang et al. (2018). For instance, one intended to
capture the speaker’s accent and one the speaker’s
voiceprint.
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rian Stimberg, Aäron van den Oord, Sander Diele-
man, and Koray Kavukcuoglu. 2018. Efficient neural
audio synthesis. In Proceedings of the 35th Inter-
national Conference on Machine Learning, ICML
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A Code base and model weights

The source code developed during this project
is available at the following link: https://

github.com/vincenzo-scotti/ITAcotron 2. In-
side the repository we also provide the links to
download the weights of the fine-tuned model ITA-
cotron 2, for Italian speech synthesis. We remind
that the original source code we forked, and the
weights of the speaker encoder and neural vocoder,
were taken from the reference open source project
developed by Mozilla4.
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