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Abstract: Climate change is a global critical issue. High carbon dioxide emissions and concentrations
are important factors. In the construction field, concrete contributes significantly to greenhouse
gas emissions. Therefore, a pioneering team of researchers has developed a new “living concrete”
construction finish material capable of scrubbing carbon dioxide from the atmosphere. The material
consists of ASTM (ASTM is the acronym for American Society for Testing Materials)-certified concrete
block(s) with Chlorella vulgaris cultivated on the surface. Chlorella vulgaris is a common micro-algae
with photosynthetic activity; these species require water, nutrients, light, and carbon dioxide to
live while releasing oxygen in return. The “living concrete” block was developed in dedicated
laboratories; its photosynthetic activity was quantified. Proposed as an external application assembly
to a new or an existing building envelope—up to 3 m high, i.e., anthropogenic street-level emissions,
or installed on roof(s) in horizontal mode—this concrete/biological composite material reverses
carbon dioxide emissions and may present itself as a valid solution for climate change issues in urban
moderate climates.

Keywords: micro-algae; Chlorella vulgaris; concrete block; living concrete; urban moderate climate

1. Introduction

Climate change is a critical global issue. While several greenhouse gases (GHGs) such
as methane (CH4), nitrous oxide (N2O), hydrofluorocarbons (HFCs), chlorofluorocarbons
(CFCs), and perfluorocarbons (PFCs) contribute noxiously to global warming, the primary
agent and the largest contributor is carbon dioxide (CO2) [1]. In Europe, 36% of CO2
emanates from the building sector, which consumes 40% of the energy [2]. CO2 being
by far the most significant greenhouse gas (GHG) emitted [3], the World Green Building
Council (WGBC) moreover estimates that 39% of these carbon emissions are released
during the life cycle of buildings [4]. Factually, concrete is the most used construction
material worldwide [5]. Cement manufacture, the basic component of concrete, releases
five to eight percent of the global greenhouse gas [6]. In Europe, the production of 1 kg
of Portland Cement Type I emits, on estimate, 800 g of CO2, 2.4 g of nitrogen oxides
(NOx), 0.5 g of sulfur dioxide (SO2), and 0.2 g to 0.3 g of dust [7]. Globally, CO2 emissions
from cement production are estimated to be three billion tons per year [8]. According
to the National Aeronautics and Space Administration (NASA), CO2, once added to the
atmosphere, remains between 300 years to 1000 years [9].

In this context, finding efficient negative (by removal, absorption, and/or scrubbing)
CO2 emissions techniques is mandatory. Therefore, we elaborated a “negative thinking
(methodological research for CO2 scrubbing solutions)” approach by researching efficient
and affordable technical solutions for CO2 removal from the atmosphere. To reverse
the noxious emissions phenomenon, we developed an applicable finding: the “living
concrete” block material, i.e., an advanced symbiotic green concrete construction material
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with photosynthetic activity that absorbs carbon dioxide while releasing oxygen in return.
Concrete is an inert construction material; however, our innovative ASTM [10] certified
concrete block “lives” by the cultivation of micro-algae on its surface. Micro-algae are
unicellular photosynthetic organisms that use light energy to fix CO2 into organic matter.

Micro-algae are often cultivated on an industrial scale in artificial systems to generate
desired biomolecules, including pigments, food additives, bio-stimulants, and biochemicals.
Among the various algal species and strains, Chlorella vulgaris, a green alga, is particularly
favored for industrial applications due to its rapid growth and high resistance to both biotic
and abiotic stresses.

Researching possible interactions between the biological realm and the concrete
building field is a new scientific professional trend. Bacteria-based self-healing concrete
(self-healing concrete or self-repairing concrete possesses the ability to repair its cracks
autonomously) [11], i.e., with living organisms, has been developed by several European
companies to repair concrete. Lately, living concrete has been under research in many
universities with cyanobacteria [12]. Investigations are being conducted by international
universities to develop concrete suitable for algae growth [13]. This researched concrete ma-
terial is defined as bio-receptive, i.e., possessing the aptitude to be colonized by one or sev-
eral groups of living organisms without necessarily undergoing any biodeterioration [13].
These few studies focus more on concrete composition than on necessary conditions for
micro-algae sustainability.

Focusing on green concrete [14,15] to develop greener buildings, this article exposes
the conceptualizing of a novel methodology for symbiosing the concrete with micro-biology
to reverse noxious GHG emissions trends. Compared to current scientific studies, this paper
proposes a methodological experiment disclosing life settings of the innovative symbiotic
concrete material as well as growth symbiotic conditions of the C. vulgaris in laboratories.
Moreover, measured photosynthetic activities are reported. Additionally, the discussion
sheds light on possible future research paths to obtain an environmentally adaptable
practical finish concrete material that can efficiently scrub CO2 and emit oxygen in return,
under various non-controlled conditions. The “living concrete” block is a promising green
concrete finish solution to the building envelope. Applied judiciously in moderate climatic
zones, it may reverse climate change in urban cities.

2. Materials and Method

With the aim of reversing detrimental CO2 emission trends from the construction sec-
tor, our experiment focused on developing a symbiotic finish concrete material that “lives”
by cultivating common micro-algae C. vulgaris on its surface. Selecting standard certified
concrete finish block samples, the methodology adopted consisted, first, of symbiosing
the inert material with C. vulgaris micro-organisms under controlled favorable living con-
ditions; second, it implied testing and measuring the growth of C. vulgaris micro-living
organisms through photosynthetic technical measurements; finally, it inferred conclusions
and proposed future research paths for building applications. The following paragraphs
describe the specifications of the selected concrete blocks and the micro-algae; they also
present the steps of the experiment and the measurement techniques implemented.

2.1. Selected Concrete Blocks Specifications

As a first step and to conduct the experiment, four ASTM-certified concrete block
samples were chosen from the PPB Structures concrete manufacturing firm, referenced
PAVER 10 × 10; 14 0006 00 07 [16]; size: 10 × 10 × 6 cm; color: grey—please refer to
Appendix A—Figure A1. The block samples were labeled A, B, C, and D.

Several assessment criteria were thoroughly evaluated before the final selection of the
concrete finish block(s): (1) adequacy for external application; (2) porosity; (3) humidity
retainment; (4) modularity; (5) portability; (6) size and dimensions; (7) durability; and
(8) carbonation property. Effectively, the concrete blocks possessed the required physical
properties for external application under moderate weathering conditions. They could be
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fixed on stainless steel mounting assemblies as an external layer to the building envelope.
Their ability to retain humidity would support micro-algae life conditions. Their practical
dimensions and their portability would facilitate maintenance and replacement through a
modular design accommodating various external building shapes. Concrete is a durable
building material. Positioned as a finish block, it would undergo carbonation, i.e., a process
that involves sequestering CO2 from the surrounding air.

The ASTM-certified concrete blocks perform at a compressive strength of 250 kg/cm2

in 28 days; the concrete mix is composed of 370 kg/m3 cement content; the free water—
cement ratio by mass is 0.28; the ratio of fine (0–3 mm) to total fine aggregates is 0.123; the
maximum nominal size of the aggregate is 5 mm; the fine aggregates to cement ratio by
weight is 4.96. For further specifications of the concrete mix of these blocks, please refer to
Appendix A—Table A1. The blocks may be laid, in horizontal mode, over non-walkable
surface areas such as roofs. They may be mounted, in vertical mode, as an external building
finish layer. In the latter case, the blocks should be mechanically fixed on a stainless-steel
modular frame mounting system. The assembly would be applied as an external layer
to the new or the existing building envelope. In all cases, necessary structural measures,
waterproofing, and protection of the building envelope must be considered.

2.2. Micro-Algae Specifications and Experiment Brief

The term “algae” covers many different organisms capable of producing oxygen
through photosynthesis, which is the process of harvesting light energy from the sun to gen-
erate carbohydrates [17]. Genera, such as Chlorella, Scenedesmus, and Chlorococcum, proved
effective in capturing CO2 from effluents and emissions from industrial activities [18]. The
selection of C. vulgaris was based on the availability and ability to thrive in mild growth
conditions [19]. The most favorable conditions for C. vulgaris algae growth are daylight
with a temperature of 25 ◦C, in BG-11 culture medium. This solution is a cultivation media
for green algae; it is composed of essential nutrients including nitrate, phosphate, and
micro-elements required for algae cultivation [20,21].

The C. vulgaris strain herein used is the 211/11p strain [22] obtained from the Culture
Collection of Algae at Göttingen University; then, this Chlorella vulgaris strain was cultivated
at the laboratories of the Biotechnology Department at the University of Verona. For the
experiment, approximately 5 × 109 C. vulgaris cells were collected from a fresh culture in
BG-11 (Blue Green 11) growth medium [23]. Please refer to Appendix B—Table A2—for
BG-11 composition.

The experiment consisted of spreading concentrated C. vulgaris, allowing adherence,
and studying conditions for keeping it alive on the concrete samples.

2.3. Cultivation on Block Samples

The step-by-step procedure of the experiment is described here below:

1. Sanitization of Samples A and B concrete blocks: Samples A and B were sanitized with
70% alcohol. They were, then, desiccated for an hour at 60 ◦C temperature. Samples C
and D were left aside for future comparative structural tests (Samples C and D were
not utilized during the experiment; they will serve as reference samples for future
performance structural comparative tests with Samples A and B).

2. Collection of the micro-algae and centrifuging: C. vulgaris cells were collected from a
saturated culture (1 × 108 cells/mL) grown at 100 µmol photons m−2 s−1 in continu-
ous light in BG-11 growth medium and poured into 50 mL centrifuge tubes—Figure 1a
below. Afterwards, the tubes were centrifuged for 5 min at 3000× g to pellet the cells—
Figure 1b below. This procedure substituted the exhausted medium with the fresh
medium and increased cell concentration.

3. Re-suspension of the micro-algae solution: Pelleted cells were, then, resuspended
in 5 mL of fresh BG-11 medium. The resulting cell concentration obtained was
1 × 109 cell/mL.
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4. Soaking, spreading the solution, and partial immersing: Both Samples A and B
were soaked in BG-11 medium to ensure adequate moisturization with nutrients.
Afterwards, the re-suspended cells were spread on the surface of concrete block
Samples A and B to assess C. vulgaris growth—Figure 1c. However, to observe
two different growth conditions, Sample A was left in a beaker, partially immersed in
BG-11 solution up to 2 cm as measured from the bottom; this Sample A was designated
as the “Wet Block”. The 2 cm were refilled five days a week to keep the immersion
level constant. Sample B was not subject to immersion; it was designated as the “Dry
Block”—Figure 1d.

5. Growth observation conditions: For daily observation, both Samples A and B were
positioned on a counter in a sealed chamber at a temperature of 23 ◦C at a constant
light of 100 µmol photons m−2 s−1. The chamber was a sanitized room of 3 m × 1.7 m
located at the laboratory premises of the Biotechnology Department—Verona University.
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2.4. Photosynthetic Measurements

Photosynthetic measurements were performed in a dedicated chamber, five days a
week. At each instance, Samples A and B were retrieved and then re-positioned back into
their observation chamber room. Photosynthetic parameters Fv/Fm, qP, 1-qL, and NPQ
(these are the common photosynthetic parameters; they are used for the characterization of
photosynthetic organisms (refer to the Results section)) were characterized by measuring
chlorophyll fluorescence of intact cells at room temperature. This was conducted with a
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closed FluorCam FC 800-C instrument [24,25]. Fv/Fm was measured on dark-adapted
cells; qP, NPQ, and 1-qL were measured upon 10 min of illumination [26] with an actinic
light of 1200 µmol m−2 s−1. This illumination was followed by 10 min of dark recovery. In
all cases, a saturating light of 4000 µmol photons m−2 s−1 was utilized.

3. Results

In summary, two 10 cm × 10 cm × 6 cm concrete finish block samples—Sample A and
Sample B—were soaked in a fresh BG-11 medium. Sample A or the “Wet Block” was, then,
partially immersed in a beaker. The immersion level was 2 cm as measured from the bottom.
The solution was continuously refilled with fresh BG-11 growth medium to keep the level
constant. Sample B or the “Dry Block” was not immersed—Figure 1d. The porosity of the
concrete blocks retained moisture of the nutrient solution, which is a favorable condition
for micro-algae growth.

Due to capillary action, soaking Sample A (Wet Block) maintained moisture saturation
with BG-11 growth medium and sustained the life of C. vulgaris cell culture initially spread
on its surface. However, in the case of the “Dry Block” (Sample B), the cells ran down from
the surface into the inner pores of the block and were almost completely absorbed by the
concrete matrix.

Soaking entirely both concrete blocks—Sample A and Sample B—in BG-11 medium
prior to pouring C. vulgaris micro-algae solution on the surface limited the run-down of the
solution into concrete block pores. Observation revealed that as the humidity/saturation of
the soaked concrete block increases, the runoff of the concentrated C. vulgaris cell culture
becomes more restricted. As mentioned earlier, Sample A, or the “Wet Block”, was partially
immersed in growth medium—up to 2 cm from the bottom—with fresh medium renewed
once a day, five days a week, in a sealed chamber at 23 ◦C and under constant light for
further observation. Sample B, or the “Dry Block”, was provided daily with fresh BG-11
medium under the same conditions but without immersing.

The initial results of both living concrete blocks are shown in Figure 2 below.
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Sample B, or the “Dry Block”, exhibited a loss of green color during the growth
period. After five days, death of the micro-algae was observed. Therefore, the experi-
ment continued over Sample A, or the “wet” concrete block, to explore the potential of
sustaining C. vulgaris growth as long as possible. During this experiment, the fluores-
cence emitted by the chlorophylls present in C. vulgaris was recorded to investigate their
photosynthetic properties.

Figure 3 depicts the fluorescence emitted by the chlorophylls. This fluorescence
emission increased noticeably from day 4 onwards, indicating increased chlorophyll con-
centration and, consequently, cell growth.
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Maintaining a constant BG-11 partial immersion level, Sample A sustained the life
of C. vulgaris micro-algae for more than two weeks. The photosynthetic activities are
reported in Figure 4. These activities are measured from the chlorophyll fluorescence of
dark-adapted cells illuminated with an actinic light of 1200 µmol m−2 s−1. The fluorescence
measured corresponds to the fluorescence emitted by one of the photosystems present
in the chloroplast of Chlorella cells, Photosystem II. Photosystems, Photosystem II and
Photosystem I, are protein complexes where photochemical reactions occur during the
light phase of photosynthesis. The fluorescence quantum yield of the two photosystems is
different: the fluorescence quantum yield of Photosystem I is much lower when compared
to Photosystem II at room temperature. The measurement of Photosystem II fluorescence
fluctuations, upon exposure to different light intensities, allows the retrieval of the common
photosynthetic parameters used for the characterization of photosynthetic organisms such
as Fv/Fm, qP, 1-qL, and NPQ [26,27].
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4. Discussion
The conducted experiment demonstrated the successful cultivation of Chlorella vul-

garis on concrete blocks measuring 10 cm × 10 cm × 6 cm; this success depended on main-
taining an optimal concentration of micro-algae solution. Compared to the “Dry Block” 
(non-immersed), the “Wet Block” or the partially immersed block—up to 2 cm from the 
bottom—exhibited better moisture retainment, creating more favorable life conditions on 
the surface. Pouring BG-11 five days a week onto the surface sustained the life of the Chlo-
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The Fv/Fm parameter represents the maximum Photosystem II quantum yield. This
parameter indicates the maximum efficiency of photochemical activity occurring at the level
of Photosystem II in dark-adapted cells [26]. As depicted in Figure 4A, Fv/Fm increased
from day 0 to day 4, and it remained above 0.4 until the end of the experiment. Fv/Fm
values surpassing 0.4 indicate that the cells are alive and photosynthetically active.

qP is a photosynthetic parameter indicating the photosynthetic activity in light-
adapted cells [26]. Non-zero 0 qP values were measured during the experiment; this
demonstrated photosynthetically active cells—Figure 4B.

1-qL indicates the redox state of plastoquinones, the primary electron acceptor from
Photosystem II. A 1-qL value of 0 signifies a fully reduced plastoquinone pool and, con-
sequently, a saturated electron transport chain, while a value of 1 indicates complete
oxidation [28]. As reported in Figure 4C, 1-qL initially decreased from 0.6 to 0.4 on day 1
but, subsequently, increased to a stable value of 0.6. This result indicates that not only
are the cells photosynthetically active, but also the photosynthetic electron transport is
not saturated.

Finally, NPQ (non-photochemical quenching) is a fluorescence-derived parameter that
indicates the thermal dissipation of the light absorbed by the cells [29]. NPQ is, usually,
triggered upon exposure to high-intensity light as a photoprotective mechanism, reducing
the risk of saturation of the photosynthetic electron transport chain. While NPQ is induced
upon light exposure, a long-living NPQ component may also be present in the dark. As
illustrated in Figure 4D, NPQ values ranging between 0.3 and 0.6 were measured during
the experiments in light-exposed cells. Upon dark recovery, the NPQ was similar to the
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light-adapted cells at day 0 and day 1. However, it significantly decreased, indicating the
onset of an NPQ component specifically triggered by exposure to light, commonly called
qE, which relaxes within a few minutes upon dark recovery.

The photosynthetic parameters measured demonstrate that C. vulgaris cells were
photosynthetically active when cultivated on the “wet” concrete block. This photosyn-
thetic activity persisted throughout the eighteen-day experiment—until the latter was
deliberately concluded.

4. Discussion

The conducted experiment demonstrated the successful cultivation of Chlorella vulgaris
on concrete blocks measuring 10 cm × 10 cm × 6 cm; this success depended on maintaining
an optimal concentration of micro-algae solution. Compared to the “Dry Block” (non-
immersed), the “Wet Block” or the partially immersed block—up to 2 cm from the bottom—
exhibited better moisture retainment, creating more favorable life conditions on the surface.
Pouring BG-11 five days a week onto the surface sustained the life of the Chlorella vulgaris
micro-algae, i.e., the living concrete block. It is noteworthy that the living concrete block
“lived” for eighteen days; in other words, C. vulgaris cells remained photosynthetically
active until the deliberate ending of the experiment.

The fluorescence emission by the chlorophylls of C. vulgaris cells over the “wet”
concrete block—Sample A—shows a noticeable increase from day 4 onwards, indicating
increased chlorophyll concentration and, consequently, cell growth. This increased activity
supports the conclusion that the cells are growing on the block (more cells, more chloro-
phylls, more fluorescence). Based on fluorescence imaging results, the photosynthetic
parameters related to the photosynthetic activity were retrieved.

Micro-algae living condition constraints may be impeded due to the following factors:
stress may be exhibited in cases of water or nutrient shortage when the temperature falls
outside the range of 20 ◦C to 30 ◦C, or when the light intensity is either insufficient or
exceeds the tolerable threshold. Should one or more of these impeding conditions be
present, C. vulgaris species would die; death can be identified by a discoloration process,
transitioning from deep green to brown and eventually to white.

Limitations of this study stem from laboratory-controlled conditions. Temperature
and light were maintained at 23 ◦C and 100 µmol m−2 s−1, while humidity control was
limited to the range of 40–60%. However, exposing the living concrete block to uncontrolled
atmospheric conditions necessitates comprehensive independent testing and measurements
under various specific conditions before considering market promotion.

Additional limitations are associated with the size and the specifications of the selected
concrete blocks. For instance, custom-made concrete blocks of 10 × 10 × 3 cm may yield
better results. This would be attributed to the proximity of the biological living surface to
the partially immersing medium, i.e., the micro-algae life-sustaining source or its nutrients.
However, further empirical evidence is required to support the suggested size variation
with comparative analytical tests. Moreover, alternate concrete mix compositions might
yield unexpected results. According to concrete specialists, moisture may not impact the
durability of the concrete finish. However, BG-11 composition may affect the strength
performance of the concrete; this possibility necessitates further tests and measurements.

Further experimental research will start, first, by testing the symbiotic living concrete
under normal atmospheric conditions in mild climates. Other studies could be conducted
to compare the structural properties of Blocks A and B to the reference Blocks C and D,
after prolonged sustained C. vulgaris life conditions. Furthermore, chemical tests such as
carbonation should be conducted for similar comparative assessments.

Cultivating micro-algae on the surface of the finish concrete block has no impact on
the structural performance of the waterproofed building envelope, particularly if a 3 cm
to 5 cm gap is maintained between the latter and the stainless-steel mounting system. In
addition, maintenance and replacement of the block are practical due to its compact size
and mechanical fixation, eliminating adhesion requirements.
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A separate analysis could focus on developing living concrete with cultivated cyanobac-
teria or other micro-algae species that may exhibit higher resistance to challenging growth
conditions, particularly for applying concrete finish blocks in environments with high
temperatures and/or intense light exposure. Thermophilic cyanobacteria may present
more sturdy capacities to withstand extreme light and temperature conditions: the fast-
growing strain Synechococcus PCC 11901, which was proven to have an extraordinary
growth rate at temperatures up to 45 ◦C [30]. Alternatively, Chlorella ohadii was reported
as an extremely fast-growing green algal strain thriving under conditions of high light
intensity and high temperatures [31]. Moreover, by using fast-growing strains, it will be
possible to increase the carbon sequestration efficiency of the concrete block. The suitability
of these fast-growing strains for cultivation on concrete block surfaces requires specific
research efforts.

The living concrete blocks construction system is proposed as an outer layer applied
assembly to new building envelopes or existing ones—up to 3 m high, i.e., anthropogenic
street-level emissions. The system can also be laid on non-walkable roof areas. Compared to
green walls and green roofs, the “living” concrete solutions are cheaper and more practical.
They require little maintenance and provide the convenience of replacing individual blocks
with ease. Factually, living concrete reverses carbon dioxide emissions pollution and may
present itself as a valid solution for climate change issues in urban moderate climates.

5. Conclusions

The “living” concrete experiment has proven the possibility of sustaining the life
of Chlorella vulgaris micro-algae on ASTM-certified concrete blocks partially immersed in
BG-11 nutrient solution up to 2 cm from the bottom, pouring nutrients five days a week, in a
controlled laboratory environment, a temperature of 23 ◦C, and constant light. For this “wet”
partially immersed concrete block, chlorophyll fluorescence emissions of Chlorella vulgaris
cells were recorded, for eighteen days, using chlorophyll fluorescence imaging.

The living concrete wall or roof is a practical construction system requiring less main-
tenance than green walls and green roofs. In urban moderate climates, the photosynthetic
activities of the “living” concrete—walls and/or roofs—may efficiently reverse carbon
dioxide emissions and may present a valid solution for climate change issues.
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Portland Cement Pa-l 42.5 3.157 117.2 370 370 370 185
Total Water Clean Water 0.999 103.60 133 104 133 66

Crushed Sand 0–3 mm 1.479 2.57 2.61 1.58% 0.0% 94.61 243 247 0 243 122
Crushed Sand 0–5 mm 1.520 2.59 2.63 1.60% 0.0% 674.59 1594 1619 0 1594 797
Medium Agg. 3–10 mm 1.690 2.69 2.71 0.63% 0.0% 0.0 0 0 0 0 0
Coarse Agg. 10–19 mm 1.595 2.65 2.67 0.60% 0.0% 0.0 0 0 0 0 0
Epsilon I21 0.00% 0.00 0.00 0.00 0 0

Air Content % 1.00 10.00 10.00 10.00 10 5

Totals 1000 2340 2340 2340 1170
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Appendix B

Table A2. BG-11 Chemical composition.

Component Molar Concentration in Final Medium

Fe-Citrate 3.12 × 10−5 M
NaNO3 1.76 × 10−2 M
K3HPO4 2.24 × 10−4 M

MgSO4·7H2O 3.04 × 10−4 M
CaCl2·2H2O 1.84 × 10−4 M

NOHCO3 1.89 × 10−4 M
H3BO3 46.253

MnCl2·4H2O 9.146
ZnSO4·7H2O 0.765

NaMoO4·2H2O 1.781
CuSO4·5H2O 0.316
CaCl2·6H2O 0.161
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