MATE.RIA

Metodi e Azioni per il Trattamento Ecologico dei TEssili post-consumo e il loro Riciclo Innovativo in Architettura

POLITECNICO MILANO 1863 Department of Chemistry, Materials and Chemical Engineering "Giulio Natta"

Shiva Khoshtinat Luigi De Nardo Claudia Marano

Properties	Structural Properties			Inermal Properties			Niechanical Properties			
Material			Polydispersity	Glass transition	Melting point	Crystallinity	Elastic Modulus	Deformation	Stress at	Energy at break
	(g/mol)	(g/mol)	Ð [-]	T_g (°C)	<i>T_m</i> (°C)	χ _c (%)	(GPa)	at break (%)	break (MPa)	(J/m ³)
V: Virgin PET	2.07×10^{4}	3.2×10^{4}	1.54	79.5 ± 0	258.0 ± 0.2	29.21 ± 1.31	3.4 ± 0.1	1.1 ± 0.4	36.2 ±11.6	$(2.2 \pm 1.5) \times 10^{5}$
RF: Recycled PET Flakes from post-consumer bottles	2.41×10^{4}	4.06×10^{4}	1.68	78.2 ± 0.3	246.7 ± 0.2	10.87 ± 7.07	3.2 ± 0.2	1.6 ± 0.9	43.5 ± 16.4	$(4.2 \pm 3.6) \times 10^5$
GS: Scrap from Green PET fiber production (100% V + pigment)	6.41×10^{3}	1.92×10^{4}	3.00	80.7 ± 1.7	253.2 ± 1.1	19.33 ± 0.47	2.1 ± 0.4	0.6 ± 0.2	19.4 ± 5.6	$(5.7 \pm 3.3) \times 10^4$
BS: Scrap from Black fiber production (50% V+ 50% RF + pigment)	3.8 × 10 ³	1.55×10^{4}	4.08	80.3 ± 3.0	252.0 ± 0.3	28.59 ± 0.80	ND	ND	ND	ND

Structural Characterization:

During the manufacturing process:

✓ The average molecular weight of the material decreases by 40 percent

Thermal Characterization:

✓ Both PET Scraps behave as virgin PET, well crystallizing during cooling while recycled PET flakes (RF) has a low crystallinity degree

Mechanical Characterization :

✓ Elongation at break varies in the range of 0.6 -1.6 %

✓ As expected, the material is not suitable for the development of products with

- ✓ The polydispersity of the material doubles
- ✓ The material cannot be used within the company's operating system
- \checkmark The melting temperature (T_m) of the PET scraps are between virgin PET and recycled PET
- compression molding
- ✓ Due to the presence of Carbon Black as pigment in BS, the material was highly fragile it was not possible to obtain specimens for mechanical characterization (ND in the Table)

