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Abstract. In the aftermath of an emergency, the state of the trans-
portation network should be evaluated, and necessary emergency actions
should be taken immediately by the manager/owner of the structure.
This study is dedicated to the development of a methodology for the
identification of the optimal ground motion sensors’ layout for seismic
emergency management purposes. The information acquired through the
strong ground motion network installed in the proximity of the infras-
tructure can greatly improve the decision-making process by allowing
for improved estimation of the demand posed by the earthquake and
thereby of the structural reliability after the seismic event. In this paper,
we assess the optimum layout of the strong ground motion network based
on the maximization of the value of information acquired through the
recorded ground motions. A procedure is proposed to reduce the compu-
tational burden related to the modeling of the ground motion required
for the computation of the Value of Information.

Keywords: Value of Information · Seismic Emergency Management ·

Strong Ground Motion.

1 Introduction

The management of infrastructures is one of the most complex fields in structural
engineering since it is associated with large epistemic and aleatory uncertainties,
and requires a robust optimization process, in which all possible candidate ac-
tions are assessed carefully considering the available knowledge and the financial
constraints [1]. In the case of seismic emergency management, the expected de-
mand of an earthquake should be modeled considering an – in principle – infinite
set of scenario earthquakes consistent with the seismic hazard of the region. In
general practice, Monte Carlo Simulation (MCS) and its variants are employed
to model the seismic hazard. The Ground Motion Prediction Equations (GM-
PEs) are employed to predict the Intensity Measure (IM) that is assumed to be
a metric of ground shaking level. Besides the uncertainty associated with the
location and magnitude of the seismic event, the GMPEs also model the epis-
temic uncertainty in the IM. The need for considering a large set of possible
earthquake scenarios makes these analyses computationally expensive. There-
fore, several methodologies directed toward reducing computational effort have
been developed. Examples are importance sampling [2] or mixed-integer linear
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optimization [3, 4]. They are based on selecting the set of scenarios that can
model the seismic hazard/risk accurately enough to solve the problem at hand
at the same time reducing the computational effort. The information acquired
through the Strong Ground Motion (SGM) network can greatly improve the
ground motion models and consequently, the decision-making process associated
with seismic management. SGM information allows for an improved estimation
of the demand posed by the earthquake and thereby of the structural reliability
after the seismic event. Although the optimal layout for strong ground motion
networks is studied from the perspectives of early earthquake warning [5] and
rapid detection and characterization of earthquakes [6] by many researchers,
there is still a literature gap in the investigation of the effect of the location of
strong ground motion sensors on the benefit they provide to post-earthquake
decision-making. The optimal layout for sensing devices based on the Gaussian
Random field models is discussed in detail by Krause [7]. Malings [8] investi-
gates the optimal sensor layout for the management of infrastructures system
under the effect of different kinds of hazards (e.g., seismic, urban heat) consider-
ing different network topologies (connectivity) and different evaluation metrics
such as Value of Information (VoI) and entropy. Giordano et al. [9] presented a
methodology to optimize the location of sensors for a network of bridges that are
subjected to degradation. In this paper, the optimum sensor layout for the seis-
mic stations that can be used in the seismic emergency management of a network
of bridges is identified based on the maximization of the Value of Information
(VoI) from the Bayesian decision theory [10]. Compared to the previous studies:
i) a more detailed ground motion modeling technique is adopted to consider the
interdependency of intensity measures at adjacent locations; ii) a technique to
select a subset of the seismic scenario is employed to reduce the computational
effort; and ii) the decision problem is formulated assuming that only sensors
for measuring the ground motion intensity measures are installed whereas no
sensors are installed on the structure.

2 Methodology

The proposed methodology has three steps concerning (i) modeling the seismic
demand, (ii) selecting the subset of scenarios that best represent the seismic
hazard associated with the considered region, (iii) value of information analysis.
The three steps are described in this section.

2.1 Modeling the Seismic Demand

In this step, the seismic demand IMes posed by an earthquake e at a given site s
is predicted using the GMPE. The observed IMes is modeled in terms of median
value of the GMPE, ¯IM , and of two residuals δBe and δWes that account for
the variability of the observed intensity measure IM with respect to its median
value ¯IM [11]:

log (IMes) = log
(

¯IM
)
+ δBe + δW es (1)



Title Suppressed Due to Excessive Length 3

The term δBe, is defined between-event residual and represents the average
shift of the ground motion with respect to its median value, observed during
an earthquake. For a given earthquake e, this term is the same at all sites over
the considered region [12]. The term δWes represents the site-to-site variability
of the ground motion. It is the residual between the observed intensity measure
IMes at a specific site s for an earthquake e, and the earthquake specific me-
dian prediction of the observed intensity measure for the considered earthquake
(modeled as the sum of ¯IM and δBe) [11]. The within-event residual δWes can
be modeled using a spatial correlation model. The model of the median value
¯IM depends on several parameters specific of the earthquake and of the site.

The distribution of the magnitudes must be extracted from a suitable recur-
rence law (e.g., Gutenberg-Richter [13]), which provides the annual number of
earthquakes in a region equal to and greater than a given magnitude. In other
words, the mean annual rate of an earthquake magnitude, λm, is derived based
on the recurrence law, which in turn, controls the exceedance rate of a given
IM . The location of the earthquakes can be considered uniformly distributed
over the seismic sources to simulate its aleatory variability. Using the parameters
required by the GMPE, the distribution of ¯IM can be modeled. The residual
δBe, and δWes can be sampled using the distribution given by the GMPE.

2.2 Selection of Scenario Earthquakes

The VoI analysis requires the estimation of the seismic demand that would be
measured at the bridge locations by the deployed sensors. To this aim, the distri-
bution of the demand, e.g., in terms of IM , must be estimated for all the possible
earthquake scenarios that are likely to occur in the region during the reference
period. The GMPE can be used to this scope, but this task may require a large
computational effort. In this paper a procedure to estimate the seismic demand
based on a limited number of earthquake scenarios (magnitude and epicenter
couple) is employed. For this purpose, the procedure provided in [4] for the se-
lection of an optimized set of scenarios is adapted to the problem at hand. A
minor modification is made to account for the different goal of the optimization
that, in this study, is to optimally estimate the marginal distributions of the IMs
at all the bridge locations. The objective function to minimize is defined over

Ns bridge sites as:
∑Ns

i=1 |
∣∣∣diag (λ)−1

(λ−Θiw)
∣∣∣ |

1
subject to Card(w) ≤ Nq

and 0 ≤ w. The last two conditions respectively limit the number of selected
earthquake scenarios to Nq, and prevent the annual occurrence rate w of the
earthquakes to be negative. The term | |.| |1 is the L1-norm of the matrix, λ is
the annual rate of exceedance of the IMs that are sampled from the scenario
earthquake, Θi is the matrix of constants corresponding to site I and Card(w)
is the cardinality of vector w. In section 3 a comparison between the annual
exceedance rate of IM based on the subset and on the extensively sampled set
is shown.
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2.3 Value of Information Analysis

The value of information from ground motion sensors is used in this paper as
a metric to quantify the benefit of diverse layouts of the seismic stations to
support seismic emergency management of a network of bridges. The problem
is formulated assuming that several ground motion sensors are installed at the
locations of selected bridges in the network, whereas no sensors are installed on
the bridges. The alternative sensing schemes correspond to different numbers
and combinations of deployed sensors. The value of information associated with
each sensing scheme is calculated as the difference between the prior and pre-
posterior costs. Detailed expressions on the components of value of information
analysis have been developed and are reported in reference [9] for a similar
decision problem.

Actions, Damage states and Expected costs For a network of N bridges,
given E alternative emergency actions that can be performed on each bridge
in the aftermath of an earthquake (e.g. close, limit the traffic, etc.) the total
number of combinations of actions is C = EN . Each of these combinations
will be denoted as one action on the bridge network and denoted as Ac. After
an earthquake, each component of the bridge network can be in one of several
different damage states. Assuming that each bridge can be in one of L damage
states, for a network of N bridges, K = LN combinations of damage states
must be considered. Each of the K combinations will be indicated as DSk and
denoted as k-th damage state of the bridge network. The probability of each of
these network damage states is calculated as the product of the probabilities of
the damage states of the n-th bridge in the k-th network damage state, DSk,n:

P (DSk) =
∏N

n=1 P (DSk,n). The expected cost of the action Ac in damage
state DSk is the sum of the expected indirect costs, E [CostI (A

c) |DSk] =
f(∆η̄(Ac)), due the loss of connectivity ∆η̄ in the network [9] and of direct
costs:

E [CostD (Ac) |DSk] =

N∑
n=1

P (Fn|Ac, DSk,n) cFn (A
c)+P (Sn|Ac, DSk,n) cSn (A

c)

(2)
where, cFn (A

c) and cSn (A
c) are the costs associated with the failure and

survival of the n-th component of the bridge network. P (Fn|Ac, DSk,n) and
P (Sn|Ac, DSk,n) are respectively the failure and survival probabilities of the n-
th component, conditional on the action Ac on this component in combination
c and on the damage state DSk.

Prior Analysis In the prior analysis, the probability of experiencing any of
the given damage states (DSk) under the effect of an earthquake e, character-
ized by an IM are assigned using outputs of associated hazard analysis and
the capacity associated with the damage state of each bridge, based on the re-
liability analysis methods as it is presented in [9]. The demand posed by the
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earthquake at Ns locations is described through a vector D(e) collecting the
intensity measures IM1, IM2, . . . .IMNs

at those locations. D(e) can be mod-
eled as a Gaussian multivariate distribution D(e) ∼ N(µD(e), ΣD(e)) whose
parameters depend on the earthquake, e. For simplicity of notation, this depen-
dency will not be explicitly reported in the rest of the section, but it will be
addressed and considered in section Value of Information quantification. The
capacity CDSk

of the N bridges in damage state DSk and the limit state
function are modeled as Gaussian multivariate distribution [9], [14]: CDSk

∼
N(µC

DSk
,ΣC

DSk
), GDSk

∼ N(µG
DSk

,ΣG
DSk

) where µGDSk
= µCDSk

− µD

and ΣG
DSk

= ΣCDSk
+ΣD. To each limit state is associated to a value of the

reliability index βDSk
= µGDSk

/
√

diag(ΣGDSk
). The total expected cost of the

actions Ac is calculated as follows.

E [Cost (Ac)] =

K∑
k=1

E [Cost (Ac) |DSk]P (DSk) (3)

where the prior probability of the k-th network damage state P (DSk) is de-
fined using the formulation in [9]. The network action resulting in the minimum
expected cost is selected as optimal prior action:

APrior = argminAcE [Cost (Ac)] (4)

This expected cost is estimated based on the demand D(e) defined for a given
earthquake, e, e.g, for a given set of realizations of IM1, IM2, . . . .IMNs

at
the bridge locations. As described in section 2.2, these realizations are simulated
herein using the GMPE and considering both the extensively sampled set and
a subset of earthquake scenarios. For each of the two sets, the prior cost associ-
ated with a given earthquake scenario, Q, is calculated as the mean of the cost
associated to Ne realizations of that scenario.

Pre-Posterior Decision Analysis In the posterior analysis, the demand as-
sociated with each earthquake is updated based on the multivariate normal dis-
tribution theorem given the ground motion measurements. The measurements
Dm of the intensity measures at the sensors locations can be modeled as follows:

Dm (e) = ΩmD (e) + ε (5)

where Ωm is the measurement matrix indicating the location of the M mea-
surements. ε is the error associated with the difference between the measure-
ments and their estimation at the measured locations ΩmD. The error term
can be modeled as Gaussian multivariate distribution ε ∼ N(µε, Σε). The func-
tional dependence on the earthquake e is again dropped in the following for
simplicity of notation. Measurements can be modeled as Gaussian multivari-
ate distribution Dm ∼ N(µDm ,ΣDm) where: µDm = ΩmµD + µε and ΣDm =
ΩmΣDΩT

m+Σε. The posterior distribution of the demand parameters for earth-
quakes can be updated conditional on the measurements using multivariate
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normal distribution, D|Dm ∼ N (µD |Dm,ΣD|Dm) where: µD|Dm = µD +
ΣDΩT

mΣ−1
D (Dm − µDm) and ΣD|Dm = ΣD − ΣDΩT

mΣ−1
Dm

ΣT
DΩm. The limit

state functions are updated by replacing the prior with the posterior distribution

parameters: µGDSk

∣∣∣Dm = µCDSk
− µD

∣∣∣Dm andΣGDSk

∣∣∣Dm = ΣCDSk
+ΣD

∣∣∣Dm.

The updated reliability is: βDSk
|Dm = µGDSk

|Dm/

√
diag

(
ΣGDSk

∣∣∣Dm

)
. Fi-

nally updated damage states given the measurements can be derived using the
updated reliability index as it is done in the prior analysis. The expected cost of
each network action Ac given the measurements is calculated as follows.

E [Cost (Ac) |Dm] =

K∑
k=1

E [Cost (Ac) |DSk]P (DSk|Dm) (6)

The pre-posterior expected cost is obtained considering all the possible outcomes
of the monitoring system and their probability of occurrence. As previously
mentioned, this expected cost is relevant to a realization of an earthquake e.
The measurements Dm relevant to this realization are obtained from equation
(5), where D (e) contains IMs sampled from the GMPE in equation (1).

E
[
Cost

(
APrePost|Q

)]
=

M∑
m=1

E
[
Cost(A

PrePost|Q,Dm)
]
P (Dm) (7)

where APrePost = argminAcE [Cost (Ac)|Dm]. The expected cost of the opti-
mal preposterior action, associated with each earthquake scenario, Q, is calcu-
lated in a similar way as it is done in the prior analysis, as the average of the
expected costs relevant to the single realizations.

Value of Information Quantification For each earthquake scenario Q (e.g.
for each magnitude and epicenter couple), the VoI for a given sensing scheme:

V oI (Dm|Q) = E
[
Cost

(
APrior

)∣∣Q]
− E[Cost

(
APrePost

)
|Q] (8)

Considering all the possible scenario earthquake Q (m, p), each defined by a
magnitude m and an epicentral location p, the total VoI is:

V oI(Dm) =

∫
m

∫
p

V oI (Dm|Q (m, p)) fm fpdm dp (9)

where fm and fp are the probability densities of the magnitude and epicen-
tral location: fp is considered uniform whereas fm is modelled based on the
truncated Gutenberg-Richter recurrence law. As described in [8], assuming in-
dependency between seismic events, a Poisson process with annual rate λannual

can be used to describe their occurrence. The annual rate describes the expected
number of earthquakes per year and can be used to estimate the expected annual
V oI and γannual is the annual discounting factor:

V oIannual(Dm) =
λannual

γannual
V oI(Dm) (10)
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When the VoI is calculated using the optimized subset, the density of the VoI is
calculated using the same formulation but considering only the selected earth-
quake scenarios. Then the total V oI is calculated by multiplying the term given
in Eq. (10) by a constant which is derived as the ratio between the sum of the
original rate of occurrences of earthquake scenarios and the sum of the adjusted
annual rate of occurrence (obtained from the optimization procedure) of selected
scenario earthquakes.

3 Application

The proposed methodology is applied to select the optimum sensor layout for
the seismic stations that can be used in the seismic emergency management of a
bridge network composed of 3 identical bridges with natural period T= 1 s and
located on rock site. The bridges connect 3 cities. The seismic zone ZS935, Sicily,
Italy is selected for this study and the seismic characteristics of the considered
region are retrieved from Barani et al. [15]. The Vs30 values are retrieved from
the global Vs30 model provided by USGS [16]. The rate of occurrence of earth-
quakes is derived using the well-known truncated Gutenberg-Richter recurrence
law [13] and the epicenter of the earthquakes is assumed to be uniformly dis-
tributed over the seismic source. Figure 1 shows the boundary of the seismic zone
(red polygon), 3 bridge locations (B1 to B3), and 3 city locations (C1 to C3). The
magnitudes of the earthquake vary between 4.3 and 7.6, the annual rate of earth-
quake occurrence above a minimum threshold magnitude 0.09 and the strike-slip
faulting mechanism is selected following [15]. The GMPE provided by Lanzano
et al. [17] is selected to generate intensity measures. For each earthquake scenario
10 individual earthquakes (with varying δBe and δWes) and corresponding IMs
are sampled to account for the variability in the ground motions. Using the opti-
mization procedure described in section 2.2 a subset of 287 scenario earthquakes
is selected from the original extensively sampled set of 6384 earthquake scenar-
ios. The right panel of Figure 1 illustrates the annual exceedance rates of IM at
the bridge locations calculated based on the extensively sampled set and on the
optimal subset. The error between the subset and the extensive sampled set is
about 7%, which is calculated using the Mean Hazard Curve Error (MHCE) [3].
The possible actions considered in the analysis are keeping the bridge open to
the traffic or closing the bridge. Therefore, for the 3 bridges, 8 sets of possible
combinations of actions must be considered. For each bridge 3 damage states,
namely, light, medium and severe, are considered which correspond to 27 combi-
nations of damage states of the bridge network. The direct costs associated with
the failure of each component are assumed to be 10,000,000 and 0 ¿ for actions
open and close, respectively. The direct costs associated with the survival of a
bridge are assumed to be 0 ¿. The indirect costs are calculated as a function
of loss of connectivity (1000000∆η̄Ac) and the cost of each measurement is as-
sumed equal to 5000 ¿. The distances between the cities are considered equal
to: 11.5, 12.1 and 8.5 km between cities 1-2, 1-3, and 2-3 respectively and used
while calculating the loss of connectivity. The measurement error is modelled as
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Fig. 1. Study regıon and comparison between the annual exceedance rate of IMs at
the bridge locations based on the subset and extensively sampled set.

a Gaussian random variable with median value 1 and coefficient of variation 0.2.
Figure 2 shows the comparison between net value of information for different
sensing schemes obtained from the extensively sampled and the optimal subset
of earthquake scenarios (top left panel). The highest net VoI corresponds to two
sensors deployed at the locations of bridges 1 and 3. When the measurements are
acquired at bridge locations 1 and 3 or 2 and 3, approximately the same level of
net VoI is achieved. The net VoI corresponding to measurements at all bridges is
lower than those two measurement schemes due to the cost of the sensors. The
net VoI corresponding to one measurement at each bridge locations and two
measurements at bridges 1 and 2 results in lower net VoI compared to the other
measurement schemes. Figure 2 also shows the net VoI corresponding to each
magnitude conditional on the selected measurement scheme. The net VoI is low
for both low- and high-magnitude events. In the case of low-magnitude events
the probability of failure is low while in the case of high magnitude events the
probability of failure is higher. Therefore, the decision action is more straightfor-
ward. In the moderate magnitude events (approximately magnitude 5.5 to 6.5)
the net VoI reaches its highest value since the making a decision is more compli-
cated compared to the low- and high-magnitude events. When the measurements
are obtained from a single bridge the net VoI corresponding to moderate magni-
tude decreases as the median value of the demand conditional on measurements
(µD|Dm) is overestimated. The overestimated µD|Dm leads to higher probabil-
ity of failure, hence higher cost of actions. The situation is the same for the case
of two measurements acquired at bridges 1 and 2. The maximum discrepancy
in the net VoI calculated from optimal subset is equal to 10% ( 1700 ¿) of the
VoI calculated from the extensive set. The maximum discrepancy is observed in
the case when a single measurement is acquired at the location of bridge 3. The
subset is mostly populated by earthquake scenarios with moderate magnitudes.
Depending on the selected scenarios the net VoI obtained from the subset can be
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Fig. 2. Comparison between net VoI correspondıng to extensive and the optimal sets
and the net VoI for each magnitude for each sensing scheme.

either greater than the net VoI obtained from the extensively sampled set and
in the case of the single measurement this effect combined with overestimated
µD|Dm leads to lower values of the net VoI.

4 Conclusion

In this paper, a methodology to select the optimum layout of seismic stations
deployed to support the seismic emergency management of a network of bridges
is presented. The methodology uses the Value of Information (VoI) from ground
motion sensors as a metric to select their optimal number and location. The
quantification of the VoI requires the modeling of the ground motion for the
generation of earthquake scenarios. In this study a detailed model able to account
for the spatial correlation through the within-event residuals is employed. To
reduce the computational burden associated with the generation of earthquake
scenarios using the ground motion model, an optimization procedure is employed
to select a subset of the earthquake scenarios. The procedure has been applied to
the exemplary case of a network of 3 bridges connecting 3 cities, For this case,
the optimization enables a significant reduction of approximately 95% in the
number of scenarios, with a quite small variation of 10% of the corresponding
VoI computed with a extensive set of scenarios. Although these results cannot be
generalized, it provides an encouraging starting point toward the implementation
of the proposed methodology for the optimization of a sensor layout using VoI
analysis associated with optimized ground motion modelling.
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