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Abstract
One-parameter semigroups of holomorphic functions appear naturally in various
applications of Complex Analysis, and in particular, in the theory of (temporally)
homogeneous branching processes. A suitable analogue of one-parameter semigroups
in the inhomogeneous setting is the notion of a (reverse) evolution family. In this
paper we study evolution families formed by Bernstein functions, which play the
role of Laplace exponents for inhomogeneous continuous-state branching processes.
In particular, we characterize all Herglotz vector fields that generate such evolution
families and give a complex-analytic proof of a qualitative description equivalent to
Silverstein’s representation formula for the infinitesimal generators of one-parameter
semigroups of Bernstein functions.We also establish a sufficient condition for families
of Bernstein functions, satisfying the algebraic part in the definition of an evolution
family, to be absolutely continuous and hence to be described as solutions to the gen-
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eralized Loewner–Kufarev differential equation. Most of these results are then applied
in the sequel paper [35] to study continuous-state branching processes.
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1 Introduction

Particular interest to look into families of Bernstein functions from the viewpoint of
Loewner Theory comes from Probability Theory. In general, complex-analytic tools
are known toplay an important role in the studyofMarkovbranchingprocesses, see e.g.
[4, 30, 36]. A very classical example is the Galton–Watson process, which is a (tempo-
rally) homogeneous Markov chain with the one-step transition probabilities encoded
in the so-called generating (holomorphic) function f : D → D := {z ∈ C : |z| < 1}
as its Taylor coefficients at z = 0. Evolution of the stochastic process corresponds to a
(deterministic) dynamics in a complex domain: the generating function for the n-step
transition probabilities coincides with the n-th iterate of f defined as usual by

f ◦n := f ◦ . . . ◦ f
︸ ︷︷ ︸

n times

: D → D.

In case of a homogeneous branching processwith continuous time, iterates are replaced
by a continuous one-parameter semigroup of holomorphic self-maps, see Sect. 2.1 for
the definition and basic properties.
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In a similar manner, inhomogeneous branching processes lead to non-autonomous
holomorphic dynamical systems. In this setting the role of one-parameter semigroups
is played by the so-called (reverse) evolution families, see Sect. 2.2.

Independently fromapplications to stochastic processes, one-parameter semigroups
and iteration of holomorphic functions have been a subject of deep studies in Com-
plex Analysis since early 1900s. Evolution families, in turn, constitute one of the
cornerstone concepts in Loewner Theory, which originated from Loewner’s seminal
paper [43] of 1923 and since then has been serving as a powerful tool in the theory of
conformal mappings, see e.g. [3, 12] for a detailed survey.

Applications of Loewner Theory to branching processes (with discrete states) were
studied in detail byGoryainov [25–29]. It isworthmentioning that similar relationships
between stochastic processes and evolution families (or one-parameter semigroups in
the homogeneous case) have been recently discovered in Non-Commutative Proba-
bility, see e.g. [5, 22, 23, 52].

This paper is motivated by yet another interesting case, in which the transition
probabilities can be encoded in a (reverse) evolution family formed by holomor-
phic self-maps of the right half-plane. Continuous-state (Markov) branching processes
introduced in 1958 by Jiřina [38], see also [32], have been attracting increasing interest
in the last decades, see e.g. [21] or [46] and references therein. Because of the branch-
ing property, the transition probability measures ks,t (x, ·) in such a process (Xt ) are
infinitely divisible and, as a result, Bernstein functions come into play via the Laplace
transform:

E
[

e−ζ Xt
∣

∣Xs = x
] =

∫ +∞

0
e−ζ y ks,t (x, dy) = exp(−xvs,t (ζ )), x, ζ ≥ 0,

where vs,t : [0,+∞) → [0,+∞) is a Bernstein function, i.e. a non-negative C∞-
function on (0,+∞) with (−1)n+1v

(n)
s,t ≥ 0 for n = 1, 2, 3, . . ., extended to 0 by

continuity. The functions vs,t are uniquely defined by the transition kernels ks,t and
are usually referred to as the Laplace exponents of the process. In turn, the Chapman–
Kolmogorov equation leads to a sort of semigroup property vs,t ◦ vt,u = vs,u for any
s, t, u with 0 ≤ s ≤ t ≤ u; essentially, this means that the Laplace exponents form a
reverse evolution family. For more details we refer the reader to our sequel paper [35].

While homogeneous continuous-state branching processes are well understood, see
e.g. [41, Chapter 10], a systematic study of the inhomogeneous case has been launched
only recently. In particular, in [21] the authors construct inhomogeneous continuous-
state branching processes starting from an integral evolution equation for the Laplace
exponents vs,t regarded as self-maps of (0,+∞).

A well-known remarkable fact is that every Bernstein function f �≡ 0 extends
to a holomorphic self-map of the right half-plane H := {z ∈ C : Rez > 0}. Another
important property is that the composition of two Bernstein functions is again a Bern-
stein function. In other words, the holomorphic extensions of Bernstein functions
f �≡ 0 (which, suppressing the language, we will also refer to as Bernstein functions)
form a subsemigroupBF in the topological semigroup Hol(H, H) of all holomorphic
self-maps of H endowed with the operation of composition and the usual topology
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of locally uniform convergence. Moreover,BF is topologically closed in Hol(H, H).
See Appendix A for more details.

The purpose of this paper is to develop complex-analytic methods based on the
modern Loewner Theory, which would be useful, in particular, for studying inhomo-
geneous continuous-state branching processes. A part of our results are then applied
in the sequel paper [35]. Other results are aimed to future investigation of branching
processes and/or represent some general interest in the frames of Loewner Theory and
its applications.

1.1 Organization of the Paper and Summary of Main Results

The paper is organized as follows. In the next section, Sect. 2, we present necessary
background on one-parameter semigroups and (reverse) evolution families and on
boundary fixed points of holomorphic self-maps.

In Sect. 3 we establish our main results. We start by proving Theorems 1 and 2 in
Sects. 3.1 and 3.2, respectively, which concern infinitesimal description of an arbitrary
topologically closed (sub)semigroup U in Hol(D, D), where D � C is a simply con-
nected domain. Theorem 1 is a general version of a result known for several special
cases; it states that the infinitesimal generators associated to one-parameter semigroups
inU form a topologically closed convex cone. Theorem 2 deals with the evolution fam-
ilies. We prove that an evolution family (ws,t ) generated by a Herglotz vector field φ

is contained in U if and only if for a.e. “frozen” instant t , φ(·, t) is an infinitesimal
generator of a one-parameter semigroup in U. Both theorems apply to the case of the
semigroup BF ⊂ Hol(H, H) consisting of all Bernstein functions different from the
identical zero.

Theorem 2 reduces the study of Herglotz vector fields generating evolution fam-
ilies of Bernstein functions to the study of infinitesimal generators associated to
one-parameter semigroups in BF. Such generators, which we refer to as Bernstein
generators, appear naturally in Stochastic Processes. A representation formula for
Bernstein generators was found long time ago by Silverstein [55]. In Sect. 3.3 we give
an equivalent qualitative characterization of Bernstein generators, see Theorem 3. As
corollaries, we obtain analogous representation formulas for Bernstein generators for
the cases when the corresponding one-parameter semigroup has a boundary regular
fixed point at 0 or at ∞.

In Sect. 3.4, we address a problem which is important for applications to Stochastic
Processes: find sufficient criteria for families of Bernstein functions satisfying the first
two (algebraic) conditions in the definitions of reverse and usual evolution families
(see Sect. 2.2) to be absolutely continuous, i.e. to admit associated Herglotz vector
fields and hence to be described with the help of (a suitable version of) the Loewner–
Kufarev equation (2.2). In particular, we show (see Theorem 4 and its corollary) that
in contrast to Loewner Theory for arbitrary holomorphic self-mappings, our setting
admits a sufficient condition in terms of the first two derivatives at the boundary point
0. Motivated by this result, in Sect. 3.5, we make sure that for absolutely continuous
evolution families inBF, the well-known formulas for the derivatives of the first and
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the second order w.r.t. the initial condition at an internal fixed point can be extended
to the boundary fixed point at 0.

The paper is concluded by the Appendices. In the first three of them we collect
some basic fact on Bernstein functions and some further details on one-parameter
semigroups and on (reverse and usual) evolution families, not included in the Pre-
liminaries, but rather useful in the context of this paper. In the last Appendix D, we
suggest a direct complex-analytic proof of Theorem 3 stated in Sect. 3.3. This proof is
independent from Silverstein’s representation formula and appears to be less technical
than the original proof of that formula [55] or the proof presented in [40].

2 Preliminaries

2.1 One-Parameter Semigroups of Holomorphic Self-Maps

We start by introducing some general notation and terminology. For a set E ⊂ C,
we will denote by E its closure w.r.t. the extended complex plane C. For an arbitrary
domain D ⊂ C and a set E ⊂ C, we denote byHol(D, C) the class of all holomorphic
functions in D and by Hol(D, E) its subclass consisting of all f ∈ Hol(D, C) with
f (D) ⊂ E . As usual,we endowHol(D, C) andHol(D, E)with the topology of locally
uniform convergence in D.

Definition 2.1 By a semigroup of holomorphic self-maps of a domain D ⊂ C we
mean a set U ⊂ Hol(D, D) containing the identity map idD and such that f ◦ g ∈ U
for any f , g ∈ U. We say that such a semigroup U is topologically closed if U is
(relatively) closed in Hol(D, D).

Definition 2.2 Let U be a semigroup of holomorphic self-maps of some domain
D ⊂ C. A one-parameter semigroup in U is a continuous unital semigroup homo-
morphism [0,+∞) � t �→ vt ∈ U from the semigroup

([0,+∞),+)

with the
Euclidean topology to the semigroup (U, ◦) endowed with the topology inherited
from Hol(D, D).

Equivalently, (vt ) ⊂ U is a one-parameter semigroup if and only if it satisfies
the following three conditions: (i) v0 = idD; (ii) vs ◦ vt = vs+t for any s, t ≥ 0;
(iii) vt → idD in Hol(D, D) as t → 0+. Thanks to Montel’s normality criterion,
see e.g. [24, § II.7, Theorem 1], if C \ D contains at least two distinct points, then
the continuity condition (iii) is equivalent to the pointwise convergence: vt (z) → z
as t → 0+ for each z ∈ D.

Remark 2.3 It is known that in one complex variable, the theory of one-parameter
semigroups of holomorphic self-maps can be reduced, without losing generality, to
the study of one-parameter semigroups in the disk D; see e.g. [10, §8.4] for more
details. At the same time, depending on the problem one considers, it can be useful to
pass, with the help of a suitable conformal mapping, to another domain D, e.g. to the
half-plane D := H = {z : Rez > 0} or the strip D := {z : 0 < Im z < π}.

For the sake of notational uniformity, we will keep working with an arbitrary sim-
ply connected D � C, unless explicitly stated otherwise. Clearly, most of the results
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proved for any particular choice of D extend, more or less automatically, to the general
case with the help of conformal mappings. In particular, it is known [6], see also [9],
[10, Chapter 10], [20, §2.1], or [53, §3.2] for more details, that every one-parameter
semigroup (vt ) in Hol(D, D) is a semiflow generated by a holomorphic vector field
in D. Namely, for each z ∈ D the map [0,+∞) � t �→ w(t) := vt (z) is the unique
solution to

dw(t)

dt
+ φ(w(t)) = 0, w(0) = z, (2.1)

where φ := limt→0+(idD −φt )/t is a holomorphic function in D called the infinites-
imal generator of (vt ), with the limit known to exist in the topology of Hol(D, C).

In the literature one can find two different conventions concerning the choice of
the sign in front of φ in (2.1). Here we follow the convention from [53], which is also
often adopted in the literature on Probability Theory. The opposite choice of the sign
is made in most of the works in Loewner Theory, e.g. in [8, 11, 16], as well as in many
publications on one-parameter semigroups, including [10].

In what follows, the set of all infinitesimal generators of one-parameter semigroups
in the domain D will be denoted by G, or by G(

Hol(D, D)
)

when we need to specify
the domain D explicitly. Furthermore, for a semigroupU ⊂ Hol(D, D), wewill denote
by G(U) the set of all φ ∈ G for which the associated one-parameter semigroup (v

φ
t )

is contained in U.

Remark 2.4 Let D � C be a simply connected domain and f be a conformal mapping
of D onto D. With the help of the variable change w = f (ω) in equation (2.1) we see
that φ : D → C belongs to G(

Hol(D, D)
)

if and only if the function ψ := (φ ◦ f )/ f ′
belongs to G(

Hol(D, D)
)

.

2.2 Absolutely Continuous Evolution Families

Throughout this section, we fix an interval I ⊂ R of the form I := [0, T ] with
T ∈ (0,+∞) or of the form I := [0, T )with T ∈ (0,+∞]. Furthermore, by�(I )we
denote the set {(s, t) : s, t ∈ I , s ≤ t}. If I = [0,+∞), instead of �(I ) we will sim-
ply write �. Finally, ACloc(I ) will stand for the class of all (real- or complex-valued)
functions on I which are absolutely continuous on each compact subinterval of I .

There are two ways to extend the notion of a one-parameter semigroup to the
non-autonomous (or, in probabilistic terminology, time-inhomogeneous) case. The
following definitions are slight modifications of the definitions given in [8, 16]. Most
of the results proved in these papers can be easily extended to our setting.

Definition 2.5 An (absolutely continuous) evolution family in a simply connected
domain D � C over the interval I is a two-parameter family

(ws,t )(s,t)∈�(I ) ⊂ Hol(D, D)

satisfying the following conditions:
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EF1: ws,s = idD for any s ∈ I ;
EF2: ws,u = wt,u ◦ ws,t for any s, t, u ∈ I with s ≤ t ≤ u;
EF3: for each z ∈ D there exists a non-negative function fz ∈ ACloc(I ) such that

|ws,u(z) − ws,t (z)| ≤
∫ u

t
fz(r) dr

for any s, t, u ∈ I with s ≤ t ≤ u.

Definition 2.6 An (absolutely continuous) reverse evolution family in a simply con-
nected domain D � C over the interval I is a two-parameter family
(vs,t )(s,t)∈�(I ) ⊂ Hol(D, D) satisfying the following conditions:

REF1: vs,s = idD for any s ∈ I ;
REF2: vs,u = vs,t ◦ vt,u for any s, t, u ∈ I with s ≤ t ≤ u;
REF3: for each z ∈ D there exists a non-negative function fz ∈ ACloc(I ) such that

|vs,u(z) − vs,t (z)| ≤
∫ u

t
fz(r) dr

for any s, t, u ∈ I with s ≤ t ≤ u.

If (ws,t ) satisfies Definition 2.5 with condition EF3 replaced by the requirement
that the map�(I ) � (s, t) �→ ws,t ∈ Hol(D, D) is continuous, then it is called a topo-
logical evolution family. In a similar way, topological reverse evolution families can
be defined.

Remark 2.7 Clearly, if (vt ) ⊂ Hol(D, D) is a one-parameter semigroup, then
(ws,t )(s,t)∈� defined by ws,t := vt−s for all (s, t) ∈ � is an absolutely continu-
ous evolution family and, at the same time, an absolutely continuous reverse evolution
family over [0,+∞).

Remark 2.8 A family (vs,t )(s,t)∈�(I ) ⊂ Hol(D, D) is a reverse evolution family if and
only if for any S ∈ I the formula ws,t := vS−t,S−s , 0 ≤ s ≤ t ≤ S, defines an
evolution family (ws,t ) over [0, S]. The same is true with “reverse evolution family”
and “evolution family” interchanged. For topological (reverse) evolution families,
these assertions follow directly from the definitions, while in the absolutely continuous
case, the proof is less trivial, see [16, Proposition 4.3].

An observation similar to Remark 2.3 is valid for (reverse) evolution families, see
[13], which explains why assuming that D � C is simply connected is of no loss
of generality. At the same time, notwithstanding Remark 2.8, both Definitions 2.5
and 2.6 seem to be useful in our context. Reverse evolution families, as mentioned in
Introduction, spring up in Probability Theory, e.g. in connection with branching pro-
cesses. On the other hand, usual evolution families aremore natural from theDynamics
point of view. In particular, absolutely continuous evolution families, similarly to one-
parameter semigroups, are semiflows of certain holomorphic vector fields in D, but
in this case the vector fields are non-autonomous, i.e. they may depend explicitly on
time. In order to state this result in a precise form, we need the following definition.
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By L1
loc(I )wedenote the class of allmeasurable (real- or complex-valued) functions

which are integrable on each compact subinterval of I .

Definition 2.9 A function φ : D × I → C is said to be a Herglotz vector field in a
simply connected domain D � C if it satisfies the following three conditions:

HVF1: for any t ≥ 0, φ(·, t) ∈ G(

Hol(D, D)
)

;
HVF2: for any z ∈ D, φ(z, ·) is measurable on I ;
HVF3: for any compact set K ⊂ D, there is a non-negative function MK ∈ L1

loc(I )
such that

max
z∈K |φ(z, t)| ≤ MK (t) a.e. t ∈ I .

Remark 2.10 Anobservation analogous to Remark 2.4 holds for Herglotz vector fields.
Namely, if f mapsD conformally onto a domain D, then φ : D× I → C is a Herglotz
vector field in D if and only ifψ(ζ, t) := φ

(

f (ζ ), t
)

/ f ′(ζ ), ζ ∈ D, t ∈ I , is aHerglotz
vector field in D.

As usual we identify twoHerglotz vector fields φ,ψ : D × I → C if φ(·, t) = ψ(·, t)
for a.e. t ∈ I . Some of the main results of [8] can be now summarized and stated in
our notation as follows. For s ∈ I , let Is := I ∩ [s,+∞).

Theorem A Let D � C be a simply connected domain and (ws,t ) an absolutely con-
tinuous evolution family in D over the interval I . Then there exists a unique Herglotz
vector field φ : D × I → C such that for any z ∈ D and any s ∈ [0, T ), the map
Is � t �→ w(t) := ws,t (z) ∈ D is a solution to the initial value problem

dw

dt
+ φ(w, t) = 0, a.e. t ∈ Is; w(s) = z. (2.2)

Conversely, let φ : D × I → C be a Herglotz vector field. Then for any z ∈ D and
any s ∈ I the initial value problem (2.2) has a unique solution t �→ w = w(t; z, s)
defined on some interval containing the set Is . Setting ws,t (z) := w(t; z, s) for all
z ∈ D and all (s, t) ∈ �(I ) one obtains an absolutely continuous evolution family
(ws,t ) over the interval I .

The ODE in (2.2) is known as the generalized Loewner–Kufarev equation. Accord-
ing to the above theorem, this equation establishes a one-to-one correspondence
between absolutely continuous evolution families and Herglotz vector fields. An evo-
lution family and the vector field, corresponding to this evolution family in the sense of
Theorem A, are usually said to be associated to each other. An analogous one-to-one
correspondence exists between absolutely continuous reverse evolution families and
Herglotz vector fields, see [16, Theorem 4.2 (i)]. For reader’s convenience, we give
more details in this respect in Appendix B.

2.3 Boundary Regular Fixed Points

For the classical results stated in this section, we refer the reader to [10, Sect. 1.8, 1.9,
10.1, 12.1, and 12.2], see also [1, Chapter 1] or [2, Chapter 2]. From the dynamics point

123



Constructive Approximation

of view, an important role in the study of self-maps is played by the fixed points. Thanks
to the Schwarz–Pick Lemma, every holomorphic w : D → D different from idD can
have at most one fixed point τ ∈ D. All other fixed points are located on ∂D and
should be understood in the sense of angular limits. Namely, σ ∈ ∂D is said to be
a boundary fixed point for w ∈ Hol(D, D) if the angular limit ∠ limz→σ w(z) exists
and coincides with σ . It is known that the angular derivative

w′(σ ) := ∠ lim
z→σ

w(z) − σ

z − σ

exists, finite or infinite, at any boundary fixed point σ and that w′(σ ) is either ∞ or a
positive number, see e.g. [48, Proposition 4.13 on p.82].

Definition 2.11 Aboundaryfixedpointσ ∈ ∂Dof a holomorphic self-mapw : D → D

is said to be regular (BRFP for short) if w′(σ ) �= ∞.

Using theCayleymapD � z �→ H(z) := (1+z)/(1−z) ∈ H, the above definitions
can be extended to the holomorphic self-maps of the half-plane H. In fact, for σ ∈ ∂H

different from∞ this leads to literally the same definitions. In case σ = ∞, the angular
derivative w′(∞) should be understood in the sense of Carathéodory as defined in the
following version of Julia’s Lemma.

Theorem B [see e.g. [57, §26]] For any f ∈ Hol(H, H ∪ iR), the limit

f ′(∞) := ∠ lim
ζ→∞

f (ζ )

ζ

exists finitely. Moreover,

inf
ζ∈H

Re f (ζ )

Reζ
= f ′(∞) ≥ 0.

In particular, f (ζ ) = f ′(∞)ζ + g(ζ ) for all ζ ∈ H and some g ∈ Hol(H, H ∪ iR)

satisfying g′(∞) = 0.

If f ∈ Hol(H, H) has a boundary fixed point at ∞, then w := H−1 ◦ f ◦ H has a
boundary fixed point at 1 and w′(1) = 1/ f ′(∞). Therefore, ∞ is a BRFP for f ∈
Hol(H, H) if and only if f ′(∞) �= 0.

Remark 2.12 It follows easily from [18, Theorem 1] that 0 is a BRFP for w ∈
Hol(H, H) if and only ifw(x) → 0 asR � x → 0+ and the limit limx→0+ w′(x) exists
finitely. Similarly, ∞ is a BRFP for w ∈ Hol(H, H) if and only if limx→+∞ w′(x) is
different from zero.

If w ∈ Hol(D, D), where D ∈ {D, H}, has no fixed points in D, then according
to the classical Denjoy–Wolff Theorem, there exists a unique BRFP τ ∈ ∂D of w

such that w′(τ ) ≤ 1 if τ �= ∞ and w′(τ ) ≥ 1 if τ = ∞. Moreover, as n → +∞, the
iterates

w◦n := w ◦ w ◦ . . . ◦ w
︸ ︷︷ ︸

n times

−→ τ (2.3)
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locally uniformly in D. The point τ is called the Denjoy–Wolff point of w or the
DW-point for short. The limit behaviour of holomorphic self-maps with interior fixed
points is similar. Namely, if τ ∈ D is a fixed point of w ∈ Hol(D, D) and if w is
not an automorphism of D, then (2.3) holds. In this case we also refer to τ as the
Denjoy–Wolff point of w.

For convenience of readers not familiar with modern Loewner Theory, in
Appendix C we collect some material concerning the DW-point and BRFPs of one-
parameter semigroup and evolution families, related to our results given in the next
section.

3 Results

3.1 Infinitesimal Generators in Topologically Closed Semigroups

It is well-known that infinitesimal generators of one-parameter semigroups in
Hol(D, D) form a closed convex cone, see e.g. [10, Corollary 10.2.7, p. 287]. For vari-
ous choices of a semigroup U � Hol(D, D), the cone G(U) formed of all infinitesimal
generators of one-parameter semigroups contained in U has been explicitly character-
ized, see e.g. [30]. In each case we are aware of, the cone G(U) turns out to be convex.
However, we have not been able to find in the literature any general results in this
respect. By this reason, below we give a proof of the following basic theorem.

Theorem 1 Let D � C be a simply connected domain and U a topologically closed
semigroupof holomorphic self-maps of D. Then the setG(U) formedby all infinitesimal
generators of one-parameter semigroups contained inU is a topologically closed (real)
convex cone in Hol(D, C).

Since BF is a topologically closed semigroup in Hol(H, H), see Theorem C
in Appendix A, the above theorem directly implies the following:

Corollary 3.1 The set G(BF) is a topologically closed convex cone in Hol(H, C).

Proof of Theorem 1 The fact thatG(U) is a cone is trivial. Indeed, ifφ ∈ G(U) generates
a one-parameter semigroup (v

φ
t ), then for anyα ≥ 0 the functionαφ is the infinitesimal

generator of the one-parameter semigroup (ṽt ) formed by the mappings ṽt := v
φ
αt .

To show that G(U) is topologically closed, consider an arbitrary sequence
(φn) ⊂ G(U) converging locally uniformly in D to some φ ∈ Hol(D, C). By [10,
Theorem 10.5.6, p. 300], φ is also an infinitesimal generator in D and, for each t ≥ 0,
we have vnt → vt in Hol(D, D) as n → +∞, where (vnt ) and (vt ) stand for the
one-parameter semigroups generated by φn and φ, respectively. By the hypothesis,
(vnt ) ⊂ U and U is closed in Hol(D, D). Therefore, (vt ) ⊂ U and hence φ ∈ G(U).
This means that G(U) is a closed subset of Hol(D, C).

To complete the proof it remains to show that φ := φ1 + φ2 ∈ G(U) provided that
φ1, φ2 ∈ G(U). By [10, Corollary 10.2.7, p. 287], φ is an infinitesimal generator in D.
Denote by (v1t ), (v2t ), and (vt ) the one-parameter semigroups generated by φ1, φ2,
and φ, respectively. The Trotter product formula for one-parameter semigroups, see
e.g. [10, Corollary 10.6.2, p. 304] or [49, Corollary 4], states that for each t ≥ 0,
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vt = lim
n→+∞

(

v1t/n ◦ v2t/n
)◦n

,

where the limit exists in the topology of Hol(D, D). Since by the hypothesis, U is a
closed subset of Hol(D, D) and all finite compositions of its elements again belong
to U, it follows that (vt ) ⊂ U, i.e. φ ∈ G(U). ��

3.2 Evolution Families in Topologically Closed Semigroups

Anatural question arises in connectionwith the correspondence discussed at the end of
Sect. 2.2: how are the properties of the elements in a (reverse) evolution family related
to those of the associated Herglotz vector field? For a particular property related to
the boundary behaviour at a given point (namely, for having a BRFP there) the answer
was given in [11] (see Theorem D in Appendix C). The main new result of this section
is a general statement of a similar kind.

Theorem 2 Let D � C be a simply connected domain and U a topologically closed
semigroup of holomorphic self-maps of D. Let (ws,t ) be a (reverse) evolution family
in D with associated Herglotz vector field φ. Then the following two conditions are
equivalent:

(i) ws,t ∈ U for all (s, t) ∈ �(I );

(ii) φ(·, t) ∈ G(U) for a.e. t ∈ I .

Remark 3.2 The assumption that U is topologically closed plays an important role in
the above theorem. Compare, e.g., with alreadymentioned TheoremD in Appendix C,
which concerns holomorphic self-maps with a given BRFP. They form a semigroup,
but it is not a closed subset in Hol(D, D). As a result, an additional condition has to be
imposed on a Herglotz vector field in order to ensure that the corresponding evolution
family is contained in the semigroup in question.

Nevertheless, it is known that Bernstein functions different from the identical zero
form a topologically closed semigroup BF ⊂ Hol(H, H), see Appendix A. Thus,
Theorem 2 implies directly the following corollary.

Corollary 3.3 An absolutely continuous (reverse) evolution family (ws,t )(s,t)∈�(I ) inH

is contained in the classBF if and only if theHerglotz vector fieldφ associated to (ws,t )

satisfies the following condition: φ(·, t) ∈ G(BF) for a.e. t ∈ I .

The proof of (ii)⇒ (i) in Theorem 2 makes use of the following rather simple
observation, which however we have not met explicitly stated elsewhere.

Proposition 3.4 For every Herglotz vector field φ in a simply connected domain
D � C, there exists a non-negative function M ∈ L1

loc(I ) with the following prop-
erty: for any compact set K ⊂ D there is a constant CK > 0 such that

max
z∈K |φ(z, t)| ≤ CK M(t) for a.e. t ≥ 0.
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Proof Thanks to Remark 2.10, we may suppose that D = D. Then by the non-
autonomous extension of the Berkson–Porta formula [8, Theorem 4.8],

φ(z, t) = (

z − τ(t)
)(

1 − τ(t)z
)

p(z, t) for all z ∈ D and a.e. t ∈ I , (3.1)

where τ : I → D is a measurable function and p : D × I → C satisfies the following
two conditions:

(a) for a.e. t ∈ I , the function p(·, t) is holomorphic in D and Rep(·, t) ≥ 0;

(b) for any z ∈ D, the function p(z, ·) is locally integrable on I .

Set M(t) := |p(0, t)| for all t ∈ I . Then by (b), M ∈ L1
loc(I ). Moreover, thanks

to (a) with the help of the Harnack inequality, see e.g. [47, ineq. (11) on p.40], for a.e.
t ∈ I and all z ∈ D we have

|p(z, t)| ≤ | Im p(0, t)| + 1 + |z|
1 − |z|Rep(0, t) (3.2)

≤ 1 + |z|
1 − |z|

(| Im p(0, t)| + Rep(0, t)
) ≤ 1 + |z|

1 − |z|
√
2M(t).

Now the conclusion of the proposition follows easily from (3.1) and (3.2). ��
Proof of Theorem 2 First of all, recall that according to Remark 2.8, if (vs,t ) is reverse
evolution family over I with associated Herglotz vector φ, then for any S ∈ I , the
family (ws,t )0≤s≤t≤S formed by the functions ws,t := vS−t,S−s is an evolution family
over [0, S]. It is easy to see that [0, S] � t �→ φ(·, S − t) is the Herglotz vector field
associated with (ws,t ). It is, consequently, sufficient to prove the theorem for the case
of evolution families.
Proof of (i)⇒ (ii). By [15, Theorem 3.6], for each evolution family (ws,t ) in D,
there exists a null-set N ⊂ I such that for any s ∈ [0, T ) and any t0 ∈ Is \ N the limit

lim
Is�t→t0

ws,t0 − ws,t

t − t0

exists in Hol(D, C) and coincides with z �→ φ
(

ws,t0(z), t0
)

. In particular, if s ∈
[0, T )\N , then taking t0 := s we see that

idD −ws,t

t − s
→ φ(·, s)

locally uniformly in D as t → s+. It follows, see e.g. [10, Theorem 10.6.1] or [49,
Theorem 3], that φ(·, s) is an infinitesimal generator in D and the corresponding
one-parameter semigroup (vst ) is given by the formula

vst = lim
n→+∞ w◦n

s,s+t/n for all t ≥ 0, (3.3)

where the limit is attained locally uniformly in D. By the hypothesis, U is a topolog-
ically closed semigroup. Therefore, if (ws,t ) ⊂ U, then thanks to (3.3) we also have
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(vst ) ⊂ U. Thus, assertion (i) implies thatφ(·, s) ∈ G(U) for a.e. s ∈ [0, T ), i.e. that (ii)
holds.
Proof of (ii)⇒ (i). By Theorem 1, G(U) is a topologically closed convex cone. By
Proposition 3.4, for any compact set K ⊂ D, there exists CK > 0 such that

max
z∈K |φ(z, t)| ≤ CK M(t) for a.e. t ∈ I , (3.4)

where M : I → [0,+∞) is a locally integrable function (not depending on K ).
Let g(t) := ∫ t

0 M(s)ds for all t ≥ 0. Clearly, we may suppose that M(t) ≥ 1
for all t ∈ I ; otherwise we would replace the function M by t �→ max{M(t), 1}.
Then both g : I → J := g(I ) ⊂ R and f := g−1 : J → I are strictly increasing and
locally absolutely continuous. Taking into account (3.4), it follows that the formula

ψ(z, θ) := φ(z, f (θ))

M( f (θ))
for all z ∈ D and θ ∈ J ,

defines a Herglotz vector field ψ : D × J → C. According to Theorem A, the
evolution family associated with ψ can be constructed via solutions ω = ω(θ) to the
initial value problem

dω(θ)

dθ
+ ψ

(

ω(θ), θ
) = 0 for a.e. θ ≥ η, θ ∈ J ; ω(η) = z.

The variable change θ = g(t) relates the trajectories of the Herglotz vector field ψ to
those of φ. Using this fact, it is easy to see that the evolution family (ωη,θ ) associated
with ψ is given by ωη,θ = w f (η), f (θ) for all (η, θ) ∈ �(J ). Therefore, it is sufficient
to show that (ωη,θ ) ⊂ U.

From (3.4) it follows that

max
z∈K |ψ(z, θ)| ≤ CK for a.e. θ ∈ J (3.5)

and any compact set K ⊂ D.
Consider the sequence (ψn) of functions on D × J defined by

ψn(z, θ) := 2n
η(θ,n)+2−n

∫

η(θ,n)

ψ(z, η) dη, θ ∈ J , n ∈ N, (3.6)

where η(θ, n) := 2−n�2nθ� and �·� stands for the integer part.
Denote by G0 the set of all ϕ ∈ G(U) such that supK |ϕ| ≤ CK for every compact

set K ⊂ D. Recall that by Theorem 1, G(U) is convex and topologically closed.
Therefore,G0 is a compact convex set in the locally convexHausdorff spaceHol(D, C).
By (3.5) the integrand in (3.6) belongs to G0 for a.e. η ≥ 0, and by [8, Lemma 4.7]
the map η �→ ψ(·, η) ∈ Hol(D, C) is measurable. Therefore, for any fixed n ∈ N and
θ ∈ J , the integral in (3.6) can be understood as a weak integral of η �→ ψ(·, η),

123



Constructive Approximation

and moreover, its value belongs to 2−nG0, see e.g. [39, Theorem 1 in §18.1.3]. Hence
ψn(·, θ) ∈ G0 ⊂ G(U) for all θ ∈ J . In its turn, the latter implies thatψn’s are Herglotz
vector fields in D.

Note that the elements of the evolution families (ωn
η,θ ) associated with the Herglotz

vector fields ψn are finite compositions of mappings from one-parameter semigroups
whose infinitesimal generators belong toG0. Therefore, (ωn

η,θ ) ⊂ U and it only remains
to show that for each (η, θ) ∈ �(J ) fixed,

ωn
η,θ → ωη,θ in Hol(D, C) as n → +∞.

Since self-maps of D form a normal family, it is sufficient to prove that ωn
η,θ → ωη,θ

pointwise in D.
We claim that for a.e.θ ∈ J ,ψn(·, θ) → ψ(·, θ) inHol(D, C) as n → +∞. Indeed,

consider a sequence (zk) ⊂ D having an accumulation point in D. By compactness
of G0, it is only necessary to prove that for each k ∈ N and for a.e.θ ∈ J ,ψn(zk, θ) →
ψ(zk, θ) as n → +∞. The latter holds for any Lebesgue point θ , i.e. for any point
θ ∈ J at which the derivative of Fk(θ) := ∫ θ

0 ψ(zk, η)dη exists and equals ψ(zk, θ).
Since the Lebesgue points have full measure, our claim is proved.

Fix now a compact set K ⊂ D. As we have just proved,

δKn (θ) := max
z∈K |ψn(z, θ) − ψ(z, θ)| → 0 as n → +∞

for a.e. θ ∈ J . Sinceψn(·, θ) andψ(·, θ) belong to G0 for all n ∈ N and a.e.θ ∈ J , we
have 0 ≤ δKn (θ) ≤ 2CK for a.e. θ ∈ J . Therefore, thanks to Lebesgue’s Dominated
Convergence Theorem, for each compact intervalY ⊂ J and each function h : Y → C

of class L∞, we have

∣

∣

∣

∣

∫

Y
h(θ)ψn(z, θ) dθ −

∫

Y
h(θ)ψ(z, θ) dθ

∣

∣

∣

∣
≤

∫

Y
|h(θ)| δKn (θ) dθ → 0 as n → +∞

for all z ∈ K . The fact that ωn
η,θ → ωη,θ as n → +∞ follows now from general

results on ODEs, see e.g. [50, Lemma I.37 on p.38] or [37, Lemma 3.1]. ��

3.3 Bernstein Generators

By a Bernstein generator we mean an infinitesimal generator of a one-parameter
semigroup whose elements are Bernstein functions. In the notation introduced in
Preliminaries, the class of all Bernstein generators is exactly G(BF). It is worth men-
tioning that in the literature on stochastic processes, see e.g. [41, Sect. 12.1], Bernstein
generators appear in connection to continuous-state branching processes; in this prob-
abilistic context, they are referred to as branching mechanisms.

An integral representation of Bernstein generators was found in 1968 by Silverstein
[55, Theorem 4], see also [40, Lemma 1.3]. We establish an essentially equivalent way
to characterize Bernstein generators.
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Theorem 3 A function φ ∈ Hol(H, C) is a Bernstein generator if and only if it satisfies
the following three conditions:

(i) φ
(

(0,+∞)
) ⊂ R;

(ii) the limit φ(0) := limR�x→0+ φ(x) exists and belongs to (−∞, 0];
(iii) φ′′ is completely monotone in (0,+∞).

Following Kyprianou [41, Theorem 12.1 on p.336], Silverstein’s representation can
be written as follows. A function φ : H → C is a Bernstein generator if and only if
there exist a ∈ R, q, b ≥ 0 and a Borel non-negative measure π on (0,+∞) with
∫ +∞
0 min{x2, 1} π(dx) < +∞ such that

φ(ζ ) = −q + aζ + bζ 2 +
∫ +∞

0

(

e−ζ x − 1 + ζ x 1(0,1)(x)
)

π(dx) for all ζ ∈ H

(3.7)

(where we have extended formula [41, (12.7)] holomorphically from (0,+∞) to H).
If φ is given by (3.7), then clearly φ ∈ Hol(H, C) and satisfies conditions (i)

and (ii) in Theorem 3. Moreover, (3.7) implies that φ′′ is the Laplace transform of a
non-negative Borel measure μ on [0,+∞) given by

μ({0}) := 2b, μ|(0,+∞)(dx) := x2π(dx). (3.8)

ByBernstein’s Theorem, see e.g. [51, Theorem1.4 on p.3],φ′′ is completelymonotone
on (0,+∞), i.e. condition (iii) is also satisfies.

Conversely, suppose φ ∈ Hol(H, C) and conditions (i)–(iii) hold. Then again by
Bernstein’s Theorem, φ′′ is the Laplace transform of some non-negative σ -finite Borel
measure μ on [0,+∞). Recovering φ′ and φ with the help of the formulas φ′(x) =
φ′(1)+∫ x

1 φ′′(y)dy, φ(x) := φ(0)+∫ x
0 φ′(y)dy for all x > 0, and taking into account

that by (ii) the integral
∫ 1
0 φ′(y)dy converges, we see that:

(a) the Borel measure π on (0,+∞) defined by π(dλ) := λ−2μ|(0,+∞)(dλ) satisfies
∫ +∞
0 min{λ2, 1} π(dλ) < +∞;

(b) representation (3.7) holds for all ζ ∈ (0,+∞) — and hence for all ζ ∈ H —with
the measure π defined in (a), q := −φ(0), b := μ({0})/2,

a := φ′(1) − μ({0}) +
∫

(0,1)
λ(e−λ − 1) π(dλ) +

∫

[1,+∞)

λe−λ π(dλ).

Remark 3.5 With the help of the monotone convergence theorem, it is easy to see that
in the above notation,

φ′′(+∞) := lim
x→+∞ φ′′(x) = μ({0}) = 2b.

In order to illustrate advantages provided by complex-analytic tools, in Appendix D
we include another proof of Theorem3,which is independent from representation (3.7)
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and less technical than previously known proofs of (3.7) not making use of extension
to complex domain. On the other hand, with the help of the above computation, (3.7)
can be adapted for the case of a BRFP at z := 0.

Corollary 3.6 A function φ : H → C is a Bernstein generator associated with a one-
parameter semigroup (v

φ
t ) having a BRFP at σ := 0 if and only if φ admits the

representation

φ(ζ ) = cζ + bζ 2 +
∫ +∞

0

(

e−ζ x − 1 + ζ x
)

π(dx) for all ζ ∈ H, (3.9)

where c ∈ R, b ≥ 0 and π is a non-negative Borel measure on (0,+∞) such that

∫ +∞

0
min{λ2, λ} π(dλ) < +∞. (3.10)

Moreover, if the above necessary and sufficient condition is satisfied, then

c = φ′(0) := lim
x→0+ φ′(x)

and (v
φ
t )′(0) = e−c t for all t ≥ 0. In particular, σ = 0 is the Denjoy–Wolff point

of (vφ
t ) if and only if φ admits representation (3.9) with c ≥ 0.

Note that the Bernstein generator φ in Corollary 3.6 admits both representations (3.7)
and (3.9). As we will see from the proof, the coefficient b and the measure π in the
two representations are the same.

As a representation of a branching mechanism φ, formula (3.9) appeared in [42,
Theorem 1, pp. 21–22], [44, Section 3.1], [45, Section 2.2]. In the probabilistic terms,
(v

φ
t ) has a BRFP at 0 if and only if the corresponding continuous-state branching

process has finite means, see [41, Section 12.2.2].

Proof of Corollary 3.6 First of all, notice that according to Remarks C.2, C.4, and 2.4, a
one-parameter semigroup (v

φ
t ) ⊂ Hol(H, H)with associated infinitesimal generatorφ

has a BRFP at 0 if and only if

φ(0) := lim
x→0+ φ(x) = 0 and φ′(0) := lim

x→0+ φ′(x) exists finitely. (3.11)

Suppose now that φ ∈ G(BF) and that the above condition (3.11) is satisfied.
Following the lines of the argument given after the statement of Theorem 3, which was
used to deduce Silverstein’s formula (3.7), we represent φ′′ as the Laplace transform
of a non-negative σ -finite Borel measure μ on [0,+∞). Since φ′ has a finite limit
at 0+, with the help of Tonelli’s Theorem, we get

∫ 1

0
φ′′(x) dx =

∫ 1

0

(
∫ +∞

0
e−λx μ(dλ)

)

dx = μ({0}) +
∫

(0,+∞)

λ(1 − e−λ) π(dλ) < +∞,
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whereπ is a Borel measure on (0,+∞) given byπ(dλ) := λ−2μ|(0,+∞)(dλ). Clearly,
the integrability condition we established is equivalent to (3.10).

With a similar technique, for all x > 0 we further obtain

φ′(x) := φ′(0) + μ({0})x +
∫

(0,+∞)

λ(1 − e−λx ) π(dλ).

Extending this formula holomorphically toH and taking into account the first equality
in (3.11), we arrive at the desired representation (3.9).

Conversely, bearing in mind Bernstein’s theorem on completely monotone func-
tions, see e.g. [51, Theorem 1.4 on p.3], one can easily see that if φ is given by (3.9)
with some c ∈ R, b ≥ 0, and aBorelmeasureπ on (0,+∞) subject to the integrability
condition (3.10), then φ is a holomorphic function in H satisfying conditions (i)–(iii)
in Theorem 3 and (3.11), with φ′(0) = c. Therefore, φ is a Bernstein generator and
the associated one-parameter semigroup (v

φ
t ) has a BRFP at 0. Moreover, with the

different sign in the definition of the infinitesimal generator taken into account, from
[18, Theorem 1] it follows that (v

φ
t )′(0) = e−φ′(0)t = e−c t for all t ≥ 0. Finally, the

BRFP at 0 is the DW-point of (v
φ
t ) if and only if (v

φ
t )′(0) ≤ 1 for all t ≥ 0, which is

equivalent to the inequality c ≥ 0. ��
In a similar way, the case of a BRFP at ∞ can be treated.

Corollary 3.7 A function φ : H → C is a Bernstein generator associated with a one-
parameter semigroup (v

φ
t ) having a BRFP at σ := ∞ if and only if φ admits the

representation

φ(ζ ) = −q + cζ −
∫ +∞

0

(

1 − e−ζ x)π(dx) for all ζ ∈ H, (3.12)

where q ≥ 0, c ∈ R, and π is a non-negative Borel measure on (0,+∞) such that

∫ +∞

0
min{λ, 1} π(dλ) < +∞.

Moreover, if the above necessary and sufficient condition is satisfied, then

c = φ′(∞) := ∠ lim
z→∞

φ(z)

z
= lim

x→+∞ φ′(x)

and (v
φ
t )′(∞) = e−c t for all t ≥ 0. In particular, σ = ∞ is the Denjoy–Wolff point

of (vφ
t ) if and only if φ admits representation (3.12) with c ≤ 0.

Proof With the help of Remarks C.2, C.3, and 2.4 we see that a one-parameter semi-
group (v

φ
t ) ⊂ Hol(H, H) with associated infinitesimal generator φ has a BRFP at ∞

if and only if φ′(∞) := limx→+∞ φ(x)/x �= ∞. Moreover, if φ ∈ G(BF), then
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according to Theorem 3, φ′′(x) ≥ 0 for all x > 0 and hence the limit limx→+∞ φ′(x)
exists, finite or infinite, and coincides with φ′(∞).

We omit the rest of the proof since it is very similar to that of Corollary 3.6. ��
Remark 3.8 The representation (3.12) with c ≤ 0 has a probabilistic interpretation that
the corresponding branching process is exactly a process with non-decreasing sample
paths because it can be expressed as a randomly time-changed subordinator (with
killing) according to the Lamperti transformation (see e.g. [41, Theorem 12.2]).

Remark 3.9 According to Corollary 3.6, a function φ given by representation (3.9)
with c ≥ 0 is an infinitesimal generator of a one-parameter semigroup with the
DW-point τ = 0. It is therefore interesting to compare (3.9) with the Berkson–Porta
formula (C.2a): φ(ζ ) = ζ 2P(ζ ), ζ ∈ H, where P is the holomorphic function with
non-negative real part given by

P(ζ ) = c ζ−1 +
∫

[0,+∞)

P∗(xζ ) μ(dx), P∗(z) := e−z − 1 + z

z2
∈ H, for all ζ ∈ H,

with the Borel measure μ defined by (3.8). It is worth mentioning that in the case
of arbitrary c ∈ R, the above representation of φ corresponds to the extension of the
Berkson–Porta formula due to Bracci, Contreras and Díaz-Madrigal [7, Theorem 1.3],
see also [20, Theorems 2.8 and 2.11].

A similar observation applies to Bernstein generators admitting representa-
tion (3.12).

3.4 Conditions for Absolute Continuity of Evolution Families

In applications of Loewner Theory to Markov processes, usually there is available a
simple probabilistic condition equivalent to the continuity w.r.t. the time parameters
of the holomorphic self-maps encoding the transition probabilities. For homogeneous
processes, this on its own allows one to employ the theory of one-parameter semi-
groups, as in this case, continuity in time implies differentiability; see page 4.

For inhomogeneous processes, the situation is different: there does not seem to be
known any reasonable probabilistic interpretations for the absolute continuity, which
we need in order to bring into game the Loewner–Kufarev differential equations.
Therefore, it is natural to look for various (necessary and/or sufficient) conditions for a
family of holomorphic self-maps satisfying conditions EF1 and EF2 in Definition 2.5
(or conditions REF1 and REF2 in Definition 2.6, respectively) to be an absolutely
continuous (reverse) evolution.

Several such conditions are already known, see e.g. [8, Theorem 7.3], [14, Sec-
tion 2], [15, Proposition 3.7], [16, Section 4.1], [33, Section 4], [31, Theorem 1]. In
this section, we obtain two other results in this direction, which are specific for fami-
lies (ws,t ) contained inBF and which can be applied to the study of continuous state
branching processes, as we show in [35].

Theorem 4 Let (ws,t )(s,t)∈�(I ) be a family inBF satisfying conditions EF1 and EF2
in Definition 2.5. Suppose that the following assertions hold:
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(i) w0,t (0) = 0 for all t ∈ I ;
(ii) w′

0,t (0) and w′′
0,t (0) are finite for all t ∈ I ;

(iii) The mappings I � t �→ w′
0,t (0) and I � t �→ w′′

0,t (0) are of class ACloc(I ).

Then (ws,t ) is an absolutely continuous evolution family.

Before proving the theorem, we obtain a corollary stating that an analogous assertion
holds for reverse evolution families.

Corollary 3.10 Let (vs,t )(s,t)∈�(I ) be a family in BF satisfying conditions REF1 and
REF2 in Definition 2.6. Suppose that the following assertions hold:

(i) v0,t (0) = 0 for all t ∈ I ;
(ii) v′

0,t (0) and v′′
0,t (0) are finite for all t ∈ I ;

(iii) the mappings I � t �→ v′
0,t (0) and I � t �→ v′′

0,t (0) are of class ACloc(I ).

Then (vs,t ) is an absolutely continuous reverse evolution family.

Proof According to Remark 2.8, it is sufficient to show that for any S ∈ I , the family
(ws,t )0≤s≤t≤S defined by ws,t := vS−t,S−s is an evolution family over [0, S].

In the same way as in the proof of Theorem 4 given below, one can ensure that
v′
0,s(0) does not vanish for any s ∈ I . Differentiating the relation v0,S−t ◦w0,t = v0,S ,
we find that

w′
0,t (0) = v′

0,S(0)

v′
0,S−t (0)

, w′′
0,t (0) = 1

v′
0,S−t (0)

(

v′′
0,S(0) − v′′

0,S−t (0)
[ v′

0,S(0)

v′
0,S−t (0)

]2 )

.

It follows that (ws,t ) satisfies the hypothesis of Theorem 4with I replaced by [0, S].
Thus, it is an absolutely continuous evolution family, as desired. ��

Example 3.11 Let h(z) := 1/z2. ThenC\(−∞, 0] = h(H) ⊃ h(H) + t for any t ≥ 0.
It follows that the functions w0

t := h−1 ◦ (h + t) form a one-parameter semigroup
in H. Fix any non-decreasing function f : [0,+∞) → [0,+∞). The family (ws,t )

given by ws,t := w0
f (t)− f (s), 0 ≤ s ≤ t , satisfies conditions EF1 and EF2 from the

definition of an evolution family and conditions REF1 and REF2 from the definition
of a reverse evolution family. Moreover, ws,t (0) = w′

s,t (0) − 1 = w′′
s,t (0) = 0 for all

t ≥ s ≥ 0. However, (ws,t ) is not an absolutely continuous (reverse) evolution family
unless f is locally absolutely continuous. This example shows that Theorem 4 and
Corollary 3.10 would not be valid without the requirement that the family we consider
is contained inBF.

The proof of Theorem 4 is based on the quantitative version of the Burns–Krantz
rigidity property for Bernstein functions stated in Proposition 3.12 below. Note that for
arbitrary holomorphic self-maps, the Burns–Krantz rigidity involves angular deriva-
tives up to the third order; see e.g. [56, Corollary 2.5], see also [54] and [19]. In contrast
to the general case, in order to bound | f − idH | for functions f ∈ BF, it is enough
to have finite limits of the first two derivatives at z = 0.
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Recall that by definition of a Bernstein function, if f ∈ BF, then f ′ as well as all
higher order derivatives of f are real-valued and monotonic on (0,+∞). Hence there
exist (finite or infinite) limits

f (n)(0) := lim
R�x→0+ f (n)(x), n ∈ N.

Moreover, there exists a non-negative finite limit f (0) := limR�x→0+ f (x).

Proposition 3.12 (Rigidity property of Bernstein functions) Let f ∈ BF and suppose
that f ′(0) and f ′′(0) are finite. Then

| f (z) − z| ≤ f (0) + ∣

∣( f ′(0) − 1)z
∣

∣ + 1
2

∣

∣ f ′′(0)z2
∣

∣ (3.13)

for any z ∈ H.

Proof Let f ∈ BF. Then for all z ∈ H (see Appendix A),

f (z) = α + βz +
+∞
∫

0

(1 − e−λz) τ (dλ), (3.14)

where α, β ≥ 0 and τ is a Borel non-negative measure τ on (0,+∞) with
∫ ∞
0 min{λ, 1} τ(dλ) < ∞. With the help of Levi’s Monotone Convergence Theo-
rem, it is elementary to show that

f (0) = α, (3.15a)

[0,+∞] � f ′(0) = β +
∫ +∞

0
λ τ(dλ), (3.15b)

[−∞, 0] � f ′′(0) = −
∫ +∞

0
λ2 τ(dλ). (3.15c)

Note that for any n ∈ N and any ζ ∈ H ∪ iR,

∣

∣

∣ e−ζ −
n−1
∑

k=0

(−1)k
ζ k

k!
∣

∣

∣ ≤ |ζ |n
n! . (3.16)

Simply consider the function g(t) := Re
(

e−iθe−tζ
)

, where θ ∈ R is a parameter, and
use the Lagrange error bound for the Taylor polynomials centred at t := 0.

For n := 2 and ζ := λz, (3.16) gives |1 − e−λz − λz| ≤ |λz|2/2, which in combi-
nation with (3.14) and (3.15) leads to

∣

∣ f ′′(0)z2
∣

∣

2
=

∫ +∞

0

|λz|2
2

τ(dλ) ≥
∣

∣

∣

∣

∫ +∞

0
(1 − e−λz) τ (dλ) −

∫ +∞

0
λz τ(dλ)

∣

∣

∣

∣

= ∣

∣ f (z) − z − f (0) − ( f ′(0) − 1)z
∣

∣.
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Thanks to the triangle inequality, this immediately implies (3.13). ��

Remark 3.13 Note that by Theorem C(b), the unrestricted (and hence also angular)
limit of f ∈ BF at 0 exists and equals f (0) := limx→0+ f (x). Moreover, using
formulas (3.14) and (3.15), together with the inequality (3.16) and the integrability
condition

∫ ∞
0 min{λ, 1} τ(dλ) < +∞ for the measure τ in (3.14), it is not difficult to

see that if f ∈ BF and the limit

f ′′(0) := lim
x→0+ f ′′(x)

is finite, then the unrestricted limits

lim
H�z→0

f (z) − f (0)

z − 0
and lim

H�z→0

2
(

f (z) − f (0) − f ′(0)(z − 0)
)

(z − 0)2

exist, are finite and equal to f ′(0) and f ′′(0), respectively. Furthermore, thanks to the
monotonicity of f ′ and f ′′ on (0,+∞), a sort of converse is also true: for f ∈ BF,
existence of finite angular derivatives of the first and second order at 0 implies that
f ′(0) and f ′′(0) are finite. In particular, the two ways to define f ′(0) and f ′′(0), as
angular derivatives and via limits as R � x → 0+, agree.

Proof of Theorem 4 By the hypothesis, the elements of the evolution family (ws,t ) are
holomorphic self-maps of H with a boundary fixed point at z = 0, see Remark 3.13
and Sect. 2.3. In particular, a(t) := w′

0,t (0) > 0 for any u ∈ I . Therefore, using con-
dition EF2, for any (t, u) ∈ �(I ) we obtain

w′
t,u(0) = a(u)

a(t)
, w′′

t,u(0) = 1

a(t)2

(

b(u) − b(t)
a(u)

a(t)

)

, (3.17)

where b(t) := w′′
0,t (0). By the hypothesis, a, b ∈ ACloc(I ). So from (3.17) we obtain

w′
t,u(0) − 1 =

∫ u

t

a′(r)
a(t)

dr , w′′
t,u(0) = 1

a(t)2

∫ u

t

(

b′(r) − b(t)

a(t)
a′(r)

)

dr .

(3.18)

Let us now fix some z ∈ H and some compact interval J ⊂ I . Choose R > 0 such
that z ∈ E(R) := {|ζ − R| ≤ R}. Then applying Theorem B to 1/ws,t (1/ζ ), we have
ws,t (z) ∈ E(RJ ) and hence |ws,t (z)| ≤ 2RJ for any (s, t) ∈ �(J ), where

RJ := R max
(s,t)∈�(J )

w′
s,t (0) = R max

(s,t)∈�(J )
a(t)/a(s) < + ∞.

Employing inequality (3.13) in Proposition 3.12 with z replaced by ws,t (z) and using
equalities (3.18), for any s, t, u ∈ J satisfying s ≤ t ≤ u, we get
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∣

∣ws,u(z) − ws,t (z)
∣

∣ = ∣

∣wt,u
(

ws,t (z)
) − ws,t (z)

∣

∣

≤ 2RJ
∣

∣w′
t,u(0) − 1

∣

∣ + 2R2
J

∣

∣w′′
t,u(0)

∣

∣

≤ CJ ,1

∫ u

t

∣

∣a′(r)
∣

∣dr + CJ ,2

∫ u

t

∣

∣b′(r)
∣

∣dr ,

where CJ ,k > 0, k = 1, 2, are two constants depending on J , but not on s, u, or t .
Since the compact interval J ⊂ I in the above argument is arbitrary, we may

conclude that (ws,t ) is an absolutely continuous evolution family, as desired. ��
Now we prove another sufficient condition for absolute continuity of an evolution

family contained in BF. In fact, it holds in a much wider class. As it can be of some
independent interest, below we state and prove a general version of this result.

For a domain D ∈ {D, H} and a point τ ∈ ∂D denote by Uτ the set consisting of
idD and all self-maps v ∈ Hol(D, D) for which τ is the DW-point.

Theorem 5 Let D ∈ {D, H} and τ ∈ ∂D. Suppose that (ws,t )(s,t)∈�(I ) ⊂ Uτ satisfies
conditions EF1 and EF2 in Definition 2.5. The following statements hold.

(a) If there exists z0 ∈ D such that the map I � t �→ w0,t (z0) belongs to ACloc(I ),
then (ws,t ) is an absolutely continuous evolution family.

(b) If there exists z0 ∈ D ∩ R such that the map I � t �→ w0,t (z0) is continuous and
real-valued, then there exists a continuous increasing bijective map u : J → I ,
J ⊂ R, such that the family (w̃s,t )(s,t)∈�(J ) defined by w̃s,t := wu(s),u(t) for all
(s, t) ∈ �(J ) is an absolutely continuous evolution family.

Remark 3.14 Assertion (a) in the above theorem improves considerably [8, Theo-
rem 7.3] for the case of the boundary DW-point (except that we do not keep track on
the order of integrability). We do not knowwhether the direct analogue of (a) holds for
in the “reverse” setting, but under the additional condition of continuous dependence
on the time parameters, assertion (a) holds for families satisfying conditions REF1 and
REF2; see Theorem 5 in the preprint version [34] of this paper. As for assertion (b), its
version for reverse evolution families, which we use in [35], is given Corollary 3.15.
It is worth mentioning that the method employed in the proof can be used to show that
assertion (b) holds also for τ ∈ D ∩ R. (The latter claim concerns Corollary 3.15 as
well.)

Proof of Theorem 5 Clearly, changing variables with the help of a suitable conformal
map, we may suppose that D = H and that τ = ∞.
Proof of (a). For t ∈ I denote

a(t) := Rew0,t (z0) and b(t) := Imw0,t (z0).

ByEF2,w0,t2(z0) = wt1,t2

(

w0,t1(z0)
)

. Hence by Julia’s Lemma forH, see TheoremB,
applied to the map wt1,t2 , we have

1 ≤ w′
t1,t2(∞) ≤ a(t2)/a(t1) for any (t1, t2) ∈ �(I ), (3.19)

where the left inequality holds simply because ∞ is the DW-point of wt1,t2 .
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The family (ŵs,t ) defined by ŵs,t := Lt ◦ ws,t ◦ L−1
s for all (s, t) ∈ �(I ), where

Lt (z) := (

z − ib(t)
)

/a(t), satisfies conditions EF1 and EF2 in Definition 2.5. More-
over, its elements share the same DW-point at 1 ∈ H and a boundary regular fixed
point at ∞. By the Chain Rule for angular derivatives, see e.g. [18, Lemma 2],

ŵ′
0,t2

(∞)

ŵ′
0,t1

(∞)
= ŵ′

t1,t2(∞) = a(t1)

a(t2)
w′
t1,t2(∞) for any (t1, t2) ∈ �(I ).

Using (3.19) we therefore obtain

a(t1)

a(t2)
≤ ŵ′

0,t2
(∞)

ŵ′
0,t1

(∞)
≤ 1.

Since by the hypothesis a : I → (0,+∞) is a function of class ACloc, the latter
implies that the map t �→ ŵ′

0,t (∞) belongs to ACloc(I ). Recall that the self-maps
ŵs,t share the same interior DW-point. Therefore, by [33, Theorem 4.2], (ŵs,t ) is
an absolutely continuous evolution family. Since by the hypothesis a, b ∈ ACloc(I ),
it is easy to see that the automorphisms Ls,t := Lt ◦ L−1

s also form an absolutely
continuous evolution family. Writingws,t = L−1

t ◦ ŵs,t ◦ Ls for all (s, t) ∈ �(I ) and
applying [14, Lemma 2.8], we conclude that (ws,t ) is also an absolutely continuous
evolution family.
Proof of (b). The map I � t �→ f (t) := t + w0,t (z0) − z0 is real-valued and
continuous by the hypothesis. Moreover, it is strictly increasing because w′

s,t (∞) ≥ 1
and hence, Julia’s lemma (TheoremB) implies that Rews,t (z) ≥ Rez onH. Therefore,
f has a strictly increasing continuous inverse u : J → I mapping some interval J ⊂ R

onto I . Clearly, the family (w̃s,t ) defined by w̃s,t := wu(s),u(t), (s, t) ∈ �(J ), satisfies
conditions EF1 and EF2 in Definition 2.5. Furthermore, by construction,

w̃0,t (z0)=w0,u(t)(z0)=−u(t)+ f (u(t)) + z0 = −u(t) + t + z0 ∈ R (3.20)

for all t ∈ J . If (t1, t2) ∈ �(I ), then w0,t2(z0) = wt1,t2(v0,t1(z0)) ≥ w0,t1(z0) and
hence f (t2) − f (t1) ≥ t2 − t1. It follows that u is Lipschitz continuous. Using (3.20)
and assertion (a), we conclude that (w̃s,t ) is an absolutely continuous evolution family.

��
To conclude, we prove an analogue of Theorem 5(b) for reverse evolution families.

Corollary 3.15 Let (vs,t )(s,t)∈�(I ) be a topological reverse evolution family in D ∈
{D, H}. Suppose that the following two conditions hold:

(i) vs,t (D ∩ R) ⊂ D ∩ R for any (s, t) ∈ �(I );
(ii) (vs,t ) ⊂ Uτ for some τ ∈ ∂D.

Then there exists a continuous increasing bijective map q : J → I , J ⊂ R, such
that the reverse evolution family (ṽs,t )(s,t)∈�(J ) given by ṽs,t := vq(s),q(t) for all
(s, t) ∈ �(J ) is absolutely continuous.
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Proof Fix some T ∈ I and consider the topological evolution family (wT
s,t )0≤s≤t≤T

defined by wT
s,t := vT−s,T−t for any (s, t) ∈ �([0, T ]). By Theorem 5(b), there is an

ST > 0 and a strictly increasing continuous bijection uT : [0, ST ] → [0, T ] such that
the functions w̃ T

s,t := wT
uT (s),uT (t), (s, t) ∈ �([0, ST ]), form an absolutely continuous

evolution family. It follows that the functions

ṽTs,t := w̃ T
ST −t,ST −s = vqT (s),qT (t), (s, t) ∈ �([0, ST ]),

where qT (t) := ST − uT (T − t), t ∈ [0, ST ], form an absolutely continuous reverse
evolution family. This completes the proof for the case of a compact interval I .

To cover the case I = [0, T0), 0 < T0 ≤ +∞, choose a strictly increasing sequence
(Tn) ⊂ (0, T ) with Tn → T0 as n → +∞. For each n ∈ N, apply the above argument
for T := Tn . Extend fn := q−1

Tn
to the whole interval I by setting fn(t) := STn for all

t > Tn and let f : I → [0, 1) be given by

f (t) :=
+∞
∑

n=1

fn(t)

2n STn
, t ∈ I .

We are going to show that q := f −1 : [0, 1) → I is a suitable change of time, i.e.
the functions ṽs,t := vq(s), q(t), 0 ≤ s ≤ t < 1, form an absolutely continuous reverse
evolution family over the interval J := [0, 1). Fix some arbitrary k ∈ N, define gk :=
q−1 ◦ qTk = f ◦ qTk , and notice that for any (t1, t2) ∈ �([0, STk ]), we have

gk(t2) − gk(t1) ≥ fk
(

qTk (t2)
) − fk

(

qTk (t1)
)

2k STk
= t2 − t1

2k STk
.

It follows that g−1
k : Jk → [0, 1), Jk := f ([0, Tn]), is Lipschitz continuous. It is then

easy to see that the restriction of (ṽs,t ) to (s, t) ∈ �(Jk) is absolutely continuous,
because

ṽs,t = ṽT
g−1
k (s), g−1

k (t)
for any (s, t) ∈ �(Jk).

Since this holds for any k ∈ N and since
⋃

k∈N Jk = [0, 1), we may conclude that
the whole reverse evolution family (ṽs,t )0≤s≤t<1 is absolutely continuous. ��
Remark 3.16 Clearly, if in the above corollary I = [0,+∞), then in order to make the
situation “more symmetric”, one may employ another change of the time parameters
so that the new reverse evolution family (ṽs,t ) is also defined over J = [0,+∞).
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3.5 The Second Angular Derivative of Evolution Families inBF

An elementary result from the theory of ODE is that for the solution w(t) = ws,t (z)
to an initial value problem of the form

dw

dt
+ φ(w, t) = 0, w(s) = z,

where φ(·, t) is holomorphic in the neighbourhood of w = 0 and vanishes at that
point, we have

w′
s,t (0) = exp

(

−
∫ t

s
φ′(0, ξ) dξ

)

, (3.21)

w′′
s,t (0) = −w′

s,t (0)
∫ t

s
φ′′(0, ξ)w′

s,ξ (0) dξ. (3.22)

If now φ is Herglotz vector field inH and the associated evolution family (ws,t ) has
a BRFP at σ = 0, then formula (3.21), wherew′

s,t (0) and φ′(0, t) are to be understood
as angular derivatives, is justified by Theorem D.

In view of Theorem 4, it is worth extending (3.22) to evolution families of Bernstein
functions.

Proposition 3.17 Let (ws,t )(s,t)∈�(I ) be an absolutely continuous evolution family
contained in BF and let φ be the associated Herglotz vector field. Suppose that for
any (s, t) ∈ �(I ), ws,t (x) → 0 as R � x → 0+. Then formula (3.22) holds, with
w′
s,ξ (0), w′′

s,t (0), and φ′′(0, ξ) understood as the limits of w′
s,ξ (x), w′′

s,t (x), and of
φ′′(x, ξ) as R � x → 0+, respectively. These limits as well as the integrals in the
r.h.s. of (3.21) and (3.22) can be infinite.

Proof Fix (s, t) ∈ �(I ). An elementary computation shows that for any x > 0,

w′′
s,t (x)

w′
s,t (x)

= −
∫ t

s
φ′′(ws,ξ (x), ξ

)

w′
s,ξ (x) dξ. (3.23)

By the hypothesis, the mappings ws,ξ belong toBF. In particular, for each ξ ∈ [s, t],
x �→ ws,ξ (x) is positive and non-decreasing on (0,+∞). Moreover, by Corollary 3.3,
φ(·, ξ) is a Bernstein generator for a.e. ξ ∈ [s, t]. Therefore, using Theorem 3 wemay
conclude that for a.e. ξ ∈ [s, t] fixed, x �→ φ′′(ws,ξ (x), ξ

)

is a non-negative non-
increasing function. Finally, for each ξ ∈ [s, t], (0,+∞) � x �→ w′

s,ξ (x) is positive
and non-increasing, because ws,ξ is a Bernstein function and because it is univalent
as an element of absolutely continuous evolution family. As a result, one can apply
the Monotone Convergence Theorem to pass to the limit in (3.23):

lim
x→0+

w′′
s,t (x)

w′
s,t (x)

= −
∫ t

s
φ′′(0, ξ)w′

s,ξ (0) dξ. (3.24)
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In order to justify that we can now deduce (3.22) by multiplying both sides of (3.24)
by w′

s,t (0), it remains to notice that the indefinite form 0 · ∞ cannot occur in the
r.h.s. of (3.22). Indeed, on the one hand, as we have seen in the proof of Theorem 4,
w′
s,t (0) �= 0.On the other hand, ifw′

s,t (0) = +∞, then logw′
s,t (x) → +∞ as x → 0+

and hence the limit in (3.24) must be infinite, which again excludes the possibility for
an indefinite form. ��
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Appendix A. Bernstein Functions

Definition A.1 By a Bernstein function we mean a non-negative function f of class
C∞ in (0,+∞) such that (−1)n+1 f (n)(x) ≥ 0 for all x > 0 and all n ∈ N.

It is easy to see that a Bernstein function is either f ≡ 0 or it is strictly positive
in (0,+∞). In the following theorem we collect some important basic facts, which
can be found together with proofs in literature on Bernstein functions, in particular, in
the monograph [51, Chapter 3].

Theorem C The following statements hold.

(a) f : (0,+∞) → R is a Bernstein function if and only if it admits the following
representation:

f (x) = α + βx +
∫

(0,+∞)

(1 − e−λx ) ρ(dλ) for all x > 0, (*)

where α, β ≥ 0 and ρ is a non-negative Borel measure on (0,∞) satisfying
∫ +∞
0 min{λ, 1} ρ(dλ) < +∞.

(b) Every Bernstein function f has a (unique) holomorphic extension f∗ : H → C

with Re f∗ ≥ 0. Moreover, f∗ extends continuously to iR and representation (*)
still holds if f is replaced by f∗ and x > 0 by an arbitrary z ∈ H ∪ iR.
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(c) For the coefficients α and β in representation (*) we have

α = lim
x→0+ f (x) = lim

H�z→0
f∗(z) and β = lim

x→+∞
f (x)

x
= f ′∗(∞).

(d) If f �≡ 0 and g are Bernstein functions, then g ◦ f is also a Bernstein function
and trivially (g ◦ f )∗ = g∗ ◦ f∗.

(e) Bernstein functions form a convex cone; namely, for any two Bernstein functions
f1, f2 and any constant a, b ≥ 0, a f1 + b f2 is again a Bernstein function.

(f) If a sequence of Bernstein functions converges pointwise in (0,+∞) to a func-
tion f , then f is a Bernstein function.

In this paper, we do not make any notational distinction between a Bernstein func-
tion f and its holomorphic extension f∗. According to assertions (b), (d) and (f) in
the above theorem, the classBF consisting of all v ∈ Hol(H, C) such that v|(0,+∞) is
a Bernstein function �≡ 0, is a topologically closed semigroup in Hol(H, H). Taking
into account the uniqueness of holomorphic extension, we refer to elements ofBF as
Bernstein functions as well.

Below we recall another definition, closely related to the notion of a Bernstein
function.

Definition A.2 Let I ⊂ R be an open interval. A function ϕ : I → R is said to be
completely monotone in I , if it is of class C∞ and (−1)kϕ(k)(x) ≥ 0 for all x ∈ I
and all k = 0, 1, 2, . . .

Similarly, a function ψ : I → R is said to be absolutely monotone in I if it is of
class C∞ and ψ(k)(x) ≥ 0 for all x ∈ I and all k = 0, 1, 2, . . .

Remark A.3 By the very definition, a non-negative differentiable function f on
(0,+∞) is a Bernstein function if and only if ψ := f ′ is completely monotone
on (0,+∞). Moreover, obviously ϕ is a completely monotone in an open interval I if
and only if ψ(x) := ϕ(−x) is absolutely monotone in the interval J := {−x : x ∈ I }.
Another simple observation is that according to Leibniz’s rule for higher order deriva-
tives, the product of two absolutely monotone functions is again absolutely monotone.

Remark A.4 In a similar way, it follows immediately from Faà di Bruno’s formula for
the derivatives of a composite function that if g : I → J , where I and J are two
open intervals in R, is such that g′ is absolutely monotone in I , and if ψ is absolutely
monotone in J , then the composition ψ ◦ g is absolutely monotone in I .

Remark A.5 The above remarks imply a slight generalization of assertion (d) in
Theorem C. Namely, if f1 is a Bernstein function and if f2 is a non-negative dif-
ferentiable function such that f ′

2 is completely monotone in an open interval J
containing f1

(

(0,+∞)
)

, then f2◦ f1 is aBernstein function: simply applyRemarkA.4
with g := g1, I := (−∞, 0), and ψ := g′

2, where g j (x) := − f j (−x), j := 1, 2.
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Appendix B. Loewner–Kufarev Equations for Reverse Evolution Fami-
lies

In this appendix we explain in short how the correspondence between (usual) abso-
lutely continuous evolution families and Herglotz vector fields, given in Theorem A,
extends to the case of reverse evolution families. For the proofs and further details,
we refer interested readers to [16].

Let (vs,t )(s,t)∈�(I ) be an absolutely continuous reverse evolution family. Using the
relation between usual and reverse evolution families, see Remark 2.8, it is possible to
associate with (vs,t ) an essentially unique Herglotz vector field φ with the following
property: for each z ∈ D and each t ∈ I \ {0} the map [0, t] � s �→ v(s) := vs,t (z) is
the unique solution to the initial value problem

dv

ds
= φ(v, s) for a.e. s ∈ [0, t]; v(t) = z.

It is worth mentioning that although the correspondences between a Herglotz vector
field φ on the one side and the associated absolutely continuous (usual and reverse)
evolution families (ws,t ) and (vs,t ) on the other side are expressed rather explicitly,
there does not seem to exist any simple way to relate the families (ws,t ) and (vs,t )

directly, i.e. without involving the Herglotz vector field φ.

Remark B.1 Clearly, if (vs,t ) is an absolutely continuous reverse evolution family over
the interval I , then for each fixed s ∈ [0, T ), the mappings ṽs′,t ′ := vs+s′,s+t ′ also form
an absolutely continuous reverse evolution family over a suitable interval. Therefore,
combining [16, Theorems 4.1, 4.2 (ii) and 1.11], one can easily conclude that there
is an equivalent way to express the one-to-one correspondence between Herglotz
vector fields and absolutely continuous reverse evolution families introduced above.
Namely, as a function of the parameter t , any absolutely continuous reverse evolution
family (vs,t ) satisfies, in the sense of [16, Definition 2.1], the PDE

∂vs,t (z)

∂t
+ φ(z, t)

∂vs,t (z)

∂z
= 0, a.e. t ∈ Is, z ∈ D; vs,s = idD, (B.1)

where φ is the Herglotz vector field associated with (vs,t ). Conversely, given any
Herglotz vector fieldφ : D×I → C, for each s ∈ [0, T ) the initial value problem (B.1)
has a unique solution (z, t) �→ vs,t (z), which is defined for all (z, t) ∈ D × Is , and
moreover, (vs,t )(s,t)∈�(I ) is exactly the reverse evolution family associated with φ.

According to [16, Theorem 1.11], the inverse mappings v−1
s,t also can be recovered by

solving an ODE driven by the Herglotz vector field φ associated with (vs,t ). Namely,
for each s ∈ [0, T ) and each z ∈ D, the map t �→ w(t) := v−1

s,t (z) is the unique
solution to the initial value problem

dw

dt
= φ(w, t) for a.e. t ∈ Is; w(s) = z. (B.2)
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Note that in this case solutions do not have to be defined for all t ∈ Is . In fact, the
set of all z ∈ D for which the solution to (B.2) exists up to (and including) a given
instant t coincides with vs,t (D).

Equations (B.1) and (B.2) are essentially equivalent to (2.2). All three versions
appear in the literature referred to as generalized Loewner–Kufarev differential equa-
tions; see, e.g. [12]. A good account on the classical Loewner–Kufarev equations can
be found in [47, Chapter 6.1].

AppendixC. FixedPointsofOne-Parameter SemigroupsandEvolution
Families

Let (vt ) ⊂ Hol(D, D), D ∈ {D, H}, be a non-trivial one-parameter semigroup. It is
known, see [17], that vt ’s different from idD share the same BRFPs and, in particular,
the same DW-point. According to a well-known result of Berkson and Porta [6], see
also [10, Theorem 10.1.10] for another approach, in case D = D the infinitesimal
generator φ of a non-trivial one-parameter semigroup (vt ) can be written as

φ(z) = (z − τ)(1 − τ z)p(z), z ∈ D, (C.1)

where τ is the DW-point of (vt ) and p is a suitable (uniquely defined) holomorphic
function in D with Rep ≥ 0. Conversely, if φ ∈ Hol(D, C) is given by (C.1) with
some τ ∈ D and some p ∈ Hol(D, H ∪ iR), then φ is the infinitesimal generator of a
one-parameter semigroup with the DW-point at τ .

Remark C.1 Remark 2.4 allows one to extend the Berkson–Porta representation for-
mula (C.1) to infinitesimal generators in H. Namely, φ : H → C is an infinitesimal
generator of a one-parameter semigroup in Hol(H, H) with the DW-point at τ ∈ H if
and only if

φ(ζ ) = (ζ − τ)(ζ + τ)P(ζ ) if τ ∈ H ∪ iR, (C.2a)

φ(ζ ) = −P(ζ ) if τ = ∞, (C.2b)

for all ζ ∈ H, where P is a holomorphic function in H with ReP ≥ 0.

Remark C.2 It is known [18, Theorem 1] that σ ∈ ∂D is a BRFP of a one-parameter
semigroup (vt ) ⊂ Hol(D, D) if and only if the limit

λ := ∠ lim
z→σ

φ(z)

z − σ
(C.3)

is finite, and in such a case v′
t (σ ) = e−λt for all t ≥ 0. In particular, λ ∈ R.

Remark C.3 It is worth mentioning that the angular limit (C.3) exists, finite or infi-
nite, for any σ ∈ ∂D and any infinitesimal generator φ in the unit disk D, see e.g.
[10, p. 330]. Therefore, (C.3) can be replaced with the corresponding radial limit
limr→1− σφ(σr)/(r − 1).
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Remark C.4 It is also known, see e.g. [10, Proposition 12.2.4], that the limit (C.3) is
finite if and only if limr→1− φ(rσ) = 0 and the limit φ′(σ ) := limr→1− φ′(rσ) exists
finitely. In such a case λ = φ′(σ ).

For the non-autonomous case the following extension of [18, Theorem 1] holds.

Theorem D [11, Theorem 1.1] Let (ws,t )(s,t)∈�(I ) ⊂ Hol(D, D) be an absolutely
continuous evolution family with associated Herglotz vector field φ : D × I → C. Let
σ ∈ ∂D. Then the following two conditions are equivalent:

(i) For every (s, t) ∈ �(I ), σ is a BRFP of ws,t ;

(ii) The limit λ(t) := ∠ limz→σ φ(z, t)/(z−σ) is finite for a.e. t ≥ 0, and λ ∈ L1
loc(I ).

If the above conditions are satisfied, then for all (s, t) ∈ �(I ),

logw′
s,t (σ ) = −

∫ t

s
λ(u)du.

Appendix D. Complex-Analytic Proof for the Characterization of Bern-
stein Generators

Here we prove Theorem 3, which is essentially equivalent to Silverstein’s represen-
tation formula (3.7) for Bernstein generators. In contrast to previously known proofs
of (3.7), our proof is complex-analytic; in large part, it is based on the theory of
one-parameter semigroups.

Lemma D.1 For any a ∈ R, b, q ≥ 0, the functions φ1(z) := az, φ2(z) := bz2, and
φ3(z) := −q are Bernstein generators.

Proof By explicit integration of the equations dw/dt+φ j (w(t)) = 0, j = 1, 2, 3,with

the initial condition w(0) = z ∈ H, we obtain v
φ1
t (z) = e−at z, vφ2

t (z) = z/(1+ btz),
and v

φ3
t (z) = z + qt . These are Bernstein functions for all t ≥ 0. ��

Proposition D.2 If f ∈ BF, then φ := − f ∈ G(BF).

Proof Let f : H → C be a Bernstein function. Fix an ε > 0 and consider Euler’s
approximations vε

n of the flow generated (and defined a priori locally) by φ := − f ,

vε
0 = id, vε

n := vε
n−1 + ε f ◦ vε

n−1, n ∈ N.

Notice that vε
n is the n-th iterate of ψε(z) := z + ε f (z). Since Re f ≥ 0 in H, the

function ψε and all vε
n’s are well-defined holomorphic self-maps of H. In particular,

by [10, Theorem 10.6.1],

φ = lim
ε→0+

idH −ψε

ε

is an infinitesimal generator in H. (Note the different convention of the sign in the
definition of an infinitesimal generator adopted in [10].)
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Moreover, by the same [10, Theorem 10.6.1], for any t ≥ 0,

v
t/n
n = ψ◦n

t/n → vt locally uniformly in H as n → +∞,

where (vt ) is the one-parameter semigroup generated by φ.
Recall that BF is a convex cone closed w.r.t. compositions and containing idH,

see Theorem C. It follows that v
t/n
n ∈ BF for any t ≥ 0 and any n ∈ N. Recall also

that BF is topologically closed in Hol(H, H), see Theorem C(f). As a consequence,
(vt ) ⊂ BF. Thus, φ ∈ G(BF). ��

Proof of Theorem 3 Suppose first that φ is a Bernstein generator. As usual, denote
by (v

φ
t ) the one-parameter semigroup in BF associated with φ. Since φ(z) =

limt→0+
(

z − v
φ
t (z)

)

/t and the limit is attained locally uniformly in H, it follows
that φ is real-valued on (0,+∞) and that

(−1)nφ(n)(x) = lim
t→0+

(−1)n−1(v
φ
t )(n)(x)

t
≥ 0

for all x ∈ (0,+∞) and all n ≥ 2, because (−1)n−1
(

v
φ
t
)(n)

(x) ≥ 0 for all t > 0 and
all n ∈ N.

Since φ′′(x) ≥ 0 for all x ∈ (0,+∞), the limit φ(0) := limR�x→0+ φ(x) exists
and belongs to (−∞,+∞]. Considering the equation dw/dt + φ(w(t)) = 0 with the
initial condition w(0) = x in a right neighbourhood of the origin on the real line, we
see that the solution leaves H at finite time if φ(0) > 0, which would contradict the
fact that φ is an infinitesimal generator in H.

Thus, conditions (i)–(iii) in Theorem 3 hold for every Bernstein generator. Suppose
now that φ satisfies (i)–(iii) and show that in such a case φ is a Bernstein generator.
By (i) and (iii), φ′ is a real-valued non-decreasing function in (0,+∞). It follows that
there exists the limit φ′(∞) := limR�x→+∞ φ(x) belonging to (−∞,+∞].

First let us consider the special case φ′(∞) �= +∞. It is worth mentioning that
this is done for the sake of clarity rather than because it is logically necessary. If
φ′(∞) ≤ 0, then φ′(x) ≤ 0 for all x ∈ (0,+∞) and hence conditions (i)–(iii) imply
that f := −φ is a Bernstein function. Therefore, by Proposition D.2, φ is a Bernstein
generator.

Similarly, if φ′(∞) ∈ (0,+∞), then f1(z) := φ′(∞)z − φ(z) is a Bernstein
function. Hence φ = φ1 + φ2, where φ1 := − f1 and φ2(z) := φ′(∞)z, is a Bernstein
generator, because φ1 and φ2 belong to G(BF) by Proposition D.2 and by LemmaD.1,
respectively, and because G(BF) is a convex cone by Corollary 3.1.

Now we present a (bit more sophisticated) proof valid both for finite and infi-
nite values of φ′(∞). Since φ′′ is completely monotone by (iii), the limit φ′′(∞) :=
limR�x→+∞ φ′′(x) exists and satisfies φ′′(x) ≥ φ′′(∞) ≥ 0 for all x > 0. There-
fore, the function ϕ(z) := φ(z) − φ′′(∞)z2/2, z ∈ H, satisfies the same conditions
(i)–(iii) as φ. In particular, the limit ϕ′(∞) := limR�x→+∞ ϕ(x) exists and belongs
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to (−∞,+∞]. In addition, ϕ′′(∞) = 0. It follows that

lim
R�x→+∞

ϕ′(x)
x

= 0. (D.1)

Using again Corollary 3.1 together with the fact that z �→ ϕ′′(∞)z2 is Bernstein
generator by Lemma D.1, we may conclude that in order to complete the proof it is
enough to show that ϕ ∈ G(BF).

For ε > 0 and z ∈ H, we define

φε
1(z) := ϕ(z) − ϕ′(1/ε)z,

φε(z) := φε
1

(

Tε(z)
) + ϕ′(1/ε)z, where Tε(z) := z/(1 + εz).

Note that (−φε
1)

′ is completely monotonic in (0, 1/ε). Moreover, limR�x→0+ φε
1(x) =

φ(0) ≤ 0 and henceφε
1 is non-positive on (0, 1/ε). Since Tε is a Bernstein function and

Tε

(

(0,+∞)
) = (0, 1/ε), by Remark A.5 it follows that −φε

1 ◦ Tε is also a Bernstein
function. Therefore, arguing as above one can show that φε ∈ G(BF) for every ε > 0.

Using (D.1), we get:

lim
ε→0+ φε(z) = lim

ε→0+
(

ϕ(Tε(z)) − ϕ′(1/ε)Tε(z) + ϕ′(1/ε)z
)

= lim
ε→0+ ϕ(Tε(z)) + lim

ε→0+
ε ϕ′(1/ε) z2

1 + εz
= ϕ(z).

Since by Corollary 3.1, G(BF) is closed in Hol(H, C), it follows that ϕ is a Bernstein
generator and hence the proof is complete. ��
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