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Abstract

In this work, we consider the approximation of Hilbert space-valued
meromorphic functions that arise as solution maps of parametric PDEs
whose operator is the shift of an operator with normal and compact resol-
vent, e.g. the Helmholtz equation. In this restrictive setting, we propose a
simplified version of the Least-Squares Padé approximation technique stud-
ied in [6] following [11]. In particular, the estimation of the poles of the
target function reduces to a low-dimensional eigenproblem for a Gramian
matrix, allowing for a robust and efficient numerical implementation (hence
the “fast” in the name). Moreover, we prove several theoretical results that
improve and extend those in [6], including the exponential decay of the
error in the approximation of the poles, and the convergence in measure
of the approximant to the target function. The latter result extends the
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classical one for scalar Padé approximation to our functional framework.
We provide numerical results that confirm the improved accuracy of the
proposed method with respect to the one introduced in [6] for differential
operators with normal and compact resolvent.

1 Introduction

Parametric PDEs arise in a wide variety of contexts in physics, applied math-
ematics, and engineering. In most cases, the interest is in the evaluation or
approximation of the solution map

S(p): = Alp) ™ f(p), (1.1)

which associates a (possibly multi-dimensional) parameter to the corresponding
solution of a PDE based on the differential operator A(-) and on the data f(-).
The parameter p usually represents a collection of physical or geometric proper-
ties, which characterize the underlying complex system, and are allowed to vary
within some range of interest.

In many applications, computing the solution of the underlying PDE by
some discretization scheme may be very costly even at a single point p in the
parameter domain. Thus, the direct evaluation of the solution map over a large
number of parameter values is unfeasible. Within this framework, model order
reduction is often applied to obtain a surrogate solution map, with good approx-
imation properties in the whole parameter range of interest. Depending on the
existence and on the stability properties of the resolvent operator A(-)~!, diffi-
culties may arise in devising a reasonably accurate reduced model, and special
techniques may be required, due to the resolvent A(-)~! not existing or being
“nearly unbounded” at some points in the range of interest, see e.g. [8, 16, 19].

One particular and common instance of such problems is related to the lack
of coercivity of the parametric PDE over a subset of the parameter range of
interest. In this paper, we specifically address this situation by considering
parametric PDEs for which the operator has a eigenproblem-like structure, i.e.
is of the form

Alp) = L — 2(p)Z, (1.2)

with £ an operator with sufficient regularity (the exact requirements amount
to invertibility, and normality and compactness of the resolvent), Z the identity
operator, and z(p) a complex-valued smooth function. Indeed, such operator
lacks a bounded resolvent whenever z(u) falls into the spectrum of £, and is
“nearly unbounded” for nearby values of the parameter. The problems which
may fall within this framework include the Helmholtz, Maxwell, and Schrédinger
equations with suitable boundary conditions and constraints, to cite just a few.

In this context, rational approximations of the solution map S(u) are par-
ticularly appealing, as they can potentially capture those critical values of the
parameter p for which the resolvent is not defined [6, 11, 12, 13]. In this paper



we focus on the work [6]. There, following the Least-Squares Padé approach in-
troduced in [11] for multivariate complex-valued functions, a general approach is
proposed (in particular, without the hypothesis of normality) to build Padé-type
rational approximations of Hilbert space-valued monovariate maps. In particu-
lar, the construction of the approximant relies on evaluating the target function
and its derivatives at a single point in the parameter domain. Such approxi-
mation strategies are summarized in Section 3, where their main convergence
results are also stated.

In this work, we focus on problems with the particular structure (1.1)—(1.2),
with £71 normal and compact, and propose a simplified version of the Least-
Squares Padé formulation proposed in [6], which can be constructed by a fast and
robust algorithm based on progressive orthogonalization techniques. Moreover,
our new “fast” method leads to approximations that are more accurate than
those produced by the Least-Squares Padé method in [6], by better exploiting
the eigenproblem-like structure of the solution map.

The particular normal structure and simplified Padé construction allow us
to obtain theoretical convergence results (Theorem 6.3 and Corollary 6.4) that
extend those in [6], by relaxing the hypotheses on the approximant parameters
and by showing better convergence rates, as attested also by numerical exper-
iments. In addition, within the framework of this paper, we are able to prove
exponential convergence rates (Theorem 5.5) in the approximation of the critical
values of the parameters, for which the PDE is ill-posed.

The outline of this work is as follows. In Section 2, we describe the precise
assumptions on £ in (1.2), and investigate their consequences on the solution
map S. In Section 3, we briefly summarize the rational approximation technique
introduced in [6], along with the corresponding convergence result. In Section 4,
we introduce our new “fast” Least-Squares Padé approach. In Sections 5 and
6, we derive several convergence results in approximating the spectrum of L
and the solution map, respectively. In Section 7, some techniques to enhance
the numerical stability of the method are described. A numerical experiment
comparing the approach of [6] with the new one is reported in Section 8. Lastly,
Section 9 contains some concluding remarks.

2 Problem setting

Let (V,(-,-)v) be a separable Hilbert space over C, with induced norm ||-||;,. We
consider a bijective linear operator £ : D(L£) C V — V whose domain D(L) is
dense in V and whose resolvent £~ : V — V is compact and normal, i.e.

£t (E_l)* = (E_l)* L7t over V,

with (L'_l)* denoting the adjoint of £~!, namely (ﬁ_l)* : V. — V linear and
bounded, such that

(L™, w)y = (v, (Eil)* w)y forall v,w e V.



The spectral theorem for normal compact operators [5, 15] can be applied to
L1, leading to the following properties:

e the spectrum of £, which, since £ is closed [9, Proposition 1.15], can be
characterized as

Y(L)={ e C:3vwe DL)\A{0}, Lv= v}, (2.1)
is discrete and does not include 0;

e whenever (L) is not finite (i.e. when V is infinite-dimensional), its only
limit point is oo;

e for all A € X(L), the eigenspace associated to A\, namely
W={veDL): Lv= v}, (2.2)
has finite dimension;
e the eigenspaces V), and V, are V-orthogonal whenever \,v € X(L), A # v;

e the family of orthogonal projections onto the eigenspaces, which we denote
by {Px}rex(c) (with the same indexing as the eigenspaces), is a resolution
of the identity on V, i.e., for any v € V,

v= Z Pyv with convergence in V. (2.3)
AET(L)

Given an arbitrary v* € V and the (scalar) parameter z € C\ (L), we
consider the problem

find S(z) € D(L) : (L—2T)S(z) =v* (2.4)
(with Z : V' — V being the identity operator), which defines uniquely the map
S:C\X(L)—=V, z—8(2). (2.5)

In particular, for all A € (L), due to (2.3) and to the fact that the spectral
projector Py commutes® with £ over D(L), we have that

Pyw* =P\ (L—21)S8(z) = (L —2Z) P\S(2) = (A — z) P\S(2). (2.6)

'For all X € X(L), the orthogonal projector Py commutes with the resolvent £~ [15], i.e.
PAL'o=L""Pw forallveV. (%)

For all w € D(L) it suffices to set v = Lw and to apply £ to both sides of (x) to obtain the
desired result.



Accordingly, the map (2.5) can be expressed as

P *
S(z) = Z P\S(z) = Z AV with convergence in V, (2.7)
AEX(L) reso) N8

and its V-norm at z € C\ X(£) is bounded by [[v*|ly, / minyex (e [A — 2].

From the orthogonal decomposition (2.7), we can deduce that S is meromor-
phic over C, and that all its poles are simple and belong to the spectrum of £. In
particular, it is possible to compute the Taylor coefficients of S at zgp € C\ X(£),
which we denote by

(63
(S)on = Sz0) and (8), = ~950) fora=12,. .,

@20 T ol dge

by solving the problems

find (8),., €V 1 (£L—=20T)(S)a.y = (S)a1,, fora=1,2,.... (2.8)

2.1 Example: the Helmholtz solution map

As an instance of the framework described above, we consider the solution map of
the Helmholtz problem with parametric wavenumber and homogeneous Dirichlet
boundary conditions, which has been considered by the authors also in [6, 7].

Let Q ¢ R? d € {1,2,3}, be an open Lipschitz bounded domain. Given
z € C, we consider the Helmholtz problem

—AS(z) —28(z)=f inQ (2.9)
S(z)=0 on 0%, '
with f € L?(Q). In particular, we cast the problem in the same functional
setting as (2.4), as

find S(z) € D(A) : (A —27)S8(z) = f in L*(Q),

where we have defined D(A) = {v € Hj(Q) : Av € L*(Q)} and V = L*(Q).

Standard results in functional analysis [10] can be used to prove that, with
the choice of spaces introduced above, £L = —A satisfies the hypotheses of the
previous section. In particular, it is bijective, and has self-adjoint (hence normal)
and compact resolvent. Thus, S is meromorphic and has the form (2.7), with
¥ (L) C RT due to the positiveness of L.

From (2.2), it can be observed that all eigenspaces V), for A € (L), are
subsets of H}(£2). Actually, as remarked also in [6], they are mutually orthogonal
with respect to the HE(Q) inner product as well, and their direct sum in the
topology of Hi () is dense in H}(£2). Thus, the spectral expansion (2.7) holds
true also in H(Q).



3 Least-Squares Padé approximation

In the setting of the previous section, it is reasonable to look for rational approx-
imations of the map S(z). The following Least-Squares (LS) Padé approximant
of S centered at zg € C\ X(L) was defined in [6, 7].

Definition 3.1 Let zo € C\ X(L), p € R and N, M, E € N be fized, with p > 0
and E > M + N. Define the polynomial spaces

M
Py (C;V) = {73 :C—V, P(z) =) pj(z— 20) with {p;}}L, C V} (3.1)
=0

and

N N
P (C) = {Q :C—C, Q2) =) qi(z—2) with {g;}}Ly C C,> |g* = 1}-
j=0 j=0
(3.2)
A [M/N] LS-Padé approzimant of S centered at zy (which depends paramet-
rically on E and p) is defined as

. f[M/N} (2)

B Qaa/n (2)’ 33

Sivyn(2)

with (f[M/N],@[M/N]) € Py (C; V) x PR (C) a global minimizer of the functional
JEp : Pum (G V) x PR (C) — R, given by

E

1/2
jep(P,Q) = (Z QS — P>a,zor%p2a> : (3.4)

a=0

The minimization of jg , always admits at least one solution, i.e. a [M/N]
LS-Padé approximant always exists. Indeed, since P € Py (C; V') has degree at
most M,

M B
JEp(P. QP =Y QS =P Iy P+ D 1QS), 5 o™
a=0 a=M+1

In particular, for any fixed @ € PY (C), a (unique) minimizer of

M
DRSS =Py, Iy 2™

a=0

over Py (C; V), which achieves the value 0, can always be found by imposing

the conditions
(Pasy = (QS)y., fora=0,...,M. (3.5)
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Thus, the minimization of jg , can be split into two parts: first, the optimal
denominator is computed by minimizing

E

Tep( @7 = D 1QS),.lI ™ (3.6)

a=M+1

over P (C); a minimizer always exists since jp ,(Q) is continuous and P73 (C)
is compact. Then the corresponding optimal numerator is found by enforcing
(3.5).

In [6], the convergence of LS-Padé approximants to the solution map S,
as M increases while N stays constant, was proven. We recall the result for
completeness.

Theorem 3.2 [7, Theorem 2.4] Let N € N be fized. Consider R > 0 such
that the disk B(z9, R) = {z € C, |z — 20| < R} contains at most N poles of S,
with no element of X(L) on the boundary 0B(zy, R).

Given p < R, denote by Sppy/n the [M/N] LS-Padé approzimant of S at z
with parameters E and p. Then, for all z € B(zg, p) \ (L) there exists M* € N
such that

_ p\M *
|8G) =Sy <€ (%) for ait M > 21, (3.7)
where C' depends on 29, p, R, E— M, N, %(L), minyesr) |2 — Al, and [[v*|ly.

Several numerical experiments [6, 7] in the case of Helmholtz frequency re-
sponse problems, lead to believe that the bound (3.7) may not be sharp with
respect to p. Actually, no appreciable dependence of the error on p has been
detected, and the empirically observed convergence rate in M for fixed N was

< /(12 — 20 M
18) = Spam@Ely <& —%—) (3.8)

see [6, Remark 7.1] and [7, Section 4.2], even when z € B(zp, R) \ B(z0, p), a case
which is not addressed by Theorem 3.2.

4 Fast LS-Padé approximants

As the dependence on p of the approximation error appears empirically negli-
gible, we may wish to derive a simplified version of LS-Padé approximant that
does not depend on p. Accordingly, we consider the following definition.

Definition 4.1 Let zp € C\ X(£), and N,M,E € N be fized, so that E >
max{M,N}. We define a [M/N] fast LS-Padé approzimant of S centered at zo
(which depends parametrically on E) as

Piaryny(2)

Qu/n(2)’ 1)

S/ (2) =



with Qa/n) € Py (C) being a global minimizer of the functional JE PR (C) —
R*, given by

ie(Q) = 1(@S) g |l (4.2)
and PNy € Par (C; V) satisfying
(P[M/N])G,Zo = (Q[M/N]S)azo fora=0,...,M

Fast LS-Padé approximants can be formally interpreted as the limit for large
p of standard LS-Padé approximants given in Definition 3.1, since the simplified
functional jg in (4.2) (and, consequently, its minimizer) can be obtained from
(3.6) by letting p tend to co. To understand what this simplification entails, it
is useful to interpret the vectors of coefficients of the denominators Qas/n] and
Q[ MmN as eigenvectors of Hermitian matrices, as follows.

Any element @ € PY (C) is uniquely identified by the Vector q= (qj)évzo €

CN*1 of its components with respect to the basis ( — 20)N )N: , so that
N N
Qz) = (Q)N—j7zo( Zq] z— 20) N=3,
j=0 Jj=0

In particular, as @ is normalized, q belongs to the unit sphere of CN*1.
Using this representation, we can express

2
N
jE(Q)2 = H(QS)E,zOH%/ = : (Q)ij,z(] (S)E‘—NJrj,zO
:0 %
N
<Z‘JJ )E— N+]z072q2 )E— N+z‘,z0>V
7=0
N N
:ZZ«S)E N—l—]zO?(S)E N+zz0>vq3ql
i=0 j=0
=q'Ggaq, (4.3)

where the unary operator = denotes complex conjugation for scalars and Her-
mitian transposition for vectors and matrices. In particular, we have defined
G g € CIVHDX(N+1D) a9 the Hermitian positive semidefinite Gramian matrix
whose entries are given by

(éE)zg = <(8)E—N+j,zo7 (S)E—N+i,z0>v fori,j=0,...,N. (4.4)

From equation (4.3), we infer that a minimizer of jz(Q) is a (normalized)
eigenvector of Gk corresponding to the minimal eigenvalue. This allows us to
compute fast LS-Padé approximants using Algorithm 1 below. In practice, the
matrix G g need not be built explicitly, and a better conditioned eigenproblem
can be solved instead, as detailed in Section 7.



Algorithm 1 Computation of fast LS-Padé approximants
1: Fix 20 € C\ ¥(£), M, N, E € N, with £ > max{M, N};
2: Compute the Taylor coefficients (S),, ., for a = 0,..., E, by solving (2.4)
and (2.8);

3: Build the Hermitian positive semidefinite Gramian matrix Gg as in (4.4);
Compute a normalized eigenvector q € CN*1 of G g corresponding to the
minimal eigenvalue;

Define the Padé denominator as Qa/n] = Zjv 00 (- — 20)N 7
Compute the Taylor coeflicients (Q[M/N ) . fora=0,...,M;
Compute the numerator PN = Za -0 (Q[M/N}S)mm( - = 20)%
Return Sppr/ny = Piary/ny/ Quaa/ny-

-

Remark 4.2 A similar derivation can be carried out for jEp in (3.6), see [7,
Proposition 3.2]. In particular, (4.3) becomes

E
i, @7 =a [ > pG, ] a (4.5)

y=M+1

n (4.5), each of the (N 4+ 1) x (N + 1) matrices CNJV, for v > N, can be
obtained as a diagonal block of the infinite-dimensional Gramian matrix based
on the derivatives of S, whose entries are defined as

(G)Lj = <(S)j7zO7 (S)i7zO>V for i,j € N, (4.6)
see Figure 1. The matrices év for v < N can be obtained similarly, by adding
zero-padding to G, or equivalently by defining (S), ., = 0 for a <0.

[ (So.So)v (S (S S)v G
(So,S)v (S, Sy (S2, Sy (S5, S1)v
o | (So:Sv (S, &)y (82, Sy (S5, S2)v (54, S2)
: (S1,83) v (82, S3)v (S5, S3)v (S4.83)
: (S2,8)v (83, 8a)v (Sa, Sa)v

Figure 1: Gramian matrix associated to the map S through the scalar product (-, )y .
To lighten the notation, we write S, instead of (S),, . (for a € N) to denote a Taylor
coefficient of S at zp. In blue the sub-matrix extracted for N = 2 and E = 3, which
corresponds to Gs.

Within this framework, the computation of standard LS-Padé approximants
relies on a combination of Gramian blocks, see (4.5), while, for the same value



of E, fast approximants only consider the last of these blocks, i.e. the one on
the bottom-right.

In the next Section, we derive some properties of Padé denominators, by ex-
ploiting features of the Gramian matrix G. In particular, we show that diagonal
blocks which are related to derivatives of higher order lead to a more accurate
estimation of the poles of S. As such, in choosing the parameters for standard
LS-Padé approximants, we may want to opt for larger values of p, in order to
enhance the contribution of high-order derivatives of §. Therefore, fast Padé
denominators provide a better approximation of the poles of S than standard
Padé ones.

5 Convergence of fast LS-Padé denominators

From here onwards, we will assume without loss of generality that all removable
singularities of & have been discarded, i.e. that v* is such that Pyv* # 0 for all
A € ¥(L). This is not a limiting assumption, since from (2.7) it is clear that the
poles of S are {\ € X(L) : P\v* # 0}, so that we are entitled to ignore those
elements A € ¥(L) for which P\v* = 0.

Moreover, we denote by {A\,}22; the elements of (L), ordered in such a
way that |A\q — 20| < [Aat1 — 20| for a = 1,2,..., and we set v}, = Py, v* for
a=1,2,.... Additionally, we assume that zg € C\ X(£) is fixed and that X(£)
consists of infinitely many elements, unless otherwise explicitly stated (this is
just to simplify the notation, since all the results below apply to the finite-
dimensional case as well).

In Theorem 5.5 below, we prove that, for a fixed denominator degree N >
0, the poles of the fast LS-Padé approximant with denominator QN (see
Definition 4.1) converge to the closest poles of S, as the number of employed
derivatives E goes to co. More precisely, denoting by {XEE)}Q;I the roots of
Q[m/N]; we prove that, fora=1,..., N,

_ oz P

AN+1 — 20

min ‘X(ﬁ — Ao ‘ <'
B=1,...,.N

where the hidden constant depends on « but is independent of E. In order to do
that, after rewriting the target functional jz in Definition 4.1 in a convenient way,
we prove three preliminary results in Lemma 5.1, Lemma 5.3, and Lemma 5.4.
We conclude this section by proving convergence of the poles of the fast LS-Padé
approximant to the closest poles of S also for increasing IV, see Theorem 5.7
below.

We start by deriving a useful alternative expression for ;E in Definition 4.1.
Thanks to (2.7), we can compute each Taylor coefficient of S at zp as

00 00
Wzo Z 77Z0 Vo Z ’Y+1’ (51)

a=1 a:l
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so that we can express j5(Q), for Q € PY (C), as

2
N
ip(Q)* = ' (@) N—j2o(S) Nz
Jj=0 v
oo N v* 2
= 1]20 IN—0 e = 20)7 7 S
a=1j= 1%
0o * 2
v
— _a )\a
A §
_iM‘Q()\ )2 (5.2)
= A —Zo|2E+2 all ’
a=1 "'

by the V-orthogonality of {v}}52
The first technical lemma provides some bounds on normalized polynomials
in terms of their roots.

Lemma 5.1 Let Q € Py (C) have (possibly non-distinct) roots z1,...,zn. For
any z € C we have the lower bound:

N
Q) > [T =l (5.3)

Moreover, if 2o ¢ {za})_;, the following upper bound holds true for all z € C:

|<H

Proof. We can express Q as a normalized interpolation polynomial: there exists
7 > 0 such that

(5.4)

Zoo TR0

1Q(2) = 7 [{n(2)], (5.5)
where
N
In(z) =[] (za = 2)- (5.6)
a=1
Due to the normalization of (), we have that
N N
-2 _ -2
To=T Z J Zo Z | J Zo ’
§=0 §=0

which can be evaluated using the Hadamard multiplication theorem [17, Section 4.6]:

1 1 N
72— / lex (20 + €270) [ do = / I |20 — 20 — | a6 (5.7)
0 0 4=1

The two claims will follow from (5.5) and (5.6) by employing an upper and a lower
bound for 772, respectively:

11



e the triangular inequality yields

N

1 N
T2 g/ IT (20 — 2ol + |€2™))% a0 = T (12a — 20l + 1)%,
0 a=1

a=1
from which (5.3) follows;
e the Cauchy-Schwarz inequality in L?(0,1) applied to (5.7) allows to derive

1 N
72> / H (za — 2z — 627”9) do
0 a=1

2

2
N

1 N
= / H (2o — 20) + che%”ﬂ dé| ,
0 a=1

j=1

for some coefficients {c; ;,Vzl C C independent of 6, whose exact expression is not

relevant; indeed, by linearity, it can be shown that

2 2

N N 1 N
772> H (2o — 20) + ch/ 21049 =
j=1 70

a=1

(2a — 20)

)

a=1
leading to (5.4).
]

Remark 5.2 In the proof of Lemma 5.1, it can be observed that both T and the
absolute value of the interpolation polynomial [{n(2)| at any point z € C depend
continuously on the roots of Q, see (5.7) and (5.6), respectively. Thus, due to
(5.5), |Q(2)| depends continuously on the roots of Q as well, for all z € C.

The second lemma establishes a sort of optimality bound for fast Padé de-
nominators.

Lemma 5.3 Let :]VE and Qar/N) be the target functional and the fast Padé de-
nominator, respectively, as in Definition 4.1. Then,

C/
< )
[ ANg1 — 2o|E T

> . (5.9)

Proof. Let g be the exact denominator of S with degree N, i.e. some element of
P (C) with roots {Aa}2_;.
Thanks to (5.2) and to the optimality of Q[rs/n, see Definition 4.1, we obtain

iz (Quiyn) (5.8)

with

N AN41 — 2
/ * +1 0
C——HU ||V|| <1+‘)\azo

a=1

~ 2 _~ - ||U:}||2
je (Quiyn)” < Jje(9)? = Z — g(Xa)l?
a=1 |)‘Oé - ZO|

12



oo

2

_ HU:;HV A2

- Z 2E+2 |g( a)| .
_Z0|

a=N+1 |>\O‘
Now Lemma 5.1 and the triangular inequality can be applied, yielding

[e'S) N

2

Je (Quim) < Y lecly N
TS Pa— 2P S A — 20
(%) 2 N 2
[ogl ( Aa — 20
< Z _ Wellv 1+
— 2E42 _
a=N+1 |Aa = 20l B=1 As = %0
2
< swp | ——— H( ] —— ) S el
a>N+1 |/\ —Zol )‘5_2

a=N-+1
Since F > N, the supremum is achieved for « = N + 1, leading to

2 o0
2
) S sl

2 1 N A 2

~ N+1 — 20
e Q)" < 5 BZ= (1 + ‘ .

0 -- 0 £

B=1 a=N-+1

IAN4+1 Ag —

The claim follows by exploiting the V-orthogonality of the {vX}52,

o0 o0
2
ST il < Z lally = (1D ox|l =113 -
a=N+1 a=1

O
The last technical result provides a bound for the absolute value of the fast
LS-Padé denominator when evaluated at the elements of X(L£) closest to zp.

Lemma 5.4 Let N € N\ {0} be fized, and consider the fast LS-Padé denomina-
tor Q[M/N computed with E > N derivatives of S at zy € C\ X( ) (the choice
of M 1is irrelevant, as it does not affect jE) Then, for a = 1,...,N, the fast
Padé denominator satisfies the bound:

2F
)\a — 20

Qv (Aa)| < ca (5.10)

AN+1 — 20
with ¢, independent of E.
Proof. Let E > N be fixed, and consider the vector qg € CN*!, with ||qg, = 1,

such that qg = ((Q[JW/N])N—j,zO);V:O' For each o = 1,2,.. ., let wy € CN*! be defined
as

Wo = [()\a—zo)N,...,)\a—zo,lr,

so that Qar/nj(Aa) = wias. o
Moreover, consider the Hermitian matrices Gg, Gg € CV+TUXV+1) defined as

5 el
— (e} *
O = 3 P e
a=1 @
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and N
2
lvally
E= S ETYaar
a=1 l)‘ - ZO‘
In particular, we remark that G g is positive definite, due to the linear independence of
{wa 22, which, in turn, follows from the fact that the {\,}32,; are distinct:

[e%s} * 112

q"'Geq = Z % lwiq| >0 forall qc CVNT!\ {0}
a=1 |)\ - ZO|

Due to (4.4) and (5.2), qp is an cigenvector of Gp, corresponding to the minimal

eigenvalue, which we denote by o, and for which, by employing Lemma 5.3, we proceed

to find an upper bound:
-~ ~ 2 0/2
0 =qyGeae = je (Qu/N))” < R — (5.11)
[AN+1 = 20
with C’ independent of E.

As a preliminary step, we prove a bound for the perturbation ||@ r—G glly using
the Cauchy-Schwarz inequality:

Gp -G = max “(Gp -G
1G5 = Galls = Mgy @ (En —Crla
o) 2
HU;”V * 2
= max Z —a— |wiq
qECN+1’Hq|\:1a:N+1 |/\ _z0|2E+2 a |
0 2
vl 2
< Z aizm\lwallz
a=N+1 |)‘04 - ZO|
= vzl
_ _ WWYallv 2j
- Z W N 2E+2 ZP‘ =zl
a= N+1| 0
1 ) oo
< sup 722%*2&2]% > il -
a>N+1 |Aa720| =0 a=N+1

Since E > N, the supremum is achieved for & = N + 1. This yields

N 00

R _ 1 0 5 01/2
||GE—GE||2§—2E+QZ|>\N+1—ZO| ! Z HUZHVZ—QEH’
[AN+1 — 20| §=0 a=N+1 [An+1 = 2ol
(5.12)
with C” independent of E.
Now, let
W= [w1|... |wN} € CINFDXN
and ) )
: o1 1l [vnl NxN
Ap = diag s v e Cch Y,
<|)\1 — Z0|2E+2 Dy — Zo|2E+2

so that @E = WAgW*. In particular, W is a rank-/N matrix, due to the fact that the
{\a 32, are distinct. As such, it admits a left inverse, i.e. a matrix WT ¢ CNV*(N+1)
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such that WTW = Iy, whose rows we denote by

[ il |'wN} :
Now, since CN}’EqE = oqEg, we obtain
WAeW*qr = Gpar = (Gr — Gr) g + 0qs.
Applying W1 from the left leads to
ApW'ap =W (Gp — Gp)ap + oW,

i.e., element-wise,

[vall “a._ G *
W wdp = w) (Gp—Gp)ap+ow] qp fora=1,....N.
(o7

Thus, the triangular and Cauchy-Schwarz inequalities, and the normalization of qg
lead to

‘)\a _ Z0‘2E+2
2
ozl

‘)\a _ 20‘2E+2

|Quayn) (Na)| = |whae| < <’wl* (Gp - éE)QE‘ +o ‘wl*QED

||va HV

for a =1,...,N. The claim follows by exploiting (5.11) and (5.12). O

We are now ready to provide our main result on convergence of fast LS-Padé
approximant poles to the N closest poles of S.

Theorem 5.5 Consider the framework of Lemma 5.4, and, for fivred E, denote
the roots of Q) by {)\/(BE)}]ﬁvzl. Then, for a =1,...,N, we have that

~ Ay — 2F
ﬂ:I{l,i..I.l,N ’)\(ﬁE) — Aa 0 for E large enough, (5.13)

“[AN+1— 20
with ¢, independent of E.

Proof. Throughout the proof we assume that a € {1,..., N} is fixed. Also, for fixed
E, let

(E
A G 12 = L
be the function mapping each pole of S to the closest root of the Padé denominator (in
case of ambiguity, any of the closest roots suffices), i.e.

’X(E)()\n,)—/\v fory=1,2,....

= ﬁ_mln ‘X/(BE) -

Since Q[ar/n) is normalized, Lemma 5.1 applies, yielding

‘/\(E)

N ‘X,(BE) _ )\a

|Q /N ( > H ) (5.14)

> -
11+‘)\E)—z‘ 5211+\)\a—zo|+‘)\(f)—)\a

15



thanks to the triangular inequality.
We introduce the strictly increasing continuous function

o)

T

_ , 5.15
14+ |Aa — 20|+ 2 ( )

defined over the positive real numbers, with ¢, (0) = 0 and whose inverse is
-1 — (1 Ao — vy
520 = (1 I — 20 T

for 0 <y < 1.
Now, (5.14) and the monotonicity of ¢, lead to

)

QO] = T oo (37 = 2a]) 2 (80 (P2 () = 2a
B=1

oE 1/N
< o5t (ca ) ,

provided the argument of ¢! is smaller than 1, i.e. for F large enough. If |\, — 20| =
|IAN+1 — 20|, the claim follows trivially by defining ¢/, = ¢! (c,lx/ N). Thus, for the rest
of the proof we assume that |\, — 20| < |Ant1 — 20].

Since c,, is independent of E, the continuity of ¢! yields

so that, thanks to Lemma 5.4,

X (Aa) = A Ao = 20

ANF1— 20

N o\ /N
lim (A& () — Aa’ <o | lim (ca AaTE0 ) =0,
E—oo E—oo >\N+1 — 20
ie. ~
lim ‘ME) (o) = Aa| = 0. (5.16)
E—o0
In order to obtain the rate (5.13), we define
r= i o [Ag — Agr| > 0.
For E large enough, (5.16) implies that
AE(A) - /\7‘ < g for v =1,...,N. (5.17)

In particular, the approximate poles {X(E)(/\W)}ﬂyvzl form a subset of
r
B= ( ,7) .
U B 5
y=1,...,N

But B has N disjoint connected components. Thus, thanks to (5.17), the map AB) ig
injective over {A,}, and we can write

‘X(ﬁE) —Aa| = 5, forall other 3=1,... N.

16



From (5.14) it follows that

T
I

N
) e

B=1
).

= 9o (AP (Aa) = Aa

)

AP EXE) (o)
> (60 ()" on (B0 .

provided FE is large enough.
By Lemma 5.4 and by applying ¢!, it follows that

Y(E) —1 T =N )\(x — 20 B
)\ (/\a) - )\OL S ¢O¢ <¢o¢ (5)) Cq m
a2l (9a (3) Ve ‘ Ao =20 |PF
B _ 2B |\ _
1= (0a () o[ IV
for E large enough.
For E large enough,
r 1-N )\a — 20 2B 1
(¢a (5)) Ca )\N+1 — 20 < 57
so that
~ 1—-N )\a _ 2F
RO 00 = x| €200+ P —20l) (60 (5)) | o

and the claim (5.13) follows.

Corollary 5.6 Consider the framework of Lemma 5.4, and let g € P (C) have
roots {\a}N_,. As E increases, the complex magnitude of the Padé denominator

|Q[M/N]‘ converges to |g|, uniformly over all compact subsets of C.

Proof. Theorem 5.5 shows that the roots of Qas/n7, namely {X(ﬁE)}évzl, converge to

those of g as E increases. Due to Remark 5.2, the absolute value of a polynomial in

PX (C) depends continuously on its roots, and the claim follows.

All the results above hold for increasing E with constant denominator degree
N. A convergence result can be proven also in the case of increasing N, as

follows.

Theorem 5.7 Consider a sequence

(Eg, Ni)oo, € {(E,N) e N* E > N},

17



such that Exi1 > Ey and N1 > Ny for all k. Let Qg /N, be the fast LS-Padé
denominator computed with Ey derivatives of S at zop € C\ (L), whose roots
are denoted by {A } 1 (the choice of My, is irrelevant, as it does not affect
]Ek) If limy o Nk = oo then, for all a =1,2,.
I in_ A0 — A
el 5:?,1.1.?% B «

=0. (5.18)

Proof. Let o € {1,2,...} be fixed. Due to (5.2), we have that
1/2

oo

lvally V5115 2
FW—rT |Quar /v ()| < D B |Quuai/na (As)]

=je. (Quao/n) »
so that Lemma 5.3 implies

Er+1

[ AN, 41 — 2 Ao — 2
‘Q[ZV[k/Nk]()\Q)| <5 L4 H (1—1—’ Ni+l =0 ) ’ o 20 (5.19)

ANy+1 — 20

As in the proof of Theorem 5.5, Lemma 5.1 and the triangular inequality yield

‘)\
> [ e
’Q[Mk/Nk] /:31_[1 1+ ‘)\(k) _ Z()‘
N
Z d)oz ’X(k) - >\o¢
51;[1 (367 =)

with ¢, as in (5.15). This, together with (5.19), leads to

i <
%a (5—r1r»l-l-?Nk > o

||U*Hv H ( ‘)\Nkﬂ -

HU*HV Ag — 20

Y
A = Xa

1/N,
Ex+1 /N

(5.20)

20 ) Aa — 20
ANL+1 — 20

Due to the monotonicity and continuity of ¢, in order to prove the claim it suffices
to show that the right-hand-side of (5.20) converges to zero as k increases. To this aim,
we consider its natural logarithm

Ny,
(@) 1 lv* ||y, 1 < ')\Nk+1 — 20 ) Ep+1 Ao — 20
T = —log + — log ( 1+ + log
F Ni vl Nk 2_: Ag — 2o Ny ANe+1 — 20
lv* ||y, < AN,+1 — 20 ) Eip+1 Aa — 20
< —10 +— ) lo k + lo
= Ng . gl Z Ag — 20 Ni s ANy+1 — 20

18



vl a—2|, Bx+1- Ny ‘ Ao — 20
= log +log2+ — log + lo
Nk H allv g Z Ag — 20 N, & ANp+1 = 20
and prove a bound for each term separately.
Trivially,

o™y

lim — log + log 2 = log 2.
koo N [lugly

Moreover, since Ej > N, for all k, the last term satisfies

F,+1—- N
N,

Aa — 20

log ‘

ANL+1 — 20

whenever [Ay — 20| < [An,4+1 — 20|, i.e. (thanks to the unboundedness of {Nj}7° , and
of the spectrum (L)) for k large enough.

In order to find a bound for the remaining term, we remark that { log | 3\\3_20 |}
decreasing and unbounded, due, once more, to the unboundedness of the spectrum % ,C
Thus, the Stolz-Cesaro theorem [1] can be applied to a strictly monotone subbequence

(Ng, )72, to prove that

: )\a 20
lim — 1 —00.
RSBl vt
In summary, limg_ oo T]ga) = —o0, and the claim follows. [l

Remark 5.8 If (L) is finite, Lemmas 5.3 and 5.4, as well as Theorems 5.5
and 5.7, and Corollary 5.6, still hold whenever N < #X(L), where #A denotes
the cardinality of the set A. Also, if N > #3(L), some of the results become
even stronger: within the frameworks of the respective Lemmas and Theorem,
(5.8)-(5.10)-(5.13) become N
JE(Qpy/Ny) =0,

and

‘Q[M/N]()\a)‘ =0 and _Hlnn ‘)\( )\a‘ =0 fora=1,...,#%(L).
Remark 5.9 Due to Remark 4.2, all the results in the present Section can be
generalized to standard LS-Padé approximants, see Definition 3.1, whenever the
target map S can be expressed using an orthogonal decomposition as in (2.7).
However, the main bounds (5.8)-(5.10)-(5.13) hold only asymptotically in E. In
particular, numerical tests, see Section 8, have shown that, in order to achieve
an accuracy which is comparable to that of fast LS-Padé approrimants, standard
LS-Padé approximants require N more derivatives of the target map S.

6 Convergence of fast LS-Padé approximants

Given the results from the previous section, it remains to check whether fast LS-
Padé approximants inherit the convergence in V from that (in CN*1) of their
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denominators, and whether their convergence rate is the same as the one for
standard LS-Padé approximants (3.7).

In this section we prove that fast approximants converge at exponential rate
in M, provided the denominator degree stays constant. Also, we show that
their convergence rate is better than that in (3.7), and is consistent with the
numerically observed rate (3.8).

Moreover, we show that fast LS-Padé approximants converge to the target
map S along more general paths of the Padé table, in particular on para-diagonal
sequences [N + 0/N] for § > —1, under some reasonable assumptions on the
choice of F.

First, we prove a bound for fast LS-Padé residuals in terms of both M and
N.

Lemma 6.1 For any E,M,N € N, with M > N — 1 and E = max{M, N},
consider the (meromorphic) fast LS-Padé residual Hjpyy) @ C\ X(L) — V,
defined as

Hinyny = QuuyniS — Prayng- (6.1)
For z € C, let

dy(c)(2) = Aé%l& |A—z].

Then, for all z € C\ (L), we have the bounds:

C/ o — ZD E+1
H z < if M > N, 6.2
[Hpym )]y, < doe) () ’)\NJrl | M= (62)
and
1 1 zZ— 20 B+l
H < + ) ’ if M =N —1.
[ @l <d2(.c)(z) |2 — 20| ) [ AN+1— 20 /
(6.3)
In particular, the common constant C" is given by (5.9).
Proof. We can exploit (5.1) to derive
Quaa/w (2 (). (6.4)
Due to Definition 4.1 and (5.1), we can express the fast Padé numerator as
M M 3 )
Py (z) = (Q[M/N]S)M z—z)’ Z Z (Quyny) 1o0 (S)jctz (2 — 20)’
7=0 7=01=0
M j et v* .
:ZZ (Q[M/N])z,zo Z = R (z — 20)’
j=01=0 a=t (Aa — 20)
o e M Mo\
— Yo l — <0
=3 B0 @) 'S ()
a:l =0 j=l
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M—1+1

00 o M l (7;7_220) -1

=3 S (@), (2 20)
[M/N1)y,, 0 zZ—z

A hao pyi

00 M M—1+1

Z vy Z I 2= 20
frng o - ]- - .

a=1 Ao¢ -z =0 (Q[M/N])l720 (Z ZO) ( (Aa - zO) >

Under our hypotheses, we can replace the upper summation index M in the last sum
by N. Indeed, this is trivially true for M > N, since (Q[M/N])l,z() =0forl > N. In
the case M = N — 1, direct inspection shows that the addend corresponding to I = N
is zero, thus justifying its addition to the sum. Hence, the fast Padé numerator can be
expressed as

oo v* N . 2~ 2 M—I1+1
P55 e 1= (22) )

3 Ug( = l zZ— 20 M+1
:az::l/\ _Z<QM/N ; M/N)), .y (Aa = 20) <)\a_zo> )
e} ’U(Z 2 — 2 M+1
:a; Ao — 2 (Q[M/N] (2) = <)\a — Zo) QN 0‘(1))
e * . M+1

see (6.4).
Thus, by exploiting (6.1) and the V-orthogonality of {v*}32 ,, we can express the
squared norm of the residual as

S oA lly
[NIO] P Z—Z|2M+ZZ|A Y tzo|2M+2 [Quiyn Q). (65)
a=1 1\« o

We distinguish two cases:

e Case E =M > N. From (6.5), by exploiting (5.2) we can derive

1 c- [[oa I 2
H < 2 — 2 2M+2 allV Q )\a
a2y, <1z = 20l e = oF 2= P o |Qua/ny (N
s |22 1 = vl |Quatyw) (A )’2
ds(2)(2)? = Ao — 20/ F?
1 ~ 2
. 2My2 -
= |z — 20 7612(5)(2)2 ie (Quny) -
Lemma 5.3 can now be applied, leading to
2 c'? zZ— 20 242
H, z <
H /N ( )HV = ds)(2)? | An+1 — 20

e Case F = N = M + 1. Equation (6.5) can be written equivalently as

o0

vl 2
1Hineym |5, = |z = 2o+ m 7ZO|‘2/M+4 |Quar/vy (o)
a=1 @

2
)\a_ZO
Ao — 2
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Now we observe that, for any a > 1,

Aa = 20 |)\a—z|+|z—zo\:

N Ao — 2]

Ao — 2

which yields
2
1Hnm )y < 12— 20+ (1 * ZZO|> T (@)

To conclude, it suffices to apply Lemma 5.3:

zZ— 20

2 2 1 1 2
H < < + )
[ Haem (2] < PN e R P

ANF1 — 20

O

Remark 6.2 IfX(L) is finite, Lemma 6.1 still holds true whenever N < #X(L).
Moreover, H[M/N]Hv =0 over all C\X(L) if M +1> N > #X(L).

Finally, we can use the previous results to prove the convergence in measure of
fast LS-Padé approximants within the region of the Padé table where M > N —1
and F = max{M, N}.

Theorem 6.3 Let zp € C\ X(L) and R > 0 be fized, so that no pole of S lies
on OB(z9, R). Also, let N € N be the number of poles of S within B(zo, R).

Consider a sequence
(M, Np)72y € {(M,N) e N>, M > N — 1},

such that M1 > My and Niy1 > N for all k, with limg_,oo Ni > N.
Let Sir, /) be the [My/Ny] fast LS-Padé approxvimant of S, computed with
E = max{My, N} fork=1,2,.... For anye >0,

lim Hz € B(z0,R) : ||S(2) = Spymiy ()] > g}\ —0, (6.6)

k—o0

with |A| denoting the Lebesgue measure of the set A.

Proof. Let k be fixed. We indicate with {Xa}gil the roots of Q[ar, /n,], ordered with

respect to their distance from zp, and we consider the integer N, € {0,..., Ny} such
that _
Ao — 20| <2R fora=1,...,N;, (6.7)
and _
Ao — 20| > 2R fora =N, +1,...,Ng. (6.8)

Since Q(ar,,/n,) belongs to PR (C), Lemma 5.1 applies, yielding

Ny,

|Q[Mk/Nk](Z)’ = H

a=1

|XO<_Z‘
1+|Xa_20|.
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In order to prove a lower bound for |Q[ M, /Nk]| over a suitable subset of B(zp, R), we
consider each factor separately. For the terms corresponding to 1 < o < N, by (6.7)
we can write _ _
|>\DL_Z‘ > ‘)‘a_2|.
1+‘/\a—2’0| 1+2R

To find a bound for the factors for Nj, + 1 < a < Nj, we remark that the function
Y(z) =2/(1 + x) is increasing for > 0. This, together with the triangular inequality
and (6.8), for all z € B(zg, R) leads to

X — 2| - Pa—z2l  |z— 2z
1+|>\a—20|_1+|/\a—20| 1+|/\a—2§0|
2R R R

> - = .
“14+2R 1+2R  1+2R

In summary, we have the bound

RNIC Nk RNk_N;,c

KN,; (Z)‘
for all z € B(zp, R), with éN;é being a monic polynomial of degree Nj..
For any fixed 0 < §; < mR?, classical results on lemniscates for monic polynomials

(see e.g. [3, Theorems 6.6.3-6.6.4]) prove the existence of a set &, C C, with Lebesgue
measure |[E;| <}, such that

51\ Ni/2
‘KN/C(Z)‘ > (ﬂ’f) for all z € C\ &;,.

Hence, for all z € B(zo, R) \ &},

R 14+ 2R

: ; Ny, , Np,
)N (Flt/ﬂ) ><,/5k/7r> | 69)

{Q[Mk/Nk] | = (1—|—2R

Now, let z € B(zp, R) \ (§;, UX(L)) and assume My > Ny; the case My = N — 1
can be treated in an analogous way. Lemma 6.1, together with (6.9), yields

1
S(z) =8 H
|| (2) [Mk/Nk] HV ’Q[Mk/Nk](z)‘ || [Mk/Nk'](Z)HV
c’ z— 20 Mi+1
<
ds(2)(2) |Quar, /vy (2)] ’/\Nwl - 20
M +1

< c’ 1+2R ‘ Z— 20
Tdsy(2) \ /O, /7 ANe+1 — 20
with C' as in Lemma 6.1.
The term 1/dsr)(z) diverges as z gets close to ¥(L£). As such, we proceed by

excluding small neighborhoods of the poles gf S within the region of convergence. To
this aim, let 0 < 6}/ < N7 ( ’)‘NH — z0| — R)” be given. The set

6//
&= U B N’;

a=1,....N
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has Lebesgue measure |£}/| < ¢}/ and satisfies

1"

0
ds(cy(z) > (/=== for all z € B(z0, R) \ &
Nt

In particular, we remark that, thanks to the ordering of the elements of (L), the
condition §} < Wﬁ( ‘)‘N 1 z0’ — R)2 allows to ignore all the poles with distance from
2o larger than R in the estimation of dxr) over B(zo, R).

If we define & = &, UE;, whose measure is not greater than d;, 4} by construction,
for all z € B(zo, R) \ £k, we have that

VG oy
Vo

X (W)Nk ﬁ ((\/ER(l-F?R)) ( 1 n )\alz())), (6.10)

ot |AN,+1 — 20l

M+1
X

zZ— 20

|S(2) - S[Mk/Nk](Z)HV <

ANy+1 — 20

which, by exploiting the ordering of the poles {\y}52;, implies

VT lo* [y < R )M’““N'“

S(z) =8 < 8
H (Z) [Mk/Nk](Z)HV — (%Nk 6;; |AN;€+1 — Zo|
Ny,
2y/7R(1 +2R)
o T 2 TELH2ZR) ey
o]¢;[1 |/\a - Z0| ( )

To conclude the proof we consider two cases:

o Case (N;)?2, bounded. There exists K > 0 such that N = lim;_,o N; =: N*
for k > K. For k > K, (6.11) can be expressed as

O R M +1
S(2) - S (2 < 6.12
H ( ) [My /N ]( )HV_ (SIICN* 5/k/ ('AN*+1_ZO|) ( )

for all z € B(zo, R) \ &, with C independent of k. Since R < [An+41 — 20| and
limy_, oo Mj = 0o, we can easily see that

R Mp+1
li — =0 forall B(zo, R).
i (=) orall =€ B0, 1Y

For all £ > K, let

My+1
8, = min { TR?, ¢ (R ) .
€ \[AN++1 — 20

M +1
g—min{Nw(|)\N+1zo|R)2 ¢ <R) }

1/N*

and

7; |)\N*+1_ZQ|
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With these definitions, (6.12) implies that
HS(z)—S[Mk/N* Hv <e forall z € B(zg, R) \ &,

with |E] < 0}, + 0)/. As both §;, and ¢} converge to 0 as k increases, the claim
follows.

Case (Ng)72 ; unbounded. As in the previous case, we leverage (6.11) to obtain

suitable definitions for ¢}, and 6;: for all k =1,2,..., we set
Ny, Q/Nk
. 2V/7R(1 + 2R)
), = min { TR?, —_
: ()
and

2 2(Mi+1—Ny)
5g:min{Nw(\AN+1_201_3)2,; <R> }

[AN+1 = 20

() — S[I\/Ik/Nk](Z)HV < e forall z € B(zp, R)\ &, with |Ex| < &, +Y.
To prove the claim, it now suffices to show that ¢;, and ¢} converge to 0 as k
increases.

Let us consider 5,’C first: for all £ we have that

Ny
2\ /7R(1+2R
‘“e"p{ 2o fu_)}

Since the spectrum (L) has a single limit point at infinity, we obtain

2/mR(1 + 2R
lim log M = —00.
a—00 |/\a — ZO|
Now, since (Nj)32, is non-decreasing and unbounded, the Stolz-Cesaro theorem
[1] can be applied to a strictly monotone subsequence (N, )2, to prove that

Ny,
2 S8 WARA2R)
|)‘a - ZOl

or, equivalently, that limy_,o 6}, = 0.

The second parameter 0j is easier to deal with: since M} > Ny for all k, the
convergence of d;' to 0 can be verified by exploiting once more the unboundedness
of the spectrum X(L).

O

Corollary 6.4 Assume that the hypotheses of Theorem 6.3 hold with Ny =
N*> N for all k. For any § > 0 there exist C" independent of k and of z, and
Er C C, with |&| < 6, such that, for all z € B(zo, R) \ &k, the approximation
error admits the following bound:

M,

|S(2) = Sag v (2)]], < C” (6.13)

)‘N*-H — 20
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Proof. The claim follows from (6.10). O

Remark 6.5 Theorem 6.3 and Corollary 6.4 still hold if ¥(L) is finite. In
particular, if img_,oo N > #3(L), both results are satisfied by setting &, =
Y(L) N B(z0, R), and the right hand side of (6.13) is identically 0 for large k.

Remark 6.6 The sequence of sets {E;}72 in the proof of Theorem 6.3 and in
Corollary 6.4 is used to account for the instabilities of the solution map S and
of the rational approzimant Sy Ny near the respective poles. In particular, the
proof of Theorem 6.3 shows that each & can be defined as the union of suitable
neighborhoods of poles of S and of S ny-

Remark 6.7 With a small effort (the necessary theoretical tools can be found,
e.g., in [3, Section 6.6]), Theorem 6.3 can be extended to show that (6.6) still
holds true if logarithmic capacity [3, 14] replaces Lebesque measure. Similarly,
the sets in the family {132, in Corollary 6.4 can be shown to have arbitrarily
small logarithmic capacity. In this way, optimal convergence results in classical
Padé approzimation [3] find their counterparts for fast LS-Padé approzimants.

7 Numerical implementation of fast LS-Padé approx-
imants

In this section, we give some details on the practical implementation of Algo-
rithm 1. Consider a compact set K C C where we wish to approximate the
meromorphic map §. To guarantee the convergence of LS-Padé approximants
in K\ ¥(£), we must choose 29 € C\ X(£) and estimate the number N € N of
poles contained in the smallest disk which includes K. Still, in most applications,
(L) is not known explicitly. Hence, a preliminary approximate localization of
¥(L) (or, at least, of the elements of (L) closest to K) is necessary.

A description or analysis of such a procedure falls outside the scope of this
paper. However, we envision two possible strategies:

e the number of elements of (L) within a certain real interval can be ap-
proximated through a prior: eigenvalue estimators, e.g. by applying Weyl’s
law, see [4];

e an estimate of the positions of the poles of S closest to zp may be ob-
tained adaptively through the application of fast LS-Padé approximants,
where the value of N is updated according to some a posteriori estimator
computed from Padé denominators.

From now on, we assume that 2y and the denominator degree N have been
fixed. For instance, we may have set zg equal to the Chebyshev center of K, i.e.
the center of the smallest ball which contains K. Moreover, we assume that N
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is not smaller than N, so that K C B(zq,|An+1 — 20|), where, as usual, we order
the elements of 3 (L) with respect to their distance to zp.

Finally, it is necessary to choose M and FE, with M > N —1 and F =
max{M, N}; this last condition is to ensure that Theorem 6.3 and Corollary 6.4
can be applied. The value of E represents the number of derivatives of S that
need to be computed, and affects the accuracy of the approximation of the poles
of &, see Section 5. However, while a larger E is expected to yield a better
approximation of the exact denominator g, in practice it may be desirable to
choose a smaller value, since the condition number of G'g increases exponentially
with E, leading to numerical instability (see also [11] for similar observations in
the case of least-squares multivariate scalar Padé approximants).

Once the Taylor coefficients of S at 29, i.e. {(S5), }5:0, are computed by
exploiting (2.4) and (2.8), the functional jg needs to be minimized. To this aim,
instead of building explicitely the matrix G E, its Gram structure is exploited to
obtain a better conditioned problem. In particular, the quasi-matrix

ACENE

whose range is a subspace of V, is assembled, and its QR decomposition is
computed [18], so that

A= [(S)EfN,zo o

A= [QE—N""’QE} R, (7.1)

with {Q;}}7 ;  C V forming a V-orthonormal set, and R € CV+D)x(N+1)
being upper triangular. This allows us to find the denominator Q[N from a
right-singular vector of R corresponding to the minimal singular value, effectively
with a condition number which is the square root of the one for the original
problem.

In many applications (for instance — and in particular — in the field of
model order reduction for parametric PDEs), both V' and £ are actually finite-
dimensional approximations of some reference infinite-dimensional space VY and
operator LY respectively, see Section 8 for an example. This does not affect the
results discussed in the previous sections, but introduces an additional source
of error, namely the approximation of the PDE, which is not considered in this
work.

In this particular but quite common framework, the evaluation of the target
map through the solution of (2.4) and the recursion (2.8) correspond to the so-
lution of linear systems, whose matrices depend parametrically on z. Thus, the
derivatives of S can be interpreted as a basis of the Krylov subspace of V' gener-
ated by ((£ —2I)7L, v*). As such, an approach based on the Arnoldi algorithm
could be applied to obtain quite naturally the orthogonal decomposition (7.1).
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8 Numerical comparison of standard and fast LS-
Padé approximants

We devote this section to the comparison of standard and fast LS-Padé approx-
imants for the map S which associates to any value of z the P? finite element
discretization of the self-adjoint Helmholtz problem (2.9), with = (0,7)? and
f € L*(Q). We refer to [7] for further numerical examples of (standard) LS-Padé
approximation in similar and more general (non-self-adjoint) settings.

In particular, given v € R* and 6 € [0,27), we define d = (cos(#),sin(f))"
and

Uez (X) = w(x)e_i”de € HY (),

with w(x) = %xlxg (m —x1)(m — x2) being a bubble vanishing on 92. Moreover,
we set f = —Auez — V2 Ueg, 50 that ue, = S(v?). For our numerical experiments,
we choose 12 =12 and 6§ = 3

As described in Section 2.1, the spectral decomposition (2.7) holds true,
with v* = f. In particular, as our experiments will be carried out in a finite
element framework, it is crucial to remark that a finite (and finite-dimensional)
counterpart of (2.7) is true in the discrete setting as well. Moreover, the discrete
spectrum of the Laplacian is a good approximation of the infinite-dimensional
one, at least for low/mid-frequencies (here the adjectives “low/mid” have to be
understood in a relative sense with respect to the specific meshsize and finite
element degree which are employed [2]).

Hence, as the solution map S is meromorphic (both in the continuous and
discrete settings), we wish to approximate it for z within the interval of interest
K = [9,15] using LS-Padé approximants, according to Definitions 3.1 and 4.1.
As discussed in Section 2.1, the problem of computing LS-Padé approximants
for S can be cast within (V, (-,-)y), where V = H}(Q) and

(u,v)y = (Vu, VU>L2(Q) + V2<U,U>L2(Q).

We denote by ||-||;; the norm induced by (-, -)y.

The interval of interest K contains two simple poles of the solution map
A1 = 13 and Ao = 10, while the closest pole outside K is A3 = 8. As parameters
for the LS-Padé approximant, we choose zg = 12+ %, p = Ryg = max,cx |z — 20|
and N = 2, while we vary M € {2,...,8}. For the standard approximant, we
set £ = M + N, whereas we choose £ = M for the fast one.

To assess the accuracy of the approximation, we sample uniformly the inter-
val K, and compare the numerical solution of the Helmholtz equation with the
LS-Padé approximations, measuring the error in the weighted norm ||-[| .

Some numerical results are shown in Figure 2. We observe that standard
and fast LS-Padé approximants achieve a similar accuracy for a fixed numerator
degree, even though the fast approximant requires the computation of N fewer
derivatives of the solution map. Moreover, if we compare the error that the
two approximants deliver with the same amount of information (i.e. with the
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Figure 2: Error (in the weighted H'(D)-norm) achieved by standard and fast Padé
approximants in the approximation of the solution map of (2.9). The high-fidelity
solution (obtained with P? finite elements) is computed for n = 101 uniformly sampled
values of z € [9,15].

10°

107!

1072

18(2) = Spaaym (2|l /ISl

10—3 —e— Standard, z =9 [ S
—>— Standard, z = 11 T3 =
—— Fast, z =9 T =
1074 —+— Fast, 2z = 11 s Ry
o 9-zo |M T
5 O \[xs==20 T
- e 11—z |M
10 o (3=
| I | | | |
3 4 5 6 7 8

Figure 3: Convergence plots for the relative error (in the weighted H'(D)-norm)
achieved by standard and fast Padé approximants at z € {9,11} with respect to the
numerator degree. In black the convergence estimate (6.13) for fast approximants.

same F), we can verify that the fast LS-Padé approximant leads to uniformly
better results, which, in turn, are comparable to those obtained with a standard
approximant relying on N more derivatives of the solution map.

The error convergence in z = 9 and z = 11 with respect to M is shown
in Figure 3. The two types of LS-Padé approximants yield similar errors, and
we can verify that the convergence rate (6.13) holds true for both. Several
numerical tests with different values of p € {0.1Rg, Rx,10Rk} have shown
no evident dependence of the standard LS-Padé approximation error (or of its
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Figure 4: Convergence plot for the error in the approximation of the two closest poles
of the solution map with respect to the number of computed derivatives. The results for
standard LS-Padé approximants are in blue, whereas those for fast approximants are in
red. In black the a priori convergence estimate (5.13).

convergence rate) on p, as (3.7) could have lead to believe.

Finally, we wish to check how accurate the two LS-Padé approximants are
in the approximation of the poles of the solution map. To this aim, we compare
the roots of the denominator Qs n) € PZ° (C) of each approximant with the
exact poles A\; and Ag. The results with respect to E are shown in Figure 4.
For each pole, the two types of LS-Padé approximants seem to yield the same
exponential decay. In particular, the closest pole A; is approximated better
than Ao, and its error decays at a faster rate, as expected from Theorem 5.5,
whose theoretical convergence rate (5.13) can be observed. Comparing the two
approximation kinds, it can be observed that, for fixed F, the error obtained
with fast LS-Padé approximants is always smaller than the one achieved with
standard approximants.

9 Conclusions

In this paper, we have considered Hilbert space-valued meromorphic functions
arising from solution maps of parametric PDEs with the eigenproblem-like struc-
ture (2.4), where £ is an operator with normal and compact resolvent. We
have proposed a rational model order reduction approach, based on single-point
Least-Squares Padé approximants, relying on the computation of the coefficients
of the truncated Taylor series of the target function S at a single fixed point. The
proposed approach improves, in terms of computational cost and convergence
properties, the one introduced in [6], which, on the other hand, is not restricted
to the case of normal operators.
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Assuming the degree N of the denominator of the approximant to be con-
stant, an exponential convergence rate with respect to the number of derivatives
has been proven for the error in the approximation of the target map, for val-
ues of the parameter within a disk centered at zp and encompassing N poles
of S, with the exception of a set of arbitrarily small measure. A more general
convergence result in measure, namely Theorem 6.3, has also been derived un-
der milder conditions on the approximant type [M/N], including, in particular,
paradiagonal approximations of type [M/M] and [M/M + 1] with M — oo.

Moreover, it has been proven that the poles of the target function are ap-
proximated with arbitrary precision by the roots of the Padé denominator, as
the number of derivatives increases. In particular, an exponential convergence
rate of the poles is achieved if the degree of the denominator is constant.

We believe that the description of the implementation aspects of the tech-
nique we propose has justified the word “fast” in the title of this work, since
Krylov-based methods (in particular an Arnoldi-type algorithm, for stability
purposes) can be applied to achieve a very efficient model order reduction ap-
proach.

Modifications of fast LS-Padé approximants allowing snapshots of the Taylor
coefficients of S to be taken at several points in the parameter domain are under
investigation, in the spirit of rational interpolants, on the approximation theory
side, and of Reduced Basis approaches, on the model order reduction side.
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