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Abstract: The following paper presents an analytical study of the air-gap magnetic field distribution
produced by the armature reaction of a linear machine. Based on the method of images, the magnetic
field generated by a current carrying conductor inside the air-gap between two smooth infinitely
permeable iron surfaces is modeled as a complex 2D function. The conductor model then becomes a
current sheet model and horizontally oriented current sheets are used to model the magnetic field
produced by the armature reaction for smooth ferromagnetic surfaces. Focus will be given to the
study of the slot opening function in front of energized slots in comparison to the not energized ones
of the classical theory pointing out some remarkable differences. Later, the model is extended to
slotted geometries using a complex slotting function adapted for energized slots. At last, the Maxwell
tensor expressed in complex formulation will be integrated to obtain the force components acting on
the machine tooth tips, quantities that will be compared with FEM simulations in order to validate
the proposed analytical model.

Keywords: armature reaction; NVH; electromagnetic forces; electrical machines; magnetic fields;
magnetic flux density

1. Introduction

The knowledge of the magnetic field distribution generated by the armature reaction
inside the air-gap of the electrical machines can be of interest to determine demagnetization
limits in permanent magnet machines but also integral quantities such as self, mutual
inductances and forces. For what concern the forces, especially in fractional winding
machines, they can be the cause of vibration and acoustic noise; thus, being able to estimate
them is an important matter in particular during the early stage of a project.

The analytical methods present in the literature to estimate the armature reaction
are several. There are the methods that make use of a winding function [1] to describe
the spatial distribution of the stator magnetomotive force (m.m.f.) [2–5]. The subdomain
methods, which model the flux density field by dividing the entire domain into subdomains,
solving the Maxwell’s equations in the domains using the separation of variables [6–8] and
the methods based on the solution of the analytical 2D Laplacian quasi-Poissonian field
equations generalized in [9]. Initially developed by [10] for slotless machine, it was later
extended to slotted geometries in [11] by the use of a relative permeance function for the
flux density normal component. The relative permeance function when multiplied by the
slotless flux density gives the flux density inside the air-gap of slotted geometries. Later, a
complex relative permeance function was introduced [12], made by a normal and tangential
component, useful to obtain the Maxwell stress tensor components and to calculate forces.
The procedure to retrieve this complex permeance function makes use of the conformal
mapping, requiring the solution of a nonlinear complex equation. An easier way to obtain
the relative complex permeance function on the middle air-gap line has been implemented
in [13], a formulation that has been generalized as a compact formulation for any complex
point z inside the air-gap domain in [14].
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The presented paper introduces an alternative method based on Lord Kelvin’s methods
of images and duality between the electric and magnetic field [15].

In Sections 2.1 and 2.2, the flux density air-gap expression produced by a powered
conductor has been extended to a current sheet segment, indefinitely long in the direction
perpendicular to the drawing plane, energized by a linear current density. A horizontal
current sheet has been used to model the field produced in front of an energized slot.

In Section 2.3 a sequence of current sheets positioned along the machine periphery
has been used to model the winding armature reaction also introducing the variable time.
Then, in Section 3.1, using FEM simulations the flux density in front of an energized slot
has been investigated and compared with the flux density in front of a not energized slot,
proving that the relative permeance function originally obtained in [12] overestimates the
armature reaction field and it is more appropriate the use of a reduction coefficient. Hence,
in Section 3.2, the complex slotting function has been modified by a reduction coefficient kr
and multiplied to the smooth flux density to give the slotted flux density profile, comparing
the obtained results with FEM simulations.

In Section 4.1, the Maxwell stress in complex formulation retrieved from [14] is used
to calculate the forces acting on each tooth-tip of the slotted machine due to the armature
reaction field. Finally, in Section 4.2, the time required for the proposed method has been
investigated and compared with FEM calculations.

The advantages of the proposed method are simplicity of implementation and fast
response, bringing accurate results for the field components of the slotted machine but also
for the calculation of the Maxwell stress tensor and forces. On the other side, the weak
point of the proposed method is the absence of saturation.

2. Magnetic Field between Smooth Ferromagnetic Surfaces
2.1. Linear Conductor with Infinitesimal Section

The magnetic field distribution produced by an indefinite current carrying conductor,
cutting the paper plane perpendicularly and placed into the air-gap between two smooth
ideal ferromagnetic surfaces, can be modeled analytically in Cartesian coordinates using
the method of images described in [15]. The aforementioned method makes use of the
following assumptions and limitations:

i Stator and moving surfaces are supposed to be smooth and separated by an air-gap of
uniform width.

ii Magnetic field is just 2D and lies in the paper plane.
iii The machine is supposed to be so long into the paper plane direction, so that end

effects are negligible.
iv If surface mounted permanent magnet exists between the two parallel iron surfaces,

the analysis of the field caused just by currents is performed, by assuming zero
remanence and relative recoil permeability equal to the vacuum permeability.

v Iron permeability is assumed to be infinite so the method of superimposition can be
used.

vi The iron parts are perfectly laminated; thus, no eddy current can be induced in the
iron by the varying magnetic field.

vii The conductors placed inside the air-gap extend indefinitely perpendicular to the
paper plane.

viii Skin effect due to alternating currents flowing in the conductors is neglected.

By representing the magnetic field vector quantities as complex numbers made by a
real and imaginary parts, representative, respectively, of the tangential and normal vector
components, let us focus on Figure 1, where a conductor powered by a current I, flowing
perpendicularly outwards from the paper plane xy, is positioned into the air-gap complex
plane at a generic point p of coordinates zp between two smooth infinitely permeable
iron surfaces. To be able to calculate the field strength vector at a certain point z between
two smooth iron surfaces, the aforementioned configuration can be exchanged with an
equivalent one in which the iron parts are removed and substituted with two infinite series
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of images. The conductors from the first and second series of images are placed at positions
zp + j2ng and z̄p + j2ng, with n ∈ Z ranging from minus and plus infinity. By using the
theorem of superimposition the field strength inside the air-gap can be expressed as the
sum of two mathematical series representative of the two image series [16]:

Bc(z) = µo
jI
4g
·
ï

coth
π(z̄− z̄p)

2g
+ coth

π(z̄− zp)
2g

ò
(1)

where I is the current flowing inside the conductor, g the air-gap length, zp and z̄p the
position of the conductor in complex coordinates and its conjugate.

yp

xp

I Bc(z)
z = x + jy

x

y

Iron

Iron

Airg

Figure 1. Conductor powered by a current I, flowing outwards from the paper plane between two
smooth infinitely permeable iron surfaces in the complex plane.

2.2. Horizontal Current Sheet Model

In this subsection, the model of the magnetic field produced by a conductor set
between two smooth ideal iron surfaces previously introduced will be extended to current
sheets so as to model the magnetic field produced by the windings distribution of an
electrical machine.

In Figure 2, a current sheet indefinitely extended into the paper plane and horizontally
oriented inside the air-gap of two smooth iron surfaces is considered and distributed
along the points p with coordinates zp = xp + jyp. This distribution has extreme points
zp1 = xp1 + jyp and zp2 = xp2 + jyp. Let us assume that the current sheet is powered by a
constant current density of ∆ = I/bcs, flowing outwards from the paper plane, where I is
the total current and bcs is the current sheet finite length.

xp2xp1

∆·dx
p

Bcs(z)

z = x + jy
x

y

Iron

Iron

Airg

Figure 2. Horizontally oriented current sheet of length bcs, powered by a current density ∆ flowing
outwards from the paper plane, whose extremes are situated at zp1 and zp2 between two smooth
iron surfaces.

By taking into consideration an infinitesimal current sheet element ∆ · dxp it is possible
to express the infinitesimal flux density air-gap complex vector as:

dBcs(z) = µo
j∆ · dxp

4g
·
ï

coth
π(z̄− xp + jyp)

2g
+ coth

π(z̄− xp − jyp)
2g

ò
. (2)

Then, by integrating (2) between xp1 and xp2, with yp = g (current sheet in contact
with the upper iron surface), the air-gap flux density vector, produced by a current sheet of
length bcs, with zp1 = xp1 + jg and zp2 = xp2 + jg its ends points and powered by a current
density ∆ flowing outwards from the paper plane is retrieved:
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Bcs(z) = µo
j∆
2π
·
ß

ln
ï
sinh

π(z̄− xp1 + jg)
2g

¡
sinh

π(z̄− xp2 + jg)
2g

ò
+

ln
ï

sinh
π(z̄− xp1 − jg)

2g

¡
sinh

π(z̄− xp2 − jg)
2g

ò™
.

(3)

Therefore, positioning the current sheet end points at zp1 = −bcs/2 + jg and
zp2 = bcs/2 + jg, the magnetic field distribution inside the air-gap between two smooth
ferromagnetic iron surfaces can be expressed as follows:

Bcso(z)=
jµo∆
2π
·
®

ln

sinh
π(z̄+zp2)

2g

sinh
π(z̄−z̄p2)

2g

+ ln

sinh
π(z̄+z̄p2)

2g

sinh
π(z̄−zp2)

2g

´
zp2 = bcs/2 + jg.

(4)

Inside which the real part Bcsox (z) = Re{Bcso(z)} and imaginary part
Bcsoy (z) = Im{Bcso(z)} represent, respectively, the tangential and normal components
of the vector flux density function of a generic complex point z.

The flux density distribution produced by the expression of the current sheet stated
in (4), positioned between two smooth ideal iron surfaces indefinitely extended along x, is now
compared with FEM simulations, where the current sheet inside the simulation environment is
modeled with a rectangle of width equal to the current sheet length and very thin transversal
size (bcs/hcs = 60). Figure 3a,b show the analytical and FEM normal and tangential flux
density distribution components on the exploration line at ye1 = g− δ/2, over a peripheral
extension which is four times the current sheet length (z = x + jye1 , −4bcs ≤ x ≤ 4bcs).

−4 −2 0 2 4
−3

−2

−1

0

1

2

3

x · b−1
cs

B c
so

y
(x

+
jy

e 1
)·

B
−

1
i

ANA

FEM

(a)

−4 −2 0 2 4
−1

0

1

2

3

4

x · b−1
cs

B c
so

x
(x

+
jy

e 1
)·

B
−

1
i

ANA

FEM

(b)
Figure 3. Analytical and FEM flux density distributions, on the exploration line ye1 = g− δ/2, caused
by a horizontal current sheet of length bcs set between two smooth iron surfaces (−4bcs ≤ x ≤ 4bcs

Nx = 1000, g = 11.5 mm, δ = 1.5 mm). (a) p.u. normal component; (b) p.u. tangential component.

Simulations are FEM magneto static executed using infinitely permeable iron, the normal
and tangential distributions are expressed in p.u. with respect to Bi = µo ·U/g, which is the
ideal flux density flat profile reference value, with U the air-gap magnetic voltage drop and g
the air-gap length. For the considered case of study U = I/2 and Bi = µo · I/2g where I is the
total current flowing outwards from the horizontal current sheet.

2.3. Magnetic Field due to a Sequence of Horizontal Current Sheets

Inside the electrical machine research area, the use of linear current density distribu-
tions and current sheets positioned on the slot opening of slotted geometries is a notorious
method to model the magnetic field produced by the machine windings distribution [17–20].
In the following subsection, the field produced by windings distribution inside the machine
air-gap will be modeled throughout horizontal current sheets using the formulation of the
current sheet previously obtained.

The machine considered for the following study is the SPM linear machine shown in
Figure 4a whose main data are listed in Table 1. The study here reported aims to analyze
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the armature reaction only, the PMs here are passive (Br = 0) and being the relative recoil
permeability set to one their occupied area is basically air.

ns

y

x
nth = tooth number = f ull/hal f slot number

11©
B

22©
b

33©
B

44©
A

55©
a

66©
A

77©
C

88©
c

99© 10©
C

(a)

y

x

hm

δ

bs

bm/2

bso

bps

hps

hs

g

hso

BA

(b)

Figure 4. (a) Machine case of study and winding setup: - Each phase coil wound around a single
tooth is identified with a capital or small letter indicating that it is positively or negatively wrapped
towards y according to the right hand rule. (b) Zoom with main sizes: - slotless: zones A© and B©
both filled with iron. - slotted: zone A© filled with iron and B© with air.

Table 1. Machine main data.

Parameters

number of teeth, Nth ; number of PMs, Nm 9; 8
number of turns per coil, Ntc 20
pole pitch, τm (mm); p.u. ratio, αm 113.39; 0.9
PM height, hm (mm); mechanical air-gap, δ (mm); 10; 1.5
slot height, hs (mm); width, bs (mm) 20.5; 44.3
slot opening height, hso (mm); width, bso (mm) 2; 6
tooth tip height, hps (mm) ; width, bps (mm) 12; 94.79
active length, ` (mm) 61.25

Let us consider the slotted machine of Figure 5a where A© is filled with iron and B©
with air. Before the analysis of the slotted configuration, whose slots are filled with phase
windings, it is useful to consider a simple slotless configuration ( A© and B© both filled with
iron); in which, horizontal current sheets of length equal to the slot opening width bso are
positioned at zp = xns + jg with xns (ns = 1, 2, . . . , 10) the x coordinate of the slot opening
center referred to the initial slotted geometry of Figure 5a.

The air-gap field produced in front of a ns slot of the machine can be modeled by the
use of a current sheet horizontally oriented, whose current density equals ∆ns = Msns /bso
with Msns the total slot m.m.f. produced by its active sides and bso the slot opening width,
respectively. So, for example the slot ns = 4, inside which there are the phase windings A
and B, produces a total m.m.f. at a generic time t equal to: Ms4(t) = Ntc · (ib(t)− ia(t))/a,
with Ntc the number of turns per coil, a the parallel branches and ia(t), ib(t) the instantaneous
current values of the two phases (active side m.m.f. of positive sign when directed out of
the paper).
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(a)

(b)
current sheet

Figure 5. (a) Flux lines produced by two rectangular active sides whose total m.m.f. is Ms (slot
opening bso = 6 mm). (b) Flux lines produced by a horizontal current sheet of length equal to the slot
opening bcs = bso = 6 mm energized by a current I = Ms.

Let us examine Figure 5: In Figure 5a the flux lines are produced by the rectangular
active sides within a slotted geometry; in Figure 5b a current sheet of length bso is positioned
at zp = jg between slotless surfaces and centered with respect to the slot opening symmetry
axis. It appears evident that, inside the air-gap region the flux lines of the two configuration
are very much similar each other: of course this is just a qualitative way to motivate the
previous assumption that will be later proved in a more rigorous manner. Interestingly, it
could be shown that regardless the values of current flowing inside the two rectangular
active sides, positioned into the slot, the flux density produced inside the air-gap domain
and so the flux lines, only depends on the total m.m.f. generated by the two rectangular
active sides and not by their individual instantaneous values. On the basis of the above
considerations, the flux density generated at a certain time t by a generic current sheet,
belonging to the slotless machine periphery, can be expressed as follows:

BCS(z, ns, t) =
jµo Msns (t)

2πbso
·
®

ln

sinh
π(z̄+zp2−xns )

2g

sinh
π(z̄−z̄p2−xns )

2g

+ ln

sinh
π(z̄+z̄p2−xns )

2g

sinh
π(z̄−zp2−xns )

2g

´
zp2 = bso/2 + jg

(5)

where xns gives the x coordinate of the current sheet representative of the ns slot with
Msns (t) its current source which is the total m.m.f. produced by the slot ns of the slotted
geometry shown in Figure 4a. Due to the hypothesis of magnetic linearity starting from (5),
the flux density due to the current sheets along the slotless machine periphery can be now
stated as:

B(z, t) =
Nth+1

∑
ns=1

BCS(z, ns, t). (6)

This expression is representative of the armature reaction of the machine case of study,
keeping in mind that in (5), the m.m.f value of ns = 1 and ns = 10 refer to half slot and that
it is appropriate to replicate at least once the distribution obtained by (6) on the left and
on the right to model periodicity and avoid distortion of the flux density at the machine
borders. Figures 6a and 7a show the flux density distribution components from (6) on the
exploration line ye1 = g− δ/2, in comparison with a magneto-static FEM simulation of the
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slotted machine of Figure 4a, powered by a three phase circuit ia(t) = Ipk · cos(2πt/T +π/2),
ib(t) = ia(t− T/3) and ic(t) = ia(t + T/3) at t = T/15 (T = 16.67 ms).
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Figure 6. Analytical (6) and FEM (slotted machine of Figure 4a) armature reaction flux density normal
component on the exploration line at ye1 = g− δ/2 and t = T/15 (Ipk = 105.5A, −4τm ≤ x ≤ 4τm

Nx = 10, 000). (c,b) are two different selective zoom of (a).

−4 −2 0 2 4
−0.8

−0.4

0

0.4

0.8

x · τ−1
m

B x
( x

+
jy

e 1
,

T 15
) (T

)

ANA

FEM

(a)

−1.5 −1.4 −1.3 −1.2
0

0.2

0.4

0.6

x · τ−1
m

B x
( x

+
jy

e 1
,

T 15
) ( T

)

(b)

1.1 1.2 1.3 1.4 1.5
0.00

0.04

0.08

0.12

x · τ−1
m

B x
( x

+
jy

e 1
,

T 15
) ( T

)

(c)
Figure 7. Analytical (6) and FEM (slotted machine of Figure 4a) armature reaction flux density
tangential component on the exploration line ye1 = g− δ/2 and t = T/15 (Ipk = 105.5A, −4τm ≤ x ≤
4τm Nx = 10, 000). (b,c) are two different selective zooms of (a).

Looking at the pattern of those two distributions compared with magneto static FEM
simulations proves that the assumptions previously made are reasonable to model the
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armature reaction of the considered machine, although it is noticeable that there are some
mismatches to be attributed to the absence of the slot openings in the model.

3. Magnetic Field in Case of Slotted Ferromagnetic Surfaces
3.1. Energized Slot Opening Model

The following sections will introduce the slot opening and its influence on the magnetic
field distribution inside the air-gap of the machine. In [14], the slot opening effect was
investigated with particular focus on the flux lines produced in front of the not energized
empty slot in order to obtain the expression of the complex slotting function to account for
the slotting effect.

Here, instead, the focus will be placed on the flux lines produced inside the air-gap in
front of the energized slot in comparison with the not energized one, pointing out some
remarkable differences. To this purpose, it can be useful to look at Figure 8a, that reveals
the flux lines generated inside a linear ferromagnetic slotted structure by two rectangular
energized active sides, situated in a slot whose total m.m.f. value is constant and equal to
Ms. Figure 8b–e instead, show the normal and tangential p.u. flux density distributions on
the exploration segments γe1 and γe2 .

(a)

γe1γe2 x2
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y1
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+

jy
e 1
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1
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(c)
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(d)
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+

jy
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) ·B−

1
i

(e)
Figure 8. (a) Flux lines in front of the energized and not energized slot (slot opening bso = 6 mm);
(b) normal and (c) tangential p.u. FEM components on γe1 (−τt/4 ≤ x1 ≤ τt/4, y1 = ye1 = g− δ/2);
(d) normal and (e) tangential p.u. FEM components on γe2 (−τt/4 ≤ x2 ≤ τt/4, y2 = ye2 = g− δ/2).

There is no doubt that:

• The flux lines in the region inside the air-gap in front of those slots are quiet different
and so their flux density distributions;

• It comes natural to think if there might be a sort of correlation between those two
functions and for a while, let us put the attention on the air-gap area just in front of
the energized slot considering three different case of studies:

1. The slotted geometry of Figure 9a.
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2. The horizontal current sheet slotted model of Figure 9b.
3. The horizontal current sheet slotless model of Figure 9c.

(a)

γe2

x2

y2

(b)
current sheet

γe2

x2

y2

(c)
current sheet

γe2

x2

y2

Figure 9. Flux lines produced by three different case studies: (a) 1. two phase active sides whose
total m.m.f. value is Ms (bso = 6 mm); (b) 2. horizontal current sheet of length bcs = bso = 6 mm
powered by a current I = Ms inside a slotted geometry; (c) 3. horizontal current sheet of length
bcs = bso = 6mm inside a slotless geometry.

At first sight, the flux lines inside the air-gap region for those three cases appear
to be very similar and this is true only inside the air-gap region because inside the slot
regions of Figure 9a,b the flux patterns are completely different. Proof of the aforementioned
similitude inside the air-gap region is given in Figure 10a,b, where the normal and tangential
flux density distributions on the exploration segment γe2 for the three case of study are
shown. The case of studies 1 and 2 are perfectly superimposed, while 3 differs from them
due to the absence of the slot opening.

The usual procedure present in the literature in order to account for the slot opening
effect is to retrieve the complex permeability function in front of the not energized slot and
then multiply it to the slotless flux density distribution. This approach is carried out both
for the no load and the armature reaction fields [12]. In [14], a complex slotting function
periodic along x with period equal to the tooth pitch size was defined as follows:
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β(z) =

Nh

∑
n=1

j
α(n)

sinh 2πng
τt

ï
cos

2πnz̄
τt

+
(−1)n

kc − 1
cos

πn(z− z̄)
τt

ò
Nh

∑
n=1

(−1)nα(n)

[
τt

2πng
+

1
kc − 1

cos πn(z−z̄)
τt

sinh 2πng
τt

]

α(n) =
∫ ρso/2

0

Ç
1

3
√

ρso/2− ξ
− 1

3
√

ρso/2 + ξ

å
sin(2πnξ)dξ.

(7)

with z = x + jy being a generic complex point inside the air-gap domain. After choosing
a horizontal line at y = ye, (7) was multiplied by the no load slottess flux density vector
(retrieved along the same line) obtaining the slotted flux density no-load vector, which has
been proven to work well [14].
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Figure 10. p.u. flux density distributions on the exploration line γe2 (a) normal, (b) tangential
components for the case of studies: 1. Figure 9a (FEM1), 2. Figure 9b (FEM2) and 3. Figure 9c
(analytical using (4)), (−τt/10 ≤ x2 ≤ τt/10).

Here, the same procedure will be applied to the armature reaction to see the outcomes.
Starting from the slotless current sheet model stated in (4) it can be written [14]:

Bscso (x2 + jye) = −jβ(x2 + jye) · Bcso(x2 + jye) (8)

that is the flux density generated by an horizontal current sheet centered in the origin, with
the slotted effect included according to the classical theory. In Figure 11a,b, the normal and
tangential flux density distributions in p.u. produced by (8) with ye = ye2 in comparison
with the FEM magneto-static simulation of case 1 are plotted.
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Figure 11. Analytical slotted current sheet model (8) and FEM1 flux density distributions on the explo-
ration line γe2 : (a) p.u. normal component; (b) p.u. tangential component (−τt/10 ≤ x2 ≤ τt/10).

It can be noticed that the application of the complex slotting function in this case does
not perfectly fit the FEM pattern for both the magnetic field components and the effect of
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the slot opening seems to be overestimated. Hence, it can be reasonable to try to introduce
a reduction coefficient kr applied to the slot opening complex function as follows:

βr(z) = kr · βx(z) + j{kr · [βy(z)− 1] + 1} (9)

obtaining a complex slotting function reduced by a certain factor kr to be estimated. For
what concern the p.u. normal component the reduction coefficient must not be applied to
its average value which is first removed and added later, a procedure that is not applied
for the p.u. tangential component which has null average value. Multiplying the reduced
complex slotting function by the smooth current sheet flux density (4) gives:

Bscsr (x2 + jye) = −jβr(x2 + jye) · Bcso(x2 + jye) (10)

which is the slotted flux density produced by the current sheet model but using the slotting
function reduced by a certain coefficient kr. Figure 12a,b shows the normal and tangential
p.u. flux density components of (10) at ye = ye2 = ye1 , with different values of kr. A
reduction coefficient kr = 0.41 fit perfectly for the considered case study, but it can be
verified that it is the same for other slot opening values.
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Figure 12. p.u. analytical flux density distributions of (10) on the exploration segment γe2 with different
values of kr in comparison with FEM1: (a) normal; (b) tangential components (−τt/10 ≤ x2 ≤ τt/10).

The reason for this at this stage is only empirically demonstrated by simulations
but it can be stated that the slotting function, retrieved according to the classical theory,
does not perfectly fit when applied to the armature reaction (in front of an energized slot)
as was intuitively guessed looking at the different field maps at the beginning of this
section. However, it seems there is a sort of correlation between the slot opening functions
on segments γe1 and γe2 , because using the slotted function obtained in front of the not
energized slot (segment γe1 ), multiplied to the slotless case with a reduction coefficient kr,
gives the flux density distribution in front of the energized slot (segment γe2 ).

3.2. Magnetic Field Armature Reaction for Slotted Surfaces

Previously, it has been pointed out that applying the complex slotting function to the
slotless flux density distribution in front of an energized slot overestimates its effect and
the introduction of a reduction coefficient is needed. In the following subsection, βr will
be used for the slotted machine pictured in Figure 4a, where A© is filled with iron and B©
is filled with air. Indeed, in order to introduce the slotting effect, the expression of the
slotless flux density distribution generated by the armature reaction and stated in (6) will
be multiplied by the reduced slotting complex function:

Bs(x + jye, t) = −jβr(x + τt/2 + jye) · B(x + jye, t) (11)

obtaining the flux density distribution on a generic line at y = ye produced by the armature
reaction inside the slotted geometry. Figures 13a and 14a show the flux density normal
and tangential distributions for t = T/15 on the exploration line at ye1 = g− δ/2 (ia(t) =
Ipk · cos(2πt/T + π/2), ib(t) = ia(t− T/3), ic(t) = ia(t + T/3), T = 16.67 ms).
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Figure 13. Analytical (slotted current sheets model) and FEM (slotted machine of Figure 4a) armature
reaction flux density normal component on the exploration line at ye1 = g − δ/2 for t = T/15
(−4τm ≤ x ≤ 4τm Nx =10,000, Ipk = 105.5A, Nh = 150). (b,c) are two different selective zooms of (a).
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Figure 14. Analytical (slotted current sheets model) and FEM (slotted machine of Figure 4a) armature
reaction flux density tangential component on the exploration line at ye1 = g − δ/2 for t = T/15
(−4τm ≤ x ≤ 4τm Nx =10,000, Ipk = 105.5A, Nh = 150). (b,c) are two different selective zooms of (a).

The analytical pattern is well superimposed to the FEM one, except in some areas
where there are slight differences, as it can be observed in Figures 13c and 14c. This comes
from the fact that, at a generic time instant t, in proximity of the slots wherein the total
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value of m.m.f. is almost null the pattern of slot opening complex functions is very much
the same as the one in front of the not energized slot; thus, no reduction coefficient should
be applied, for t = T/15 in fact the total m.m.f. inside slot ns = 7 (the one concerning
patterns of Figures 13c and 14c) is tiny and equal to Ms7 (T/15) = 382A; just 9% of the peak
m.m.f value Mpk = 4220A.

4. Complex Integral Quantities
4.1. Calculation of Forces

In the following section, the previously introduced model will be used to calculate
the forces acting on each tooth tip, making use of the Maxwell stress tensor. In [14], the
Maxwell tensor was obtained in complex formulation as follows:

σs(z, t) = j
Bs(z, t)2

2µo
(12)

and used for the calculation of forces under no load working conditions but, being a
formulation of general validity, it can also be used for the field produced by the arma-
ture reaction. By plugging (11) into (12) the Maxwell complex tensor produced by the
armature reaction of the slotted surface is obtained, Figure 15a,b show the normal and
tangential components of the Maxwell tensor on the exploration line at ye1 = g − δ/2
over the entire machine periphery at a time instant T/15, in comparison to the FEM
magneto-static simulation.
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Figure 15. Analytical and FEM armature reaction Maxwell tensor for the slotted machine of Figure 4a
on the exploration line at ye1 = g − δ/2 for t = T/15 (−4τm ≤ x ≤ 4τm Nx =10,000, Nh = 150,
Ipk = 105.5A): (a) normal component; (b) tangential component.

The pattern for the considered time instant is well superimposed with the simulation,
validating the previously introduced model, although it is reasonable to validate it for more
than one arbitrary time instant as it will be now performed for the calculation of forces.
The objective is to calculate the forces produced by the armature reaction on each tooth
tip of the machine. This calculation can be useful, for example, for Noise and Vibration
Harshness (NVH) studies. Thus, to this purpose, the Maxwell stress tensor is integrated
on the middle mechanical air-gap segment long τt in front of the considered nth tooth tip
as follows:

F′nth
(t) =

∫ xnth
+

τt
2

xnth
− τt

2

σs(x + jye1 , t) dx (13)

wherein the real part F′nthx
(t) = Re{F′nth

(t)} and imaginary part F′nthy
(t) = Im{F′nth

(t)},
represent the tangential and normal components of the total force per unit length acting on
the nth tooth tip whose axis is at x = xnth at a generic time instant t.
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Figure 16a,b show, respectively, the normal and tangential component calculated with (13)
in comparison with FEM transient simulations for each machine tooth tip (1 ≤ nth ≤ Nth), over
a time interval equal to the forces period which is half the electrical period T.
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Figure 16. Analytical (continuous lines) and FEM (dotted lines) tooth tip forces per unit length
of the slotted machine of Figure 4a, (0 ≤ t ≤ T/2 Nt = 120): (a) normal components; (b)
tangential components.

The analytical and FEM pattern are fairly well superimposed for both the force compo-
nents exhibiting a maximum relative percentage error around 2.5% and 3.9% for the normal
and tangential component, respectively. The tangential components acting on the tooth tips
2, 5 and 8 are null because those teeth have adjacent slots on their left and right side which
are filled by the same phase conductors, generating a flux line pattern that is symmetrical
in respect to their own axis and so canceling out the resultant tangential component.

4.2. Computational Efficiency

The time required by the analytical and FEM for the calculation of forces is now
compared. Table 2 shows the time necessary to compute (13) for the all the tooth tips
of the considered machine in respect to a transient FEM simulation using the Maxwell
tensor (MT).

Table 2. Computational time.

Method Time

ANA (13) Nh = 150,
nth = 1, ..., Nth
xnth
− τt/2 ≤ x ≤ xnth

+ τt/2 Nx = 1111, 6.7 s
0 ≤ t ≤ T/2 Nt = 120,

FEM MT (global system)
0 ≤ t ≤ T/2 Nt = 120, 15.2 min

N° of mesh triangles inside the global system:
stator: 3900, slider: 1870, coils = 648
equivalent air-gap: 17150, slots: 300

The calculator is an i7-10850H @ 2.70GHz 32GB RAM; the analytical model has been
implemented using MATLAB R2019b while the FEM simulations have been carried out
with Ansys Electronics Desktop 2021 R2. Because the aim was to calculate the forces acting
on the tooth tips of the machine, for the FEM, MT is mandatory to save the field maps
for each time step of simulation; this significantly increases the computational time. The



Energies 2023, 16, 3301 15 of 16

proposed method is proven to be fast and reasonably accurate, making it a useful tool to
compute the forces generated by the armature reaction of the electrical machines.

5. Conclusions

The presented paper describes a fast, easy and accurate method to analyze the flux
density generated in the air-gap by the armature reaction and calculates tooth tip forces.
The flux density is modeled as a complex 2D function by the use of horizontal current
sheets set between smooth ferromagnetic surfaces. Then, the flux density for the slotted
configuration is obtained, multiplying the smooth flux density by the slotting complex
function reduced by a certain coefficient. Magneto static FEM simulations show a very
good agreement for both the smooth and the slotted model. Finally, the Maxwell tensor
in complex formulation is integrated to obtain the forces acting on each tooth tip of the
machine as a function of time. Moreover, these results show a very good agreement with
FEM transient simulations, validating the model. The presented model has been applied
to an SPM linear machine but it can be employed for any type of isotropic machine to
study the armature reaction. Future research studies are aimed at dealing with the machine
during load operation and to introduce the presence of saturation to overcome weaknesses
of the model. Some further validation activities will be devoted to specific test procedures
applied to prototypes, aimed to compare analytically calculated quantities with measured
ones. Another aspect that will be studied is the analysis of end effects, by means of 3D
FEM simulations, with the aim to identify suited correcting function to be applied to the
developed 2D analytical expressions in order to fit at the best the 3D FEM numerical results.
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Nomenclature

bm, αm PM peripheral size, p.u. ratio bm
τm

.
bps tooth tip peripheral size.
bs, bso slot, slot opening peripheral size.

Bc, Bcs
conductor, horizontal current sheet (generic formulation) flux density
complex vector.

B, Bs smooth (slotless), slotted flux density complex vector.
Br, µr, PM residual flux density, relative recoil permeability.
Bi ideal flux density flat profile reference value.
F′, σ force per unit length, Maxwell Tensor complex vector.
H magnetic field strength complex vector.
hm, δ, g PM, mechanical air-gap, equivalent air-gap height.
bcs current sheet length.
hcs current sheet height in the FEM environment.
hps, hs, hso tooth tip, slot, slot opening height.
I, ∆ conductor current, linear current sheet current density.
kc Carter’s factor.
` lamination stack length.
Ms total slot m.m.f.
Nt, Nx, Nh N° of time samples, spatial samples, slotting function harmonics.
Ntc number of turns per coil.
Nth, Nm N° of stator teeth, permanent magnets.
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nth, ns stator teeth index, stator full/half slots index counted from left to right.
U magnetic voltage drop in the air-gap.
t, T parameter time, electrical period.
Wx, Wy generic vector tangential and normal component.

ye, γe
generic y exploration coordinate inside the air-gap, generic exploration segment
at y = ye.

zp, z̄p
generic point p of complex coordinates xp + jyp where the conductor is positioned
and its conjugate.

z, z̄
generic point of coordinate x + jy inside the air-gap complex plane and
its conjugate.

β(z), βr(z) slot opening, reduced slot opening complex function.
ξ, ρso p.u. ratios x/τt and bso/τt.
τm, τt PM pitch, tooth pitch.
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