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Structural optimization is one of the most intensively investigated research areas in en-
gineering. Recently, topology optimization has become the most popular engineering
subfield. The starting date of structural optimization cannot be precisely determined.
Michell’s optimization paper, published in 1904, is considered as the first publication in
this subfield. However, his paper starts with a statement that his work is a generalization
of Maxwell’s idea presented in the paper published in 1870.

The authors of this review paper consider that this date can be accepted as the starting
date of topology optimization. This paper is an overview of subjectively selected state-of-
art achievements in topology optimization during its history of 150 years. The selection
of the achievements is a rather difficult task because, in the early period of the history of
topology optimization, a lot of meetings were classified and the results were not avail-
able for the public. The optimization community has almost no knowledge about the
publications in topology optimization in the 1950s. Around that time, one can find some
information on workshops and meetings connected to the Cambridge University or Oxford
University with researchers such as Foulkes, Cox, Hemp, and Shield, who published signif-
icant results and these communications are generally not known for the reason mentioned
above. After the 1970s, this situation has changed and there were more possibilities to
find publications due to the changes and thanks to digitalization. As indicated earlier here
subjectively selected works are overviewed from the 150-year history focusing on the first
hundred twenty years.

Keywords: topology optimization, optimal layout, optimality criteria method, level set
method, heuristic optimal design.

1. Introduction

Topology optimization is a very complex computational procedure because it
includes the elements of the size and shape optimization. In the case of skeletal
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structures, it integrates the layout optimization and the optimal cross-section
design simultaneously. This paper is an extended, revised version of the workshop
presentation of the first author [1] and includes some overviews presented in his
earlier papers [2–4]. In addition, this paper incorporates the overview of the early
stage of topology design based on the work of Hemp [5].

Usually, the majority of the papers cite the work of Michell [6] from 1904
as the first in topology optimization, but in reality, the first important work
was written by Maxwell [7]. This can be derived from the first sentences writ-
ten by Michell in his paper, which indicate that Maxwell’s result was “only”
extended by Michell [6] 34 years later. They presented closed- form solutions for
the minimum volume structures.

Before the history of topology optimization is discussed, one has to mention
two important theories in mathematical programming [8]: the Farkas lemma for
linear programming [9] and the Karush–Khun–Tucker conditions for nonlinear
programming [10, 11]. In addition, the basic idea of multicriteria mathemati-
cal programming presented by Pareto [12] also plays a pivotal role. Without
these theorems, the numerical procedures in topology optimization could not
develop so effectively and rapidly.

Structural optimization is one of the most intensively investigated research
areas in engineering in the 20th century. Recently, topology optimization has be-
come the most popular subfield of engineering. The starting date of this research
area is difficult to be precisely determined. Michell’s optimization paper, pub-
lished in 1904, is considered as the first publication. However, this paper begins
with a statement that his work is a generalization of Maxwell’s work published
in 1870.

The authors of this review paper consider that this date can be accepted as
the starting date of topology optimization. This paper is a review of subjectively
selected state-of-art achievements during 150 years of topology optimization.
The selection of the achievements in this field is a rather difficult task because
in the early period of the topology optimization history many meetings were
classified and the results were not available for the public. The optimization
community has almost no knowledge about the publications in topology opti-
mization in the 1950s. Around that time, one can find some information on
workshops and meetings connected to the Cambridge University or Oxford Uni-
versity with researchers such as Foulkes, Cox, Hemp, and Shield, who published
significant results and these communications are generally not known for the
reason mentioned above. After the 1970s of the 20th century, this situation has
changed and there were more possibilities to find publications due to the changes
and thanks to the digitalization. As indicated earlier, here subjectively selected
works are overviewed from the optimization topology history focusing on the
first 120 years.
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Maxwell [7] in 1870, Cilley [13] in 1900 and Michell [6] in 1904 used the
principle of full stress design (FSD) criteria in the case of statically determinate
structures and obtained the same results as the minimum weight design. It is
necessary to mention that for the final result the procedure took one iteration
only. They concluded that FSD was the same as minimum weight design for
statically determinate structures.

According to the literature research on the theorem of the optimal design, the
topology design remained unnoticed for some fifty years until the publication of
the papers of Foulkes [14], Cox [15–17] and Hemp [5, 18, 19]. The years around
1955 can be called the “golden age” of the optimal layout design of trusses.
Independently from the English school, one can find several papers that can
be named as original ideas of different topology branches. Among others, the
papers written by Sved [20] and Barta [21] are the most significant ones. These
two works have a lot of similarities in contents and conclusions. Barta’s paper
discussed the minimum volume design of plane and space structures (trusses). He
proved the following theorem: “by removing a given number of properly chosen
redundant bars from a given network, it was possible to obtain such a statically
determinate structure, which yields a structure with the least weight”. It has
to be noted that this conclusion was stated for single and deterministic loads
as well. Barta also concluded that “the proof did not guarantee that only the
statically determinate structure could be the least weight solution”. Sved’s paper
can be considered as the origin of the stress limited and minimum volume design.
It is also important to note that the minimum weight designs of different types
of structures were studied by Drucker and Shield [22], Mróz [23], Prager and
Shield [24] and their results are significant to understand the optimality in the
case of complex problems.

The true surge in layout theory research was in the 1960s and 1970s. In
the 1960s, the significant publications helped to derive optimality conditions for
minimum volume designs. Shield [25] presented optimum design methods for
multiple loading. He used variational principles to prove the optimality. In 1960
Schmit [26] applied FSD to statically indeterminate structures and found that
FSD provides the exact optimum in a single sizing operation for statically de-
terminate structures where the internal forces remain constant during resizing.
However, for indeterminate structures, the number of resizing iterations can vary
from a few to many as a function of the sensitivity of internal forces to changes
in member sizes. The reason why these different results were obtained is known
now: it mainly depends on the redundancy of structures or in other words, it de-
pends on whether the internal forces remain almost constant during resizing, as
it happens in most well designed practical structures. Lansing et al. [27] applied
FSD to statically indeterminate structures. This procedure was used to design
wing and empennage structures. In 1966 Gellatly and Gallagher [28] suggested
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that FSD should be used to create a “starting point” of nonlinear program-
ming methods. Furthermore, some important remarks on FSD were reported by
Gallagher [29], who pointed out that FSD was inadequate for minimum weight
design. Berke and Khot [30] concluded that minimum weight design should be at
the point including “fully stressed elements, lower bound elements, and neither of
them”. During these years, Cox [15–17], Hemp [5, 18, 19], Prager and Shield [24],
Prager and Taylor [31], Prager [32–35], Prager and Rozvany [36] elaborated sev-
eral theories that can be named as the origins of the exact structural topologies.
Nagtegaal and Prager [37] investigated the optimal truss layout theory in the
case of alternative loads. Prager [33] derived an optimality condition for beams
and frames subjected to alternating loading using the Foulkes mechanism. His
results were based on the extension of the optimality conditions presented by
Chan [38]. Prager and Rozvany [36] extended the existing optimal layout theory
originally used for low volume fraction to grid-like structures (trusses, grillages,
shell-grids, etc.). The method was validated for the case of not restricting to
low volume fraction structures. Rozvany et al. [39] provided a solution on exact
optimal topologies of perforated plates. The field of truss topology design was
investigated with significant findings by Achtziger [40, 41] and Achtziger and
Stolpe [42, 43]. In layout and size optimization, the three-bar truss example was
investigated by several authors (e.g., Save [44]) due to the complexity of the
problem. This problem was also investigated by Sokół and Lewiński [45] several
years later.

The origins of the numerical solution technique of the constrained optimal-
ity criteria (COC) methods were presented by Berke and Khot [30] in 1974.
This provided the mathematical background of an effective solution technique
in topology optimization. The first numerical procedure for finite element (FE)
based topology optimization was elaborated by Rossow and Taylor [46] in 1973,
but its biggest development started at the end of the 1980s represented by works
of Bendsøe and Kikuchi [47, 48] and Rozvany [49, 50].

Almost two decades later, the probabilistic topology optimization was a new
direction in this field. In the first two decades of the 21st century Kharmanda
et al. [51] published a reliability-based topology paper. Later, Lógó et al. [52, 54],
Lógó [53, 55], Dunning et al. [56, 57], Guest and Igusa [58], Csébfalvi [59, 60],
Csébfalvi and Lógó [61] introduced some efficient and accurate approaches to
probabilistic and/or robust structural topology optimization. Generally, the ob-
jective was to minimize the expected compliance or volume with uncertainty in
loading magnitude and applied direction, where uncertainties are assumed nor-
mally distributed values and statistically independent. This approach is analo-
gous to a multiple load case problem where load cases and weights are derived
analytically to accurately and efficiently compute the expected compliance and
sensitivities.
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In the following sections, some selected achievements are presented in more
detail. This paper is divided into three parts: first, some selected milestones are
presented from 1870–1940. Secondly, the period of 1940–1988 is discussed and,
then, the last 30 years are briefly reviewed. The more detailed overviews are
concentrated on publications published in the first hundred twenty years.

2. Fundamental results in the first period (1870–1940)

The topology design started with the problem class of layout optimization
of trusses and the first work was called a minimum volume design of frames. As
it was indicated earlier, the first optimal solution was elaborated by Maxwell
in 1870 and was later extended by Michell [6] in 1904. It was almost unknown
for the optimization community that Michell [6] started his paper by referring
to Maxwell’s achievements [7]. He determined the optimal layout of a truss for
a single load case when the absolute value of the axial stress in any bar was
not to exceed a given limit. His solution and the design condition have received
a lot of attention during the 20th century, but the optimal layout of a truss for
alternative loads seems to get less attention. Somehow the publications in this
topic have remained hidden. Here a brief overview is also presented. It has to be
noted that a Michell truss is statically determinate and the problem class can be
handled as one in either elastic design or limit design. However, the two methods
no longer lead to the same result when alternative loading or multiple loading
cases have to be considered.

Next, we have to mention the works of Kazinczy – the inventor of the plastic
hinge theory [62] in 1914 – who produced significant results in this field but
unfortunately his publications have remained unexplored. He investigated the
volume minimization of trusses as an object of the economical design. Kazinczy
was also among the first researchers who investigated the problem of the stati-
cally indeterminate trusses in the case of multiple load conditions [63]. Using the
Cremona-type solution procedure, he investigated the case of the pre-stressing
technique to reach the uniform collapse of the member forces in the case of
statically indeterminate structures. With this technique, he used the shakedown
theory without naming it, much earlier than Melan [64] published his work on it
in 1936. This Cremona-type solution technique has recently been used again as
a numerical procedure in topology design [65]. Kazinczy also discussed the ques-
tions of safety and reliability designs much earlier than anybody else in the world.

Returning to Michell structures and theories connected to them, the recent
book of Lewiński et al. [66] is a very complex and extensive study with new
findings on this topic.

The overview of the works mentioned above is based on Hemp’s presentation
[5] in 1958 and the first author’s research papers [2–4].
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2.1. Maxwell’s theorem on minimum volume design

The first important work in truss optimization was presented by Maxwell [7].
He proved a theorem about the equilibrium of a series of attracting repelling
centers of force and applied it to trusses (in his original words: to frame structure)
in which the bars replaced the action at a distance except in the case of external
forces. Maxwell commented on the scientific significance of his theorem by using
of the following words: “The importance of the theorem to the engineer arises
from the circumstance that the strength of a piece is in general proportional to
its section, so that if the strength of each piece is proportional to the stress which
it has to bear, its weight will be proportional to the product of stress multiplied
by the length of the piece. Hence these sums of products give an estimate of the
total quantity of material which must be used in sustaining tension and pressure
respectively.” We have to notice that Maxwell used the word “stress” for what
we should term “load”. His result or comment has drawn the practical conclusion
about the required weight of the truss.

Maxwell’s problem can be described as follows: consider a truss which main-
tains equilibrium with a set of forces F i acting at the points ri, (i = 1, 2, ..., n).
Denote by Tt the load carried in a typical tension member with length Lt and
the section area At while in the case of typical compression members these vari-
ables are Tc, Lc and Ac. The permissible stresses were denoted by ft and fc,
respectively. By the use of the principle of virtual work, Maxwell derived the
optimality condition of the lightest structure, which has the volume given by:

V = Vc

(
1 +

fc
ft

)
+

1

ft

∑
i

F iri = Vt

(
1 +

ft
fc

)
− 1

fc

∑
i

F iri. (1)

Here Vt is the volume of all the tension members and Vc is the volume of all the
compression members.

2.2. Michell’s formulation on minimum volume design

In contradiction to the common knowledge, Michell “only” generalized Max-
well’s theorem and did not invent the theory of topology optimization. He recog-
nized the importance of Maxwell’s result and applied it to calculate the optimum
structural weight. This led him to determine sufficient conditions for a structure
to be an optimum. He proved the geometric restriction that determines the
classes of orthogonal sets of curves along which the members of an optimum
structure must lie.

The Michell problem can be described as follows: in addition to Maxwell’s
problem above, let us consider a series of external forces F i acting at the points
ri, (i = 1, 2, ..., n). LetD be a domain of space containing the points ri, (it should
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be noted that D can be the whole of feasible space). Consider then all possible
frameworks (trusses) S, contained in D, which equilibrate the forces F i and sat-
isfy the limiting conditions on stresses. Let us assume that there is a framework
S∗ that satisfies the following condition of Michell: “There exists a virtual defor-
mation of the domain D such that the strain along all members of S∗ is equal
to ±e, where e is a small positive number, and where the sign agrees with the
sign of the end load carried by the particular member, and further that no linear
element of D has strain numerically greater than e.” Michell’s theorem states
that the volume V ∗ of S∗ is less than or equal to the volume V of any of the
frameworks S

V =
(ft + fc)

2ftfc

(∑
t

LtTt +
∑
c

LcTc

)
− (ft − fc)

2ftfc

∑
i

F iri. (2)

The actual value of V ∗ follows from the principle of virtual work. If the
virtual displacements corresponding to Michell’s statement above are evi at ri
this volume V ∗ is:

V ∗ =
(ft + fc)

2ftfc

∑
i

F ivi −
(ft − fc)

2ftfc

∑
i

F iri. (3)

The character of the deformation e imposes certain restrictions upon the
layout of members in S∗. At a node of this framework, the directions of the
strains±e, which are along the lines of members of S∗ and are principal directions
of strain, must satisfy certain orthogonality conditions. In a three-dimensional
truss, at a node with three members, there are no restrictions if the loads in the
members have the same sign, since in that case the virtual deformation is a pure
dilatation and therefore isotropic. If one load is of opposite sign to the others, it
must be at right angles to them. For a node with four members, there is again no
restriction if all the loads have the same sign. If one member has an opposite load
to the other three, then it must be orthogonal to them all and so forces them to
lie in a plane. Finally, if the members fall into pairs with opposite-signed loads,
then one of these pairs must be in line and normal to the other two.

Michell also presented a very important property of the optimal structure:
the optimum structure S∗ has greater stiffness than any other structure of S. He
also presented the value of the strain energy stored in the optimal structure.

It is noted that the original formulas of Michell are not valid for different
allowable stresses in tension and compression. In 1960 A.S.L. Chan [67] and in
1963 H.S.Y. Chan [68], wrote down correctly Michell’s theorem. The validity and
the critical examination of Michell’s theorem can be read in Rozvany’s work [69]
published almost 40 years later, too. One can also find a very specific overview
of Michell’s theorem and its extension in the book of Lewiński et al. [66].
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2.3. The minimum-potential criterion of Wasiutynski

The presentation of this theorem is based on the book of Brandt [70]. In
this book, one can find the different theorems and applications of the structural
design. Until this time, generally, the optimization papers were based on plastic
design while Wasiutynski used elastic material.

The mechanical criterion of optimizing elastic structures for given loads can
be expressed as the criterion of maximum rigidity against deformations or min-
imum deformability. The minimum-potential criterion (which is often named as
the least-deformability criterion) was presented first by Wasiutynski [71] in 1939.
It involves:
• formulation of preliminary assumptions appropriate to the given problem

and determination of the given set of admissible structures,
• analysis of the influence of different design variables on the deformability

of the structure,
• derivation of the necessary and sufficient conditions for the least deforma-

bility of the structure from the relations provided by that analysis,
• determination of the unknown optimum variables and the stress and stress

fields of the optimum structure from the least-deformability conditions and
deformation equations.

The following theorems were presented:
Theorem 1: The addition of a new, active element reduces the elastic strain

potential of the system. The greater are the displacements of the original structure
on the surface contiguous to the new element and the stronger are the reactions
of the structure to the new element, the greater is the reduction of the potential.

Theorem 2: The elastic strain potential of a structure reinforced by an ad-
ditional, arbitrary small element is reduced by a value equal to the potential con-
tained in the new element; the potential of the original part of the structure is
decreased by the double value of the potential of the new element.

Theorem 3: The reinforcement of a structure by the addition of an arbi-
trarily small volume of material reduces the potential of the structure the more,
the greater is the pre-reinforcement unit potential at the point of reinforcement.

Theorem 4: Among all acceptable forms of a structure with a given volume
that has least potential in which the unit potential takes equal values at all points
between which it is possible to transfer material.

Theorem 5: Equivalence of optimization for minimum potential with op-
timization for minimum volume. Namely, the design for minimum potential at
a constant volume is equivalent to design for minimum volume at a constant
potential.
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Theorem 6: An elastic structure with a given volume V accumulates the
least potential and has the greatest rigidity under a given useful load if state-
ment, the greatest unit potential occurs at the points which suffer the largest
displacements under the useful load, holds at all points of the structure.

Theorem 7: Reinforcement of a structure with a new element ∆V produces
changes of order ∆V in deformations only in the immediate neighborhood of this
element. The increase of deformations at finite distances from the reinforcing
element is small of higher order.

Similarly, the potential loss ∆U caused by the addition of a new element ∆V
is concentrated in a differential neighbourhood of this element. The increments
of the potential which occur at finite distances from the new element inside the
original structure, are small of higher order.

By the use of the theorems above, the optimal solution of a new optimization
procedure can be verified.

3. “Hidden” results from the middle of the 20th century

The period around the middle of the 20th century has produced impressive
improvements in power and efficiency of optimization techniques, as applied to
general structural design problems. However, these methods paid a price for their
generality with a rapid increase in the number of computational requirements
such as the increase of the number of design variables and number of constraints.
In this subtitle, the “hidden” word means “not easily available”.

The layout theory plays a primary role in structural optimization. The main
difficulties are whether the obtained solution is unique or not, and whether the
extremal point is a local or global one. This question becomes more difficult
when several loading cases are taken into consideration. From the 50s to 70s
of the 20th century, several papers were published to investigate the questions
mentioned above. Generally, the variational calculus was the tool to prove the
optimality and the uniqueness. Here a limited overview is presented by using the
papers of Nagtegaal and Prager [37], Chan [68] and Shield [72].

3.1. Cox’s optimal solutions

Applications of the theorems of Maxwell and Michell to simple design prob-
lems have been made by Cox [16]. He has considered, first of all, the problem
of three coplanar forces. In the case where their point of intersection lies within
the triangle formed by their points of application, the optimum framework can
consist of tension or compression members only. Some of his layouts are given
in Fig. 1. We have to note that all these structures have equal weights. One can
recognize the non-uniqueness of the optimal layout and we can have an infinite
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Fig. 1. Simple tension structures by Cox.

number of solutions ranging from mechanisms through simple stiff structures to
structures of any degree of redundancy.

Cox [16] extended the theory presented above to build a structure for the
transmission of a bending moment. He showed that if the proportion of length
over height of the structure is greater than 4, this structure is considerably
lighter than a “simple tie and strut”, and that for larger values of length/height
proportion, multiple constructions, along the lines of Fig. 2, can be even lighter.
He produced a competitive 14-bar framework and a variation of Fig. 2a, in which
the circles are replaced by spirals, which for length/height >4 is lighter than any
other construction considered. These structures for the transmission of bending
moments are not Michell’s optimum structures, since they fail to satisfy the
orthogonality conditions for members with opposite signed loads.

The derivation of the optimal layout of pure bending and the optimal solution
of Cox’s beam problem in Fig. 2a was presented by Chan [67] in 1960 (see
Fig. 2b). The solution of Shield [72] for the same problem can be seen in Fig. 2c.
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Fig. 2a. Cox’s optimal beam for bending.

Fig. 2b. The optimal solution for pure bending presented by Chan [67].

Fig. 2c. The optimal solution for pure bending presented by Shield [72].
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3.2. Shield’s optimal solutions

As it was indicated by Cox’s work in the previous section, the optimal so-
lutions are not unique in the case of Michell’s structures. By using variational
calculus, Shield [72] presented appropriate necessary conditions for the struc-
tural volume to be stationary, but he noted that there is no guarantee to get the
global optimum. This section is based on Shield’s original work [72], and below
the outline of the original paper is presented.

Shield investigated the so-called Michell’s structures and declared that the
Michell-type design fails when kinematic constraints are taken into consideration.
He presented an alternative approach, which does not have the limitation of the
Michell method. The procedure is based on the idea to design a frame compatible
with a reduced virtual small deformation in which the principal strains are of
magnitude e/limit-tensional-stress (in case of tensioned members) and e/limit-
compressive-stress, the directions of frame elements coinciding with the principal
c directions of strain as before. Here e is the virtual deformation indicated by
Michell. The virtual deformation must satisfy any imposed kinematic constraints.

Next, some examples are presented that he gave in [72] to show that minimum-
volume frames are not necessarily unique, and Shield described some new addi-
tions to the list of Michell’s structures. The diagram (Fig. 3a) shows the layout

a) b)

c)

Fig. 3. Examples of non-uniqueness by Shield: a) sliding support direction, b) hinge support,
c) distributed sliding support.
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given by Michell for a single force applied at the midpoint C of the line AB and
balanced by equal parallel forces at A and B.

The struts AD, EB and the curved bar DE carry a uniform compressive force
and a quadrantal fan of tie-bars from C to DE maintains the equilibrium of the
curved bar. The layout is symmetrical about AB with tie-bars replacing struts
and vice-versa. The virtual deformation with principal strains ±e associated with
the layout can be adjusted so that the displacement is zero at points A and B.
If one assumes the equal tensional and compressive limit stress condition, one
can use this virtual deformation for the case when one has the same force at
C, but now A and B are fixed points of support. The optimum structure has
the same volume as the structure with specified parallel forces at A, B, but the
optimum design is not unique. For example, the load at C can be carried by
a frame entirely above AB, as indicated in the diagram of Fig. 3b. An infinity
of optimum designs results from arbitrarily assigning a fraction of the load at C
to be carried by a structure above the line AB and the remainder by a structure
below the line AB. It was noted that if one had specified that the load at C was
carried by a beam with centerline AB and built-in at A and B, the optimum
design would have bending moments at A and B. The Michell structure has no
moments at the fixed points A, B. The minimum-volume design indicated at
the bottom diagram (Fig. 3c) uses the same virtual deformation with principal
strains ±e, but now it is specified that distributed loads at A and B balance the
load at C.

We have to note that Fig. 3 is presented to illustrate the non-uniqueness of
design. However, this figure presents the design’s dependence on support condi-
tions: Fig. 3a: sliding support direction (vertical reaction), Fig. 3b: hinge support
(reaction following member direction), and Fig. 3c: distributed sliding support.
One can also read about the uniqueness theorem related to Michell’s structure
design in the paper of Kozlowski and Mróz [73].

3.3. Optimal solutions of Kozlowski and Mróz

The uniqueness theorem in topology design was investigated by Kozlowski
and Mróz [73], where the authors presented the use of Michell’s structures to
design disks with thickness constraints.

More specifically, they presented a general formulation of the problem of
optimal design with geometric constraints. The optimal design of perfectly plastic
disks of Tresca material was considered, and two problems were discussed in
detail: a disk simply supported at two points and a cantilever disk loaded by
a concentrated force. Their optimal design lied in the semi-plane below the line
joining supports or within a strip of prescribed width (Figs 4a and 4b).
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Fig. 4a. Optimal disks carrying two concentrated and opposite forces; the design is to lie beyond
the region ABA′B′.

Fig. 4b. The optimal solution of a cantilever disk loaded by a concentrated force.

3.4. Design dependence of the optimal solutions
in the case of alternating loads

In optimization, the investigation of the convergence of the applied procedure
and the uniqueness of the solution are of primary importance. This question
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becomes more difficult whenever there are multiple loadings and/or the load-
ing uncertainty is considered. In this latter case, the load can be considered as
a quantity given in an interval with a certain possibility of location or/and di-
rection, and/or magnitude. The design loads are usually selected based on worst
loading cases.

To understand the topic here, the main achievements of the paper by Nagte-
gaal and Prager [37] are discussed briefly at first. The starting point is the min-
imum volume design of a truss. The results of this layout optimization, coming
from this uniaxial case, can be generalized and a continuum type topology op-
timization problem with bi-axial stress state is investigated later. The paper of
Nagtegaal and Prager is concerned with the following problem: two alternative
loads with the same point of application are to be transmitted to a rigid founda-
tion by a plane truss of minimum weight whose load factors for plastic collapse
under one or the other load are not to exceed a given value. A necessary and
sufficient condition for global optimality is established and used to determine
the optimal layout of the truss. According to their optimality criteria (global
optimality condition), in an active truss member (being non zero cross-section),
the sum of the normalized strain rates is a unit, while in vanishing members, the
summation of the strain rates results in a smaller value than a unit. In addition
to the optimality conditions, Nagtegaal and Prager gave a short overview on how
the optimal layout looks like in a special case of alternative loads (see Fig. 5).
They considered a fixed force (say P′) and discussed the optimal types of trusses
for all possible other forces (P′′). In Fig. 5, “A” is the common application point
of these two forces. Here vector AB′ represents the fixed force P′. The lines B′C
and B′D form angles of 45◦ with the horizontal direction, and lines EF and EG
are obtained by mirroring the lines B′C and B′D with respect to point “A”.

Fig. 5. Truss type as a function of the alternative loading.
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These lines divide the plane of the figure into nine regions. If the load P′′ is
represented by the vector AB′′, the label of the region that contains B′′ indicates
the type of the optimal truss. Where one of the loads is dominant, which exclu-
sively determines the optimal design, the optimal truss consists of two bars that
form angles of 45◦ with the wall.

The optimal layout problem of a minimum weight truss design problem with
a single vertical force load was presented by Save [44] in the case of stress con-
straints. Singular situations in the minimum-volume elastic design are analyzed
and illustrated as they occur in the optimization of a three-bar truss. Rela-
tionships between the minimum-volume design with bounds on stress intensity,
assigned load factor at collapse, and assigned elastic compliance are analyzed.
He concluded that the optimal layout could be one, two and three bar trusses
depending on the design conditions.

These general layout theories can act as reference studies for topology opti-
mization of truss-like structures in the case of multiple and/or stochastic load-
ing. It is worth to note that in the case of trusses, the uniaxial stress state is
considered, but the truss-like structures belong to the biaxial stress state prob-
lems.

3.5. Solution techniques in this period

The special approaches used to solve successfully the majority of the problems
in the second half of the 20th century are known in the literature as optimality
criteria methods. Optimality criteria methods are based on radically different
thinking from those applied in the development of the mathematical program-
ming (MP) methods. Most MP methods concentrate on obtaining information
from conditions around the current design point in design space in order to an-
swer two questions: in what direction and how far to go to best reduce the value
of the objective function directly. This is repeated until no more reduction is
produced in the iterations within some selected tolerance. On the other hand,
optimality criteria methods, exact or heuristic, derive or state conditions cha-
racterizing the optimum design, then find or change the design to satisfy those
conditions while indirectly optimizing the structure.

The origin of the classical optimality criteria method (COC) dates back to the
1970s. By turning attention to certain stiffness-related constraints, theoretically
valid optimality criteria were derived for discretized structures with displacement
constraints employing classical Lagrangian multiplier methods of mathematical
optimization. To satisfy the optimality criteria, an algorithm was proposed by
Berke [74] and later Berke and Khot [30], based on the approach that if it pro-
vides an exact direct formula for statically determinate structures, same as FSD,
then it would converge in a few iterations for most practical structures, again



Milestones in the 150-year history of topology optimization: A review 113

same as FSD. The difference, however, is an important one; this criterion, unlike
FSD, was theoretically correct also for indeterminate structures. Furthermore it
resulted in the separability of variables leading to member-by-member resizing,
similar in this respect to FSD, thus inheriting its often benign convergence be-
havior. Berke also suggested that the design variables and constraints should be
separated into a passive and active set. One can see the similarity in terminology
and general steps of the COC method and the SIMP (solid isotropic material
with penalization) method-one of the leading solution procedures in topology
optimization recently.

At the “beginning”, the OC and MP methods were still treated as differ-
ent ones. It was the Fleury and Geradin paper [75] that pointed out the rela-
tionship between these two methods. They proposed two new methods in that
paper: the first one is a mixed method, which is between OC and MP meth-
ods by introducing a parameter to control the algorithm between OC and MP
methods and to control the stability of COC methods. The second method is
an OC method that uses a first-order approximation to stress constraints in-
stead of the classical FSD method. Fleury and Sander [76] proposed a “mixed
method” combining OC and MP methods. In 1979, Khot, Berke and Venkayya
[77] also applied an OC model, but they solved it by using iteration methods.
Almost in the same time, a very efficient MP method called “dual method”
was proposed by Fleury [78]. This method was derived from the sequential lin-
ear approximation of constraints with reciprocal variables, but it clearly ex-
plained the iteration difficulties of the Lagrange multipliers in dual space. He
reported the correct identification of passive and active sets for both design
variables and constraints in advance in this paper. Fleury and Schmit [79] com-
bined dual method and approximation concepts, which resulted in an efficient
method. Schmit and Fleury [80, 81] applied this method for mixed variables
(discrete and continuous) and showed that the dual method was suitable for
mixed variable problems. Furthermore, Fleury and Braibant [82] generalized
this method to a more efficient one and named as “dual method using mixed
variables”, which worked well in both size design and shape design. By the end
of this period, the Schittkowski algorithm gave an appropriate tool to solve MP
problems [83].

3.6. Monographs and the Prager–Rozvany’s layout theorem

This middle period produced several monographs such as Gerard [83], Prager
[84], Cox [17], Johnson [85], Cohn [86], Gallagher and Zienkiewicz [87], Hemp [88],
Cyras et al. [89], and Sawczuk and Mróz [90], which help to understand the
basic principles and solution techniques, and verify the numerically obtained
optimum solutions by the use of the limited number of analytical solutions.
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Prager and Taylor [31] presented a uniform method of treating a variety of
problems of the optimal design of sandwich structures. Their design proce-
dure consists of two steps: the integration of an optimality condition, which
is a differential equation for the optimal displacement field that does not in-
volve any design parameters, and the subsequent determination of the optimal
distribution of elastic stiffness or plastic resistance from the usual differential
equations of the structure. Optimal elastic design for maximum stiffness, max-
imum fundamental frequency or maximum buckling load, and optimal plastic
design for maximum safety are treated as examples. In this framework, the
paper of Hegemeir and Prager [91] was an important study, where one can
find some help to understand the correctness of the theorem stating that in
single load case, minimizing the volume of the structure with respect to dis-
placement constraint or compliance constraint, one can obtain the same opti-
mum.

At that time, the optimization topic started its “career” at CISM (Interna-
tional Centre for Mechanical Sciences). The first meeting was coordinated by
Prager [35]. In addition, Save and Prager [92] gave an extensive overview of
the optimality criteria methods. Interestingly, this book was published in 1985,
5 years after Prager’s death.

Also, this is the period when Rozvany has started his long career in this field.
No doubt, he is one of the most important persons in topology optimization. His
first book [93] deals extensively with the layout design of grillage structures.
The existing layout theorems were published in compact form by Prager and
Rozvany [36] in 1977. The theorem is based on the Prager–Shield [94] optimality
condition for plastic design. The existing works were extended by a new ele-
ment, namely, optimality conditions for vanishing members in terms of adjoint
strains along these members were identified. The adjoint strains were given by
the subgradient of the specific cost function with respect to stresses or stress
resultants. The subgradient of a function was the usual gradient, but at discon-
tinuities of the gradient, any convex combination of the adjacent gradient could
be taken. For the sign-independent, stress-based design of trusses and grillages
of given depth, the specific cost functions were

A = k |F | and A = k |M | , (4)

where A is the cross-sectional area, k is a constant, F is a member force and M
is a bending moment.

Then, e.g., for trusses, the optimality conditions reduce to those of Michell [6]

ε = k sgnF (for F 6= 0), |ε| ≤ K (for F = 0), (5)

where ε is the adjoint strain.
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For grillages

κ = k sgnM (for M 6= 0), |κ| ≤ K (for F = 0), (6)

where κ is the adjoint beam curvature.
The theorem above was extended by Rozvany et al. [39] in 1987 and the

design was not restricted to low volume fracture structures anymore.
At the beginning of the 1980s, several applications in optimal design were

published to extend the achievements of layout optimization into the direction
of topology design. The results of Olhoff [95, 96] and co-workers (Cheng, Taylor,
Bendsøe) [97–99] in the field vibration provided a strong foundation for the
continuum-type topology design.

4. Selected milestones in the last three decades

The research papers in the last period of this review are easily available and
there are several review papers in different journals besides the earlier mentioned
works. These lastly mentioned reviews were written, among others, by Rozvany,
Bendsøe and Kirsch [100] in 1995, Eschenauer and Olhoff [101] in 2001, Sigmund
and Maute [102] in 2013 and Zargham et al. [103] in 2016. Therefore, this period
is covered only briefly in this chapter.

In 1988, a new generation of problem formulation was created by Bendsøe
and Kikuchi [47] in topology optimization by using homogenization. A detailed
description of the continuum-type optimality criteria method was reported in
Rozvany’s books [49, 50, 104] and [105] co-edited with Lewiński, and several
reports [106–110]. The detailed description of theories in connection with Michell
structures can be found in the recent book of Lewiński, Sokół, and Graczykowski
[66], as indicated earlier. However, one can read brief summary of the selected
milestones in the following paragraphs.

After the original homogenization technique to topology optimization was
published by Bensoe and Kikuchi [47], several new computational concepts and
procedures were elaborated. The most frequently applied computational me-
thods are:

a) density-based method (Bendsøe [48], Zhou and Rozvany [110], Mlejnek
[111]), which is very often called SIMP;

b) evolutionary approaches (Xie and Steven [112]), where the density and evo-
lutionary approaches use simple element or nodal-based design variables,
and the iteration scene is very similar to that of Berke’s COC method
(e.g., Zhou and Rozvany [113]). The general formulation was published by
Bendsøe and Sigmund [114];

c) the topological derivative (Sokołowski and Zochowski [115]) method is
based on the bubble-method. The basic idea is to predict the influence
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(derivative) of introducing an infinitesimal hole at any point in the design
domain and use this as the driver for the generation of new holes;

d) the level set method (Allaire et al. [116], Wang et al. [117]) aims to com-
bine some advantages of the shape sensitivity method and the topology ap-
proach. The method uses shape derivatives for the development of the op-
timal topology. To overcome the numerical difficulties, hybrid approaches
have appeared, such as level set approaches that use shape derivatives for
design updates but, somewhat against the original definition of the level
set concept, do allow for introducing holes without the use of topological
derivatives (Yamada et al. [118]);

e) the phase-field (Bourdin and Chambolle [119]) approach works directly on
the density variables and considers the minimization of a functional.

The methods mentioned above created the first general directions in the
field of continuum-based topology optimization. To overcome a serious numerical
problem, that is, to avoid the checkerboard pattern, several filtering techniques
and procedures were developed [2, 120–125].

The evolutionary optimization inspired many researchers, and a wide range
of heuristic methods was developed during these three decades. One can read
a rather complex review in the book of Kaveh [126].

4.1. Monographs and some selected results

From the beginning of the 1990s, several books were published in connection
to topology optimization. In addition to the books mentioned earlier in this
paper, one can find monographs written by Haftka et al. [127], Kirsh [128],
Bendsøe [129], Bendsøe and Sigmund [130].

As quick as the numerical methods in topology design developed, the demand
to verify analytically the numerically obtained optimal topologies increased. The
first analytical solutions come from Rozvany and his research colleagues. In
Fig. 6, one can see the analytical solution published by Lewiński, Zhou and
Rozvany [131].

Fig. 6. The exact optimal solution by Lewiński, Zhou and Rozvany [131].

A very similar solution and detailed calculation were published by Melchers
[132]. Another well-known problem, the L-shape structure, was also solved by
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Lewiński and Rozvany [133]. In Fig. 7, one can see the analytically derived
solution.

Fig. 7. The exact optimal solution of the L-shape beam by Lewiński and Rozvany [133].

Here one has to mention the Danish school achievements. Besides the work
of Bendsøe, one has to mention N. Olhoff [134], who has numerous applications
of SIMP (design dependent loads, vibration problems, 3D structures). Another
important person in topology design is O. Sigmund, who contributed greatly to
the general acceptance of SIMP.

His milestone works are: educational articles, checkerboard control, multi-
physics applications, material model for SIMP. The pressure load solution cal-
culated by Clausen and Sigmund [135] can be seen in Fig. 8.

Fig. 8. The pressure load solution by Clausen and Sigmund [135].

The SIMP method was also applied extensively by Helder Rodrigues. Some
of his major research topics have been: hierarchical topology optimization on
macro- and micro-scales [136], applications to bio-mechanics (e.g., bone tissue
adaptation) [137] and optimization of piezoelectric properties [138]. Topology
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optimization problems in the case of fluid-structure interaction were solved by
Maute et al. [139, 140]. Their aim was to find the layout of the internal structure,
actuation system, and the overall design with the optimal flow and structural
characteristics. Their approaches were high-fidelity analysis of fluid-structure in-
teraction problems based on Navier–Stokes and nonlinear solid mechanics mod-
els, SIMP-type interpolation of structural and flow parameters, and adjoint sen-
sitivity analysis.

As one can see there are many different fields in topology optimization. It is
no surprise that all these branches can be found under the name of N. Kikuchi.
His research is connected to this last period and he is still active [141]. Kikuchi’s
1988 milestone publication together with Bendsøe [47] was reported earlier. His
Research Lab at the University of Michigan, Ann Arbor, under his guidance,
has “produced” a number of important researchers, who are currently leading
scientists (K. Suzuki, S. Nishiwaki) in topology optimization. Together with
K. Suzuki, the general theory of the homogenization method was elaborated
(Suzuki and Kikuchi [142]). He and Gueddes [143] used the topology optimiza-
tion for material design. Kikuchi and Nishiwaki et al. [144] extended the topology
design to compliant design, and with Lee [145], the structural topology was used
in electrical machinery. Having the leading scientist position at the Research
Department of Toyota Motor Company, he successfully introduced topology op-
timization into the car industry [146].

4.2. Other methods in structural topology optimization

Besides the numerical procedures mentioned above, Svanberg [147] in 1987
elaborated a mathematical programming subroutine – the method of moving
asymptotes, which is one of the most frequently applied computational tools in
topology optimization.

The method has been extensively used in multi-constrained problems of
topology optimization, such as the minimization of the weight under local stress
constraints (Duysinx and Bendsøe [148]), addressing symmetric and non-sym-
metric strength criteria also in conjunction with displacement constraints (Bruggi
and Duysinx [149, 150], Bruggi [151, 152]).

As an example of the wide range of applications of topology optimization,
the free material design was introduced into this field at the beginning of the
1990s. The applications were strongly influenced by the works of Cherkaev and
Gibiansky [153] and Cherkaev [188]. The papers by Bendsøe et al. [154, 155] are
evidently the first examples where the arbitrary tensor-valued function repre-
senting material properties was treated directly as the design variable. Guedes
and Taylor [156] presented an algorithm that provided a way to generate a “0–1”
topology design through the usage of a non-uniform unit relative cost. Taylor
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[157] reformulated the free material design problem with the cost constraint ex-
pressed in a generalized form. In the last decade, Dzierżanowski and Lewiński
extended the applications to stress-based approaches [158].

In 1993, a new computational procedure was suggested for solving topol-
ogy problems by Hajela et al. [159]. The Genetic Algorithms (GA) is generally
a global search strategy for generating near-optimal structural topologies, and
may be considered a derivative of the ground structure approach. The search
procedure has a philosophical basis in Darwin’s postulate of the “survival of the
fittest”. The application of this approach is particularly potent, as structural
members can be both added and removed during the search process. An advan-
tage of the genetic search-based approach over mathematical programming or
optimality criteria-based methods is the ability to include general design con-
straints in the problem and locate global optimum.

Discrete optimization methods also play an important role in topology design.
They can be classified as:
• sequential integer programming (Svanberg and Werme [160]),
• neighborhood search (Svanberg and Werme [161]),
• efficient enumeration (Werme [162]),
• branch and cut (Stolpe and Bendsøe [163]) method.
The advantage of these methods is that they may guarantee global optimum,

but the disadvantage is that a relatively small number of ground elements can
be handled at present. However, the Polish group led by Gutkowski and Bauer
played a fundamental role in this topic. They organized several conferences [164–
166], a course in CISM [167] and published papers [e.g., 168].

“Hard-kill” or “sudden death” methods provide only black or white ground
elements, but they use heuristic criteria for element rejection or admission. The
most publicized hard-kill method is called inappropriately “ESO” (Evolution-
ary Structural Optimization), well over a hundred publications with high cita-
tion numbers are dealing with this subject. Some improvements of ESO were
suggested by Rozvany and Querin [169–171] under the term SERA (sequential
element rejection and admission). Shortcomings of ESO are:
• fully heuristic,
• inefficient (much more computer time) compared to gradient methods,
• lacking rationality (first, a large number of solutions are generated by

a heuristic criterion, then the “best” solution is located by enumeration
for a different objective function,
• may give vastly non-optimal solutions (Zhou and Rozvany [172]).
The interested readers can find a good review of the established numerical

methods of structural topology optimization that have reached the stage of ap-
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plication in industrial software by Rozvany [173] in addition to the review papers
mentioned earlier in this section.

Finally, we have to mention again the probabilistic or reliability-based topol-
ogy optimization procedures that are relatively new in this field. Some publica-
tions were already mentioned in the previous section, here just some subjectively
selected works are given. Among others, Marti and co-workers [174–176] have
published several new procedures to obtain optimal topologies. Lógó and his co-
workers [52–55, 177, 178] also proposed several new probability-based algorithms
for topology design.

In Poland, IPPT (Institute of Fundamental Technological Research, Polish
Academy of Sciences) is the research institution where several new results were
reported in topology optimization. Besides the earlier cited works of Mróz, the
optimal redesign methods based on topological sensitivity derivatives with appli-
cation to the design of trusses, beam and plate structures, and support conditions
were published in the last decades (e.g., Bojczuk and Mróz [179], Mróz and Boj-
czuk [180]). In addition, reliability-based optimization was an important aspect
of the scientific activity at IPPT. The research group led by Kleiber and Jendo
published important papers [181–183] and organized several conferences [e.g.,
184] in this field.

Tauzowski, Blachowski and Lógó [185] have opened a new computational
direction in structural topology optimization, namely the functor-oriented pro-
gramming. Their study applied basic concepts of functional programming to
developing special class into the finite element hierarchy. This class is known
among the computer science community as function object or functor. Functor-
based implementation of the finite element method leads to simpler and easily
expandable FEM software architecture. This new method has already been ap-
plied successfully in elasto-plastic topology optimization [186]. They also pub-
lished a solution technique in the field of plasticity, where the optimal layout of
a truss was calculated for the case of impact loading [187].

5. Conclusions

One can see from this relatively short overview that topology optimization
has become a widely applied and important scientific field. In the beginning,
“only” some people were involved in the research, but currently hundreds of
scholars work in this field. Its applications prove the existence of topology anal-
ysis/design in all fields of life.
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