
Citation: Bellucci, M.C.; Romani, C.;

Sani, M.; Volonterio, A. Dual Antibiotic

Approach: Synthesis and Antibacterial

Activity of Antibiotic–Antimicrobial

Peptide Conjugates. Antibiotics 2024,

13, 783. https://doi.org/10.3390/

antibiotics13080783

Academic Editor: Juan Ayala

Received: 23 July 2024

Revised: 16 August 2024

Accepted: 18 August 2024

Published: 21 August 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

antibiotics

Review

Dual Antibiotic Approach: Synthesis and Antibacterial Activity
of Antibiotic–Antimicrobial Peptide Conjugates
Maria Cristina Bellucci 1, Carola Romani 2 , Monica Sani 3 and Alessandro Volonterio 2,*

1 Department of Food, Environmental, and Nutritional Sciences, Università degli Studi di Milano, Via Celoria 2,
20131 Milano, Italy; cristina.bellucci@unimi.it

2 Department of Chemistry, Materials, and Chemical Engineering “Giulio Natta”, Politecnico di Milano,
Via Mancinelli 7, 20131 Milano, Italy; carola.romani@polimi.it

3 Consiglio Nazionale delle Ricerche, Istituto di Scienze e Tecnologie Chimica “G. Natta” (SCITEC),
Via Mario Bianco 9, 20131 Milano, Italy; monica.sani@polimi.it

* Correspondence: alessandro.volonterio@polimi.it; Tel.: +39-0223993139

Abstract: In recent years, bacterial resistance to conventional antibiotics has become a major concern
in the medical field. The global misuse of antibiotics in clinics, personal use, and agriculture has accel-
erated this resistance, making infections increasingly difficult to treat and rendering new antibiotics
ineffective more quickly. Finding new antibiotics is challenging due to the complexity of bacterial
mechanisms, high costs and low financial incentives for the development of new molecular scaffolds,
and stringent regulatory requirements. Additionally, innovation has slowed, with many new antibi-
otics being modifications of existing drugs rather than entirely new classes. Antimicrobial peptides
(AMPs) are a valid alternative to small-molecule antibiotics offering several advantages, including
broad-spectrum activity and a lower likelihood of inducing resistance due to their multifaceted
mechanisms of action. However, AMPs face challenges such as stability issues in physiological
conditions, potential toxicity to human cells, high production costs, and difficulties in large-scale man-
ufacturing. A reliable strategy to overcome the drawbacks associated with the use of small-molecule
antibiotics and AMPs is combination therapy, namely the simultaneous co-administration of two
or more antibiotics or the synthesis of covalently linked conjugates. This review aims to provide a
comprehensive overview of the literature on the development of antibiotic–AMP conjugates, with
a particular emphasis on critically analyzing the design and synthetic strategies employed in their
creation. In addition to the synthesis, the review will also explore the reported antibacterial activity
of these conjugates and, where available, examine any data concerning their cytotoxicity.

Keywords: antimicrobial peptides; antibiotics; β-lactams; vancomycin; aminoglycosides; chemical
conjugation; combination therapy

1. Introduction

Antibiotics are a class of drugs, being among the highest prescribed drugs worldwide,
specifically designed to combat bacterial infections by either killing bacteria or inhibiting
their growth [1]. Discovered in the early 20th century, antibiotics revolutionized medicine
and have saved countless lives by effectively treating previously lethal infections [2,3].
These medications work through various mechanisms, such as inhibiting or disrupting
cell wall synthesis, protein production, DNA replication in bacteria, or interfering with
metabolic pathways [4,5]. Despite their critical role in healthcare, the overuse and misuse of
antibiotics have led to a growing issue of antibiotic resistance, where bacteria evolve mech-
anisms to evade the effects of these drugs [6–8]. Moreover, the fact that most antibacterial
agents in use today are derived from natural products synthesized by bacteria or fungi to
defend against bacterial competitors further facilitated the development of antimicrobial
resistance (AMR). This resistance poses a significant challenge to global health, necessitat-
ing ongoing research and the development of new antibiotics and alternative treatments
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which are not advancing as fast as resistance [9]. Indeed, it is projected that by 2050, the
annual fatalities could exceed 10 million unless appropriate measures are implemented,
and research and development efforts are intensified to address AMR [10].

The most urgent need for new antibiotics is dictated to combat resistant strains, es-
pecially Gram-negative bacteria P. aeruginosa and E. coli, which have a second polar outer
membrane and numerous efflux pumps that make them less susceptible to drug inter-
vention, defined as critical pathogens, and to a slightly lesser extent, methicillin-resistant
S. aureus (MRSA), defined as high priority [11]. Despite extensive screening efforts with
traditional drug-like libraries, very few non-natural product-derived antibacterial agents
have been discovered [12,13]. It has become increasingly apparent that the physicochemical
properties required to evade these bacterial defenses differ from those needed for traditional
drugs since antibiotics are generally more polar and larger than drugs targeting other con-
ditions [14]. Having evolved over millennia to target bacteria, antibiotic natural products
inherently possess the necessary attributes to overcome bacterial defenses and have thus
been successfully used for decades as starting points for semi-synthetically derived next-
generation antibiotics [15]. However, discovering new antibiotics is challenging for several
reasons. Firstly, it is extremely difficult to identify new scaffolds that are both effective
and safe [12,16]. Additionally, bacteria can quickly develop resistance to new antibiotics
through mutations and horizontal gene transfer, often making new drugs ineffective shortly
after their introduction [6]. Furthermore, economic and regulatory barriers also pose sig-
nificant obstacles to the development of new antibiotics. Developing a new antibiotic is
expensive, often costing upwards of a billion dollars, which includes costs for discovery,
preclinical testing, clinical trials, and regulatory approval [17]. Furthermore, antibiotics are
typically used for short durations, unlike treatments for chronic diseases, resulting in lower
financial returns and the pharmaceutical market prioritizes drugs with higher profitability,
such as those for chronic conditions or lifestyle diseases, leading to underinvestment in
antibiotics [18]. To compound the issue, new antibiotics are often held in reserve to delay
resistance, further limiting sales. Moreover, regulatory agencies require extensive testing to
ensure safety and efficacy, which can be particularly challenging for antibiotics due to the
need for novel approaches and considerations of resistance [19]. Additionally, continuous
post-approval surveillance for resistance and effectiveness in real-world use is necessary,
adding to the complexity and cost of antibiotic development [20]. Nonetheless, some new
antibiotics have been launched in the market during the last twenty years, demonstrating
that the quest to fight AMR with small molecules is not at a dead end [21].

One strategy to avoid the challenging search for new scaffolds [22] and to chase an old
antibiotics renaissance is to administer two or more antibiotics simultaneously to obtain a
synergistic effect in the so-called combination therapy [23]. This approach can enhance the
efficacy of treatment by attacking pathogens through different mechanisms, reducing the
likelihood of resistance development. By combining drugs with complementary actions,
combination therapy can achieve synergistic effects, lower required dosages, and minimize
toxicity. Additionally, it can target a broader spectrum of pathogens, including multi-
drug-resistant strains [24]. However, the strategy may not always work in vivo because
of the different pharmacokinetics of the antibiotics [25]. Differences in the absorption,
distribution, metabolism, and excretion of the drugs can lead to suboptimal levels of one or
more components, reducing overall efficacy and increasing the risk of side effects. Moreover,
there is also a risk of synergistic toxicity, where the combined drugs produce greater adverse
effects than expected. This can limit the dosage and effectiveness of the treatment.

Alternatively, combination therapy involving conjugates is an innovative approach
to fighting AMR. This strategy involves linking an antimicrobial agent with another
molecule, such as a drug, peptide, or targeting ligand, to enhance its effectiveness and speci-
ficity [26,27]. Conjugates have shown promise in preclinical studies and are being explored
for their potential to target a wide range of pathogens, including multi-drug-resistant
bacteria [28]. Particularly interesting are the conjugates between conventional antibiotics
and antimicrobial peptides (AMPs) because they possess several advantages compared
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to conjugates between small-molecule antibiotics. Apart from enhanced activity due to a
synergistic effect and/or broader spectrum of activity, AMPs can significantly enhance the
effectiveness of antibiotics through improved penetration and targeted delivery. Indeed,
AMPs facilitate the penetration of antibiotics into bacterial cells by interacting, disrupting,
or translocating cell membranes, thereby increasing the intracellular concentration of the
antibiotic [29]. Furthermore, conjugation can enhance the specificity of antibiotics towards
bacterial cells over host cells, reducing off-target effects and toxicity [30]. Moreover, the en-
hanced potency of antibiotic–AMP conjugates allows for lower dosages, reducing potential
side effects and toxicity [31]. Improved targeting and reduced doses also minimize the risk
of adverse effects, leading to safer treatments for patients [32]. Lastly, the conjugates can be
designed to incorporate a variety of AMPs and antibiotics with suitable linkers, allowing
for tailored treatments against specific pathogens and resistance profiles.

This review aims to describe the rationale behind the design of the antibiotic–AMP con-
jugates that appear in the literature [33], encompassing de facto AMPs and cell-penetrating
peptides (CPPs), the strategies used for their synthesis, and briefly discuss their activity
against the bacterial targets. This review is not intended to give a full overview of the
different classes of antibiotics, AMPs, and their mechanisms of action, which will be only
summarized in the following two sections for the sake of a better comprehension of the
main topic. Readers interested in a more detailed discussion on the features of the single
class of antibiotics or AMPs can refer to the reviews cited therein.

2. Small-Molecule Antibiotics

Small-molecule antibiotics, both unconsciously and consciously, have been used in
various forms for thousands of years [2]. The identification of salvarsan as an anti-syphilis
drug in 1909 [34], followed by the serendipitous discovery of broad-spectrum antimicrobial
penicillin by Fleming in 1928 [35], opened an incredibly prolific era during which different
small molecule antimicrobials were developed and marketed. More specifically, we wit-
nessed two decades referred to as “the golden age of discovery” of antibiotics, during which
different classes of natural antibiotics were isolated from natural sources and identified,
followed by a second “golden age of medicinal chemistry”, where successive generations
of the natural scaffolds were developed by chemical modification [36]. Both natural and
synthetic antimicrobials can be classified according to the chemical core structure and
mechanism of action (Figure 1).

Sulfonamides are an important class of antibiotic drugs with a broad spectrum of
activity, highly effective against gram-positive bacteria and some gram-negative bacteria,
which were serendipitously discovered in the chemical dyes industry [3]. Sulfonamides
act as competitive antagonists and structural analogs of p-aminobenzoic acid (PABA) in
the synthesis of folic acid, which is essential for bacterial DNA production [37]. Due
to chemical modification, they have witnessed 80 years of continuous use, not only as
antibiotics, but also as diuretics, antidiabetics, antiarrhythmics, and COX2 inhibitors [38].
With the advent of penicillin and increasing antibiotic resistance, the demand of new
sulfonamides witnessed a decrease. Indeed, after the discovery of penicillin, β-lactam
antibiotics encompassing penicillin and following generation cephalosporins, carbapenems,
penems, and monobactams (Figure 1) became probably the most popular class of antibiotics,
revolutionizing the treatment of infectious diseases [39]. Their action depends on the
structure of the constrained β-lactam four-membered ring common to all the generations,
which renders the amide bond prone to react with alcohols, and in particular, with the side
chain of serines belonging to the so-called penicillin-binding peptides responsible for the
cell wall synthesis [40,41]. However, over the past 60 years, resistance to penicillins—mostly
due to the microbial production of β-lactamases, but also to conformational changes in
penicillin-binding proteins, permeability changes in the outer membrane, and activation of
efflux pumps—has been steadily increasing so much that there are serious concerns that
β-lactams may soon become ineffective against deadly bacterial infections [42–44].
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Discovered in the 1940s, tetracyclines are a family of antibiotics that inhibit protein
synthesis by preventing the attachment of aminoacyl-tRNA to the ribosomal acceptor (A)
site [45]. Tetracyclines are broad-spectrum agents, effective against a wide range of gram-
positive and gram-negative bacteria. Their favorable antimicrobial properties and lack of
major adverse side effects have led to extensive use in treating infections in both humans
and animals. However, during the two decades of the 1970s and 1980s, tetracyclines became
a second choice for treatment because of the development of the growing availability of
other antibiotics and acquired resistance mainly due to two major mechanisms such as
efflux pumps and ribosomal protection proteins. Chemical modification, mostly performed
on the D cycle of the scaffold, led to the development of three different generations of
tetracyclines, the latest encompassing eravacycline, omadacycline, and tigecycline, which
were approved within the past 15 years, representing a new era in the use of these antibiotics
(Figure 1) [46].

Also, the era of aminoglycoside antibiotics started in the 1940s when streptomycin was
discovered [47]. Aminoglycosides are a class of natural and semi-synthetic polyamino sugars,
most of them having in common a central cyclohexane ring referred to as 2-deoxystraptamine
(2-DOS), to which different aminosugars are bonded through glycosidic linkage (Figure 1) [48].
Aminoglycosides have been widely applied against many types of Gram-positive and
Gram-negative pathogens, which are still being widely used worldwide due to their abil-
ity to interact mainly through electrostatic interaction but also through hydrogen bond
networking with the A-site of the 16S ribosomal RNA and to the 50S ribosomal subunit,
perturbing the “proof-reading” process that ensures protein translation, and inhibiting
translocation and ribosome recycling, respectively [49–51]. Throughout time, pathogens
have developed three different mechanisms of bacterial resistance. The principal mecha-
nism involves the inactivation of aminoglycosides by a family of enzymes referred to as
aminoglycoside-modifying enzymes (AMEs), expressed by resistant strains that are able to
acetylate the amino groups or phosphorylate the hydroxy functions. Resistance can also
arise through mutations in the ribosomal target or, increasingly, through the modification of
the ribosome by ribosomal methyltransferase enzymes. Lastly, the alteration of the bacterial
cell wall by acquired lipid modifications that repel highly polar aminoglycosides improves
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impermeability, and the activation of efflux pumps results in a lower concentration of
aminoglycosides in the bacterial cells [52]. To overcome and fight antibacterial resistance,
many derivatives of aminoglycosides have been synthetized, starting from the natural
scaffolds [53,54]. Amphiphilic aminoglycosides, aminoglycoside heteroconjugates, amino-
glycoside homo- and heterodimers, as well as conformationally restricted aminoglycosides,
have been synthetized and tested, providing a better knowledge of their mechanism of ac-
tion and paving the way for new applications of aminoglycosides as antifungal, anticancer,
and gene/drug delivery vectors [55,56].

Macrolide antibiotics, renowned for their safety and high efficacy against Gram-
positive bacteria, have been extensively used in clinical settings for over 50 years since
the first antibiotic, pikromycin, was isolated in 1950 [57]. Natural macrolide antibiotics
share a common structural feature, i.e., a macrocyclic lactone of different sizes (from 12
to 15 members) bearing one or more amino- or deoxy-sugars (Figure 1), erythromycin
being the most popular [58]. As members of the largest class of antibiotics, they are
particularly effective in treating upper and lower respiratory tract infections by reversible
binding to the 23S rRNA at or near the peptidyl transferase center, thus inhibiting the
synthesis of bacterial proteins [59]. However, despite their excellent antibacterial activity,
macrolides often suffer from poor bioavailability, unpredictable pharmacokinetics, and
low stability in the acidic environment of the stomach. These limitations, along with the
emerging antibacterial resistance, prompted early efforts to develop new derivatives with
enhanced properties, raising a growing interest in the synthesis of the next generations of
macrolide antibiotics. The second generation of macrolide antibiotics are semisynthetic
derivatives, mostly derived from erythromycin [60,61], whereas a third generation has
been prepared through a fully synthetic platform technology by assembling a left-hand
component and a right-hand component through reductive amination and subsequent
macrolactonization [62].

During the same period, the first glycopeptide vancomycin was isolated and read-
ily commercialized by Eli Lilly in 1958, paving the way to the glycopeptide antibiotics
era to fight Staphylococcus aureus (S. aureus), a microorganism able to elude most of the
classic antibiotics [63]. Glycopeptide antibiotics are a class of heptapeptides that are sub-
classified according to the identity of amino acids in positions 1 and 2 (Figure 1) [64].
Biochemical studies indicate that vancomycin and other glycopeptides inhibit peptidogly-
can synthesis by forming a stoichiometric 1:1 complex with the peptidoglycan precursor
UDP-N-acetylmuramylpentapeptide through five hydrogen bonds with the acyl-D-ala-D-
ala moiety, eventually inhibiting the transglycosylase enzyme and transpeptidase enzyme
reactions fundamental to the synthesis of the rigid cell wall peptidoglycan [65]. Prior to
1984, the glycopeptide class included only a few members beyond vancomycin, teicoplanin,
ristocetin, and avoparcin. However, due to administration issues and side effects, and with
the acknowledgment of the threat posed by antibiotic resistance, the class of glycopeptides
swelled to include thousands of natural and semi-synthetic compounds possessing multiple
mechanisms of action. The semisynthetic approaches to designing glycopeptide second
generation can be broadly categorized into three strategies, namely (1) the functionalization
of the functional groups on the outer shell of the parent peptides, (2) the modification
of the amino acids through disassembling and reassembling the peptidic scaffold, and
(3) dimerizing or trimerizing the glycopeptide through covalent bonding [64,66], the first
one probably being the most exploited [67].

At the end of the “golden age of discovery” of antibiotics, the first quinolone, nalidixic
acid, was isolated and suddenly introduced into the clinic [68]. However, quinolones
became the most often prescribed antibiotics in the world to treat a range of microbial
diseases in humans only in the 1980s, when the second generation of this class of antibiotics
was synthetized [69]. The common structural features of such compounds are a bicyclic
skeleton, a carboxylic acid, and a keto group at positions 3 and 4, respectively, which
are necessary for their pharmacological activity (Figure 1) [70]. Quinolones act as DNA
synthesis inhibitors because they are able to bind bacterial enzymes DNA gyrase and DNA
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topoisomerase IV, which are enzymes that play fundamental roles in most nucleic acid
processes, and convert them into cellular toxins [71]. Like the other class of antibiotics,
the targets of quinolones have also developed antibiotic resistance, mainly through three
different mechanism: (1) target-mediated resistance due to the modification of gyrase
and topoisomerase IV structures, (2) plasmid-mediated resistance due to the presence of
enzymes able to acetylate the free nitrogen on the quinolone scaffold and the generation
of efflux pumps, and (3) chromosome-mediated resistance though the underexpression of
porins and overexpression of efflux pumps, leading to a decrease in concentration of the
drugs in the cell. Due to the relative simplicity of the scaffold and to their wide-spectrum
anti-infective efficacy, quinolones have received a lot of interest from the medicinal chem-
istry field in the search of novel derivatives [72].

3. Antimicrobial Peptides (AMPs)

Since the isolation of gramicidin A and B in the 1930s, AMPs have emerged as promis-
ing candidates against antimicrobial resistance due to their broad-spectrum activity and
multiple/unique modes of action [73–75]. AMPs, also known as host defense peptides,
are a class of naturally occurring molecules that play a crucial role in the innate immune
systems of animals, plants, insects, and microorganisms [76]. They show activity against
Gram-positive and Gram-negative bacteria and other pathogens, such as fungi, viruses,
and parasites [77,78]. Moreover, they can also exert potent antibiofilm activity against mul-
tiresistant bacteria [79]. Currently, more than 60 peptides have been approved by the FDA
and more than 400 are in clinical trials, but only 7 have reached the market, used mainly as
topical medications and, in cases involving serious infections, as injectables [80,81].

Structurally, AMPs are small peptides, from 12 to 50 amino acids in length, and typ-
ically share several common physicochemical features, namely amphipathicity and the
capacity to form stable secondary motifs (α-helical, β-sheet, mixed, and cyclic structures)
which are responsible for their biological activity [82]. Amphipathicity contributes sig-
nificantly to the AMPs’ ability to selectively target microbial membranes. In fact, their
hydrophilic region, primarily composed of cationic residues (Lys and Arg), plays a funda-
mental role in the initial binding to negatively charged components on bacterial membranes
through electrostatic interactions. Unlike mammalian cell membranes, bacterial membranes
are rich in negatively charged components, such as phospholipids in the peptidoglycan cell
wall of Gram-positive bacteria, and lipopolysaccharide in the outer membrane of Gram-
negative bacteria. Once bound, AMPs exert their antimicrobial effects mainly through two
different mechanisms: bactericidal (membrane disruption causing cell lysis) and bacterio-
static (metabolic processes interference through nucleic acids binding and modulation of
bacteria essential functions) [83,84].

The membrane-targeting mechanisms of AMPs can be described through three differ-
ent models: the barrel stave, the toroidal pore, and the carpet. In the barrel-stave model,
AMPs are inserted into the lipid bilayer of the microbial membrane, aligning themselves
perpendicularly to the plane of the membrane. The peptides aggregate to form a pore
or channel through the membrane, resembling the staves of a barrel. The formation of
these transmembrane channels leads to the uncontrolled leakage of ions and other small
molecules, disrupting cellular homeostasis and ultimately causing cell death [85]. Similar
to the barrel-stave model, AMPs in the toroidal pore model are inserted into the membrane.
However, unlike barrel-stave pores, toroidal pores cause the lipid monolayers to bend
continuously through the pore, resulting in a toroidal (doughnut-like) structure. This
bending disrupts the integrity of the membrane, allowing ions and other molecules to pass
through the pore, leading to cell death [86]. In the carpet model, AMPs align parallel to
the membrane surface, covering it like a carpet. The peptides interact with the lipid head
groups, leading to a destabilization of the membrane. As the concentration of peptides in-
creases, this destabilization causes the membrane to disintegrate in a detergent-like manner,
resulting in cell lysis.
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Initially, the bactericidal effects of AMPs were attributed only to membrane-active
mechanisms. However, it has now been recognized that many AMPs target essential
cellular components and functions, leading to bacterial death. These AMPs translocate into
the cell membrane without disturbing it and inhibit critical cellular processes by interacting
with intracellular targets. To date, several mechanisms have been identified, including the
inhibition of protein and nucleic acid synthesis, as well as the degradation of enzymes and
proteins [87]. Notably, some AMPs exhibit multiple modes of action, killing bacteria by both
disrupting their membranes and interacting with intracellular targets [88]. One well-known
intracellular target is genomic DNA. AMPs can bind to DNA, affecting the expression of
related genes and inhibiting the synthesis of essential macromolecules. This interaction
can also lead to the degradation of DNA, further hampering bacterial survival [89]. The
ribosome, a key component of the translation machinery, is another significant target
for AMPs. By interacting with 70S ribosomes, AMPs can inhibit protein synthesis. This
interaction is facilitated by multiple hydrogen bonds and stacking interactions, effectively
halting bacterial growth and replication [90]. Intracellular enzymes and organelles can also
be targets for AMPs. By inhibiting or degrading essential enzymes, AMPs disrupt vital
metabolic processes within bacterial cells. This inhibition can result in the accumulation of
toxic intermediates or the depletion of necessary substrates, leading to cell death [91].

4. Antibiotic–AMP Conjugates

The synergistic effects of antimicrobial peptides with conventional antibiotics repre-
sent a promising strategy to enhance antibacterial efficacy and combat antibiotic resistance.
In fact, by combining different mechanisms of action, this approach can overcome bacterial
defenses and reduce the likelihood of resistance development [92]. One primary mecha-
nism by which AMPs enhance the efficacy of conventional antibiotics is through membrane
disruption. Many AMPs destabilize bacterial membranes, increasing permeability and al-
lowing antibiotics to penetrate more easily. This increased uptake can significantly enhance
the antibacterial activity of antibiotics that typically have limited access to intracellular
targets. This synergistic effect, which can be obtained by physical coadministration of
the antibiotics or by the synthesis of covalently linked conjugates, is particularly relevant
for antibiotics which require access to the bacterial inner compartments to exert their
effects [93,94].

Antibiotic–AMP conjugates are synthetized by anchoring conventional antibiotics
to an AMP or CPP through a suitable bifunctional linker. The peptide has two points of
attachment, the N-terminus or the C-terminus, even if the selective use of a side chain
could, in theory, be taken into consideration. In general, the linker can be classified as
a stable covalent linker or a cleavable stimuli-responsive linker. With cleavable stimuli-
responsive linkers, the AMP and the antibiotic could each act independently upon entering
the bacterial cell, targeting their respective sites. Conversely, if the conjugate molecules
remain intact, they function as a single, multimodal antibacterial compound. This allows
them to bind to and affect their targets simultaneously, with dynamics that may differ from
those of the individual components. Probably the most problematic task for the synthesis of
these conjugates is to find the right point of attachment on the antibiotic, since they usually
possess many reactive functional groups in their scaffolds. Accordingly, the following
sections of this chapter are organized considering the antibiotic scaffold.

4.1. Vanconomycin–AMP Conjugates

Vancomycin, exhibiting one of the strongest bindings known for low-molecular-weight
organic compounds with the D-Ala-D-Ala motif of the cell wall precursor lipid II, was
initially considered the drug devoted to treating antibiotic-resistant bacteria, as it is immune
to the development of resistance [64–66]. However, 30 years after its discovery, different
vancomycin-resistant strains, such as Enterococcus faecium (VRE), vancomycin-intermediate
and -resistant Staphylococcus aureus (VISA and VRSA) have been observed, for which
the discovery and development of novel antibiotics are urgently needed. In this contest,
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since clinical resistance to vancomycin took a lot of time to arise, the modification of this
glycopeptide could be a successful strategy. From a synthetic chemical perspective, the
selective functionalization of vancomycin could seem very difficult due to the presence of
many functional groups. However, it has been shown that there are four functional groups,
referred to as points of attachment, which can be exploited for selective functionalization
due to their unicity or particular reactivity (Figure 2). First, the carboxylic acid at the
C-terminus of the peptide sequence is the only carboxy functional group present in the van-
comycin scaffold, and thus can selectively react with amines upon worthy activation. Also,
the amino functional group at the N-terminus can be selectively coupled with activated
carboxylic acids, but only when it is not methylated (R = H, norvancomycin). Indeed, in
vancomycin (R = Me), activated carboxylic acids react with the amino group in the glycosyl
moiety (vancosamine, third point of attachment). Finally, the fourth point of attachment is
the resorcinol aromatic carbon in the ortho position of the two hydroxy groups that, being
very electron rich, readily undergo electrophilic aromatic substitution with iminium salts
in situ, produced by the reaction of formaldehyde and primary amines.
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One way to face vancomycin-resistant strains is to modulate the structure of the drug to
increase membrane binding and selectivity, eventually enhancing drug concentration at the
target site [95]. Accordingly, a library of vancomycin derivatives, referred to as vancapticins
1, was designed by coupling the free carboxylic acid on the glycopeptide with different
cationic peptides, mostly polilysines, having distinct lipophilic membrane-insertive el-
ements (MIEs) tethered at the N-terminus through two linkers, one of them built on a
cleavable disulfide bond (Figure 3). Structure–activity relationship studies (SAR) revealed
that vancapticins 1 possess enhanced membrane affinity, which boosts their effectiveness
against MRSA and various other Gram-positive bacteria. Additionally, vancapticins 1
retain their potency against strains that are resistant to trad itional glycopeptides.

The same strategy, namely tethering polycationic peptides to vancomycin to fight an-
tibacterial resistance, have been exploited for the synthesis of two vancomycin-polyarginine
conjugates [96]. Exploiting again the reactivity of the free carboxylic acid, vancomycin was
tethered to the N-terminus of D-octaarginine (r8) through a non-cleavable aminohexanoic
acid (Ahx) linker, obtaining conjugate 2 (Scheme 1A), which could have a stronger affinity
for the surface of the cell membrane and enhanced cell permeability, facilitating the action
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of vancomycin in arresting the cell wall synthesis and giving to vancomycin access to
intracellular binding targets. Octaarginine R8 4 was prepared through solid-phase peptide
synthesis (SPPS) and coupled with Cbz-Ahx-OH 3 in solution, leading to the formation of
r8-Ahx-r8 5 after the hydrogenolysis of the Cbz protecting group (Scheme 1B). Intermediate
5 was finally coupled to vancomycin, producing the final conjugate vacomycin-Ahx-r8
2, which turned out to be much more active than vancomycin by orders of magnitude
against difficult-to-treat MRSA populations, such as biofilms and persister cells, main-
taining comparable minimal inhibitory concentration (MIC) against vancomycin-resistant
Gram-positive organisms such as VISA and VRE.
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Following the same rationale, different vancomycin-polyarginine conjugates were
synthetized at four distinct points of attachment, namely the free carboxylic acid (VC),
the carbon in ortho position to the hydroxy groups of the resorcinarene ring (VR), the
N-methylammino function on the leucine residue (VN), and the free amino function on
the glycosyl frame (VV) (in Scheme 2A the structure of the most performant VN derivative
FU002 6 is represented) [97]. Apart from the site of attachment, the structures of the
conjugates are very similar, composed of the vancomycin antibiotic 7, a heterobifunctional
cross-linker, and hexaarginine, tagged with Cys at the C-terminus 9. The lead candidate
FU002 6 was prepared by site-specific coupling of vancomycin with sulfo-succinimidyl
4-(N-maleimidomethyl)cyclohaxane-1-carboxylate (sulfo-SMCC), providing intermediate
8, which was clicked in a solution with Cys-(Arg)6-NH2 9, affording FU002 6 (Scheme 2B).
FU002 6 showed a remarkably increased activity against the most important types of
vancomycin-resistant bacteria, having an additional mechanism of action beyond the
interaction with the D-Ala-D-Ala moiety responsible for cell-wall synthesis and superior
pharmacokinetics.
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With the aim to increase the cell-permeability of vancomycin but also to exploit the
synergistic effect of two antibiotics belonging to different classes, Adams et al. conjugated
vancomycin to amphiphilic AMPs Hectate (Hec), which is an amphiphilic peptide with
a net-positive charge and α-helix-predominant conformation (Figure 4) [98]. Exploiting
the reactivity of the free carboxylic acid on vancomycin and without the use of any linker,
vancomycin and Hec were coupled in a solution producing a Van-Hec conjugate 10 [99].
The synergistic effect of vancomycin conjugate to Hec, different from the two antibiotics
alone, causes the disruption of the bacterial cell-wall integrity, and is thus very active
against wild-type MRSA and VRSA.
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Inspired by the vancomycin conjugates shown above and considering that Gram-
negative strains are challenging to fight due to the presence of the impermeable lipopolysac-
charide (LPS)-rich outer membrane [100], a novel series of conjugates was recently designed
and synthetized by tethering vancomycin to antimicrobial LPS-binding peptides that were
previously demonstrated to exhibit a strong effect against Gram-negative bacteria [101]. Ac-
tually, a library of 80 conjugates, referred to as vancomycin-LPS-binding peptide conjugates
(VPCs) has been synthetized, exploiting all four points of attachment on the vancomycin
scaffold, different chemical inert bifunctional linkers, comprising alkyl and PEG linkers,
and a collection of six LPS-binding peptides [102]. After a first generation of conjugates,
where short peptides were tethered through click azide-alkyne reaction, which showed
modest MICs against Gram-negative strains—even if better activity than vancomycin
against E. faecium Gram-positive strain—a second generation of VPCs was prepared, of
which the structure of the most active, conjugate VPC 11, is shown in Scheme 3A. For this
second generation of conjugates, a different chemical strategy was chosen, namely the func-
tionalization of the vancomycin core 7 with bifunctional linkers 12, leading to the formation
of intermediate 13, having a maleimide moiety at the other end of the vancomycin point of
attachment, which clicked in solution with Cys-functionalized LPS-binding peptides 14,
previously prepared in solid phase (SP) (Scheme 3B). Some of these conjugates were further
functionalized on a different vancomycin point of attachment with lipophilic tails to study
the synergistic effect of the latter and LPS-binding peptides when tethered to the van-
comycin scaffold. The results in terms of MICs of VPNs compared to vancomycin against
Gram-positive and Gram-negative strains showed an increase in activity against VRE and
Gram-negative strains such as AB1157 (E. coli), A. baumannii, PA01 (P. aeruginosa), and
K. pneumonia, showing that modification with LPS-binding peptides (and further lipophilic
tails) alters the antimicrobial profile of vancomycin when fighting Gram-negative bacteria.
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4.2. β-Lactams-AMP Conjugates

With the evolution of many microorganisms that developed resistance to β-lactam
antibiotics, mainly due to the widespread diffusion of β-lactamase enzymes, a huge effort
has been and is being devoted by the scientific community in the quest for new derivatives
that will eventually lead to new generations of these antibiotics. Since the β-lactam ring,
the main feature for their activity is very labile, and the vast majority of the β-lactam
analogs arose from chemical modification of the pharmacophoric scaffold rather than total
synthesis [39]. Actually, both the penicillin scaffold and cephalosporin scaffold possess two
functional groups, namely the amino and the carboxylic acid groups, easily derivatized
upon protection of the other (Figure 5). Moreover, cephalosporin possesses a further point
of attachment consisting of the hydroxy group at the 3′ position.
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One of the drawbacks that limits the use of AMPs as therapeutic agents is their tox-
icity mainly caused by the presence of different cationic moieties. Indeed, it has been
shown that after blocking the amino groups of polymyxin E as methane sulphonate, the
resulting prodrug can be used systematically [103]. Inspired by the prodrug concept, the
first β-lactam-AMP conjugate was synthetized by linking cephalotin to D-Bac8c(Leu2,5),
an enantiomeric derivative of AMP Bac8c where the two D-isoleucine amino acids in
positions 2 and 5 are substituted with D-leucine, producing a conjugate, cephalotin- D-
Bac8c(Leu2,5) 15, which has reduced net-positive charge due to the presence of a carboxylate
(Scheme 4A) [104]. The point of attachment chosen was the hydroxy group of commer-
cially available 7-aminocephalosporanic acid (7-ACA). Accordingly, 7-ACA 19 was first
deacetylated to obtain the required free 3′-OH group by using mild tetrabutylammonium
hydroxide (TBAOH) at low temperature to avoid the β-lactam amide hydrolysis, then re-
acted with thienylacetyl chloride, producing the amide intermediate 20 (Scheme 4B). Next,
after protection of the carboxylic acid as diphenylmethyl ester, the OH group was converted
into the corresponding tetrachloroethyl carbamate 21, which was finally transformed in 22
by reaction with propargyl amine, followed by the ester protecting group cleavage in acidic
conditions. Resin-bound D-Bac8c(Leu2,5)-NH2 16 was prepared by standard SPPS accord-
ing to the Fmoc/tBu, protecting group strategy, and converted to D-Bac8c(Leu2,5)-N3 18
by diazotransfer reaction with imidalole-1-sulfonyl azide hydrochloride and cleavage from
the resin. Finally, a click reaction between 22 and 18 was performed in solution leading to
the formation of the target cephalotin- D-Bac8c(Leu2,5) 15. Conjugate 15 is considered a
prodrug since the carbamate moiety of the conjugate acts as a cleavable linker when the
β-lactam ring is hydrolyzed in the presence of β-lactamases, delivering the free peptide.

However, even if the final conjugate 15 could be potentially used in systemic therapies
preventing toxicity issues, it was found to have a slightly lower MIC than the parent-free
peptide against E. coli and MRSA, probably due to a lower uptake.

A second exploited point of conjugation on β-lactam antibiotics is the free amino
function on the β-lactam ring. Accordingly, Wade et al. investigated the possibility
of linking the N-terminus of three cationic AMPs, namely MSI-78, CA(1–7)M(2–9)NH2
and des-Chex1-Arg20, to the amino function of 7-ACA 19 and cephalosporins precursor
7-aminodesacetoxycephalosporanic acid (7-ADCA) 29 directly to the solid phase through
the glutaric acid linker, producing 6 AMP-β-lactam conjugates 23–28 (Scheme 5A) [105].
Accordingly, by protecting the amino function of 7ACA and 7-ADCA as NH-Boc carba-
mate and the carboxylic acid as Fmoc-ester, they obtained intermediates 30 that were
selectively Boc-deprotected, generating derivatives 31 that can be readily used in SPS
(Scheme 5B). The AMPs were grown on Rink resin and after Fmoc-deprotection of the last
amino acid of 32, they were coupled with glutaric anhydride, leading to the formation of
resin-bound peptides 33, which were coupled with 31, cleaved from the resin producing 34,
and finally deprotected at the carboxylic function of the β-lactams in a solution affording
conjugates 23–28. The activity of these conjugates was measured against different nosoco-
mial pathogens and only in one case did the conjugate MSI-78-ACA-25 and MSI-78-ADCA
26 reveal a synergistic effect against A. baumannii and MDR A. baumannii 156.

Another small library of 4 β-lactam antibiotic–AMP conjugates was synthetized ex-
ploiting the free amino group on the β-lactam ring and a stimuli-responsive disulfide
linker [106]. The rationale behind the design of such conjugates is to exploit the ability of
AMPs to cross the inner and outer bacterial cell membranes of Gram-negative bacteria to
help the β-lactam antibiotic reach its targets after the cleavage of the disulfide linker in
the periplasm and cytosol [107]. Accordingly, ampicillin (Amp), herein used as a model
β-lactam antibiotic, was tethered at either the N- and C-terminus of two AMPs having
different characteristics, namely membrane-disrupting magainin analog 2P2-2 that was
developed by the same group [108] and proline-rich oncocin, which is able to cross the inner
and outer membranes without membrane lysis [109], producing the four conjugates 35–38
represented in Scheme 6A. Amp 43 was functionalized with 3-(2-pyridyldithio)propionic
acid N-succinimidyl ester (PDPS) to obtain intermediate 44, which was coupled in solution
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with the two AMPs that were previously synthetized through SPPS and tagged with the
required Cys, either at the N- and C-terminus, yielding the target Amp-AMP conjugates
35–38, having a cleavable disulfide linker (Scheme 6B). The MIC values of the four conju-
gates, along with undecorated AMPs, physical mixtures of AMP + Amp, and conjugates
built with a non-cleavable thioether linker, were evaluated against Gram-negative bacteria
E. coli BW 25113 and A. baumannii ATCC 19606 and Gram-positive Staphylococcus epidermidis
ATCC 12228. Interestingly, derivative Amp-SS.9P2-2 37 showed significantly increased
activity against Amp-resistant A. baumannii and no cytotoxicity against HEK cells, whereas
the oncocin-conjugates did not show enhanced antimicrobial activity, probably due to a
lower membrane permeability induced by the introduction of the Cys tag on the peptide
sequence. It is worth noting that conjugate 37 is the first β-lactam-AMP conjugate that
showed remarkably increased activity against ampicillin-resistant Gram-negative bacteria,
highlighting the efficiency of an approach based on tethering-suitable antibiotics with ad
hoc AMPs through a cleavable linker.
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4.3. Aminoglycoside–AMP Conjugates

Aminoglycosides (AGs) have a broad spectrum of activity against pathogenic bacteria,
which has led to their extensive use and occasional misuse over the past seventy years,
establishing them as a valuable class of antibiotics. However, their clinical effectiveness is
hampered by the toxic side effects associated with their use, in particular nephrotoxicity
and ototoxicity, and by the evolution of different mechanisms of resistance developed by
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bacteria, encompassing the decrease in AG uptake and the emergence of aminoglycoside-
modifying enzymes (AMEs) [52,54]. Much effort has been devoted, and still is, to the
chemical modification of natural aminoglycosides to accommodate a resurgence of these
antibiotics. Similar to glycopeptide antibiotics, the chemical functionalization of amino-
glycosides may initially appear challenging due to the presence of numerous identical
functional groups, such as hydroxyl and amino groups, which exhibit similar reactivity.
However, aminoglycosides contain primary alcohols and/or amino groups attached to
primary carbons, which can be targeted for selective functionalization due to their lower
steric hindrance (Figure 6).

Antibiotics 2024, 13, x FOR PEER REVIEW 15 of 37 
 

 

Scheme 5. Structure of ACA- and ADCA-conjugates 23–28 (A) and their synthesis (B). 

Another small library of 4 β-lactam antibiotic–AMP conjugates was synthetized ex-

ploiting the free amino group on the β-lactam ring and a stimuli-responsive disulfide 

linker [106]. The rationale behind the design of such conjugates is to exploit the ability of 

AMPs to cross the inner and outer bacterial cell membranes of Gram-negative bacteria to 

help the β-lactam antibiotic reach its targets after the cleavage of the disulfide linker in the 

periplasm and cytosol [107]. Accordingly, ampicillin (Amp), herein used as a model β-

lactam antibiotic, was tethered at either the N- and C-terminus of two AMPs having dif-

ferent characteristics, namely membrane-disrupting magainin analog 2P2-2 that was de-

veloped by the same group [108] and proline-rich oncocin, which is able to cross the inner 

and outer membranes without membrane lysis [109], producing the four conjugates 35–

38 represented in Scheme 6A. Amp 43 was functionalized with 3-(2-pyridyldithio)propi-

onic acid N-succinimidyl ester (PDPS) to obtain intermediate 44, which was coupled in 

solution with the two AMPs that were previously synthetized through SPPS and tagged 

Scheme 5. Structure of ACA- and ADCA-conjugates 23–28 (A) and their synthesis (B).



Antibiotics 2024, 13, 783 16 of 36

Antibiotics 2024, 13, x FOR PEER REVIEW 16 of 37 
 

with the required Cys, either at the N- and C-terminus, yielding the target Amp-AMP 

conjugates 35–38, having a cleavable disulfide linker (Scheme 6B). The MIC values of the 

four conjugates, along with undecorated AMPs, physical mixtures of AMP + Amp, and 

conjugates built with a non-cleavable thioether linker, were evaluated against Gram-neg-

ative bacteria E. coli BW 25113 and A. baumannii ATCC 19606 and Gram-positive Staphylo-

coccus epidermidis ATCC 12228. Interestingly, derivative Amp-SS.9P2-2 37 showed signifi-

cantly increased activity against Amp-resistant A. baumannii and no cytotoxicity against 

HEK cells, whereas the oncocin-conjugates did not show enhanced antimicrobial activity, 

probably due to a lower membrane permeability induced by the introduction of the Cys 

tag on the peptide sequence. It is worth noting that conjugate 37 is the first β-lactam-AMP 

conjugate that showed remarkably increased activity against ampicillin-resistant Gram-

negative bacteria, highlighting the efficiency of an approach based on tethering-suitable 

antibiotics with ad hoc AMPs through a cleavable linker.  

 

Scheme 6. Structure of Amp-conjugates 35–38 (A) and their synthesis (B). 

  

Scheme 6. Structure of Amp-conjugates 35–38 (A) and their synthesis (B).

Antibiotics 2024, 13, x FOR PEER REVIEW 17 of 37 
 

4.3. Aminoglycoside–AMP Conjugates 

Aminoglycosides (AGs) have a broad spectrum of activity against pathogenic bacte-

ria, which has led to their extensive use and occasional misuse over the past seventy years, 

establishing them as a valuable class of antibiotics. However, their clinical effectiveness is 

hampered by the toxic side effects associated with their use, in particular nephrotoxicity 

and ototoxicity, and by the evolution of different mechanisms of resistance developed by 

bacteria, encompassing the decrease in AG uptake and the emergence of aminoglycoside-

modifying enzymes (AMEs) [52,54]. Much effort has been devoted, and still is, to the 

chemical modification of natural aminoglycosides to accommodate a resurgence of these 

antibiotics. Similar to glycopeptide antibiotics, the chemical functionalization of amino-

glycosides may initially appear challenging due to the presence of numerous identical 

functional groups, such as hydroxyl and amino groups, which exhibit similar reactivity. 

However, aminoglycosides contain primary alcohols and/or amino groups attached to pri-

mary carbons, which can be targeted for selective functionalization due to their lower ste-

ric hindrance (Figure 6).  

 

Figure 6. Kanamycin and tobramycin selective functionalization. 

The first aminoglycoside-AMP conjugate that appeared in the literature, i.e., Pento-

bra 45 (Scheme 7A) was designed to target persister bacterial cells and to combat the an-

aerobic bacterium Propionibacterium Acnes (P. acnes), which is difficult to treat since 

charged antibiotics are not able to penetrate into the largely lipophilic sebaceous mem-

brane [110]. To increase the bacterial permeability of tobramycin without missing its ribo-

somal activity, Pentobra 45 was designed by linking tobramycin to a short 12mer AMP 

with the ability to selectively permeate bacterial membranes through a succinyl linker 

[111,112]. Accordingly, after Boc-protection of the amino groups of tobramycin, the pri-

mary hydroxy group of 46 was selectively functionalized with succinic anhydride, leading 

to the formation of intermediate 47, which was coupled in SP to the N-terminus of the 

AMP, produced after cleavage from the resin Pentobra 45 (Scheme 7B). The conjugate 

showed high activity against E. coli and S. aureus persister cells and a wide range of P. 

acnes due to the synergic effects, namely membrane activity and inhibition of protein syn-

thesis [111], along with no adverse effect and anti-inflammatory activity [112]. 

Figure 6. Kanamycin and tobramycin selective functionalization.

The first aminoglycoside-AMP conjugate that appeared in the literature, i.e., Pentobra
45 (Scheme 7A) was designed to target persister bacterial cells and to combat the anaer-
obic bacterium Propionibacterium Acnes (P. acnes), which is difficult to treat since charged
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antibiotics are not able to penetrate into the largely lipophilic sebaceous membrane [110].
To increase the bacterial permeability of tobramycin without missing its ribosomal activity,
Pentobra 45 was designed by linking tobramycin to a short 12mer AMP with the ability to
selectively permeate bacterial membranes through a succinyl linker [111,112]. Accordingly,
after Boc-protection of the amino groups of tobramycin, the primary hydroxy group of
46 was selectively functionalized with succinic anhydride, leading to the formation of
intermediate 47, which was coupled in SP to the N-terminus of the AMP, produced after
cleavage from the resin Pentobra 45 (Scheme 7B). The conjugate showed high activity
against E. coli and S. aureus persister cells and a wide range of P. acnes due to the synergic
effects, namely membrane activity and inhibition of protein synthesis [111], along with no
adverse effect and anti-inflammatory activity [112].
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In the attempt to increase the potentiality of Pentobra 45 in terms of accumulation
in bacteria by increasing membrane permeability and limiting the action of the efflux
systems activated by the bacterial species, the same group synthetized a collection of
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four new kanamycin-AMP conjugates, MAAP02-05 50–53, where the peptide transporter
sequence is modified according to sequence principles based on quantum mechanical
models for membrane-permeating peptides (Scheme 8A) [113]. Probably due to the low
yield obtained in the functionalization of tobramycin for the synthesis of Pentobra 45, a
new synthetic pathway was employed. Accordingly, the primary hydroxy group of Boc-
protected tobramycin 46 was selectively transformed in tosylate upon treatment with tosyl
chloride in pyridine and substituted by an azide, leading to the formation of intermediate
54 which was clicked with Fmoc-NH-protected propargyl-alanine-affording conjugate 55
(Scheme 8B). The free carboxylic acid was used to anchor 55 to 2-cholotrytyl chloride resin
(CTC) where the AMP peptide was grown through Fmoc-strategy, providing after cleavage
the synthesis of two 13-mer and two 12-mer tobramycin-AMP conjugates, referred to as
MAAPCs 50–53. The MAAPCs demonstrated good selectivity for bacterial cell membranes
over mammalian cell membranes and did not cause significant hemolysis of human red
blood cells. They also exhibit superior antibacterial activity against actively growing
Gram-negative E. coli compared to Gram-positive S. aureus. Among them, MAAPC05
53, along with Pentobra 45, exhibits the highest inner membrane permeability, which
correlates well with antimicrobial activity against persisters, showing much better activity
than tobramycin alone.
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With the same rationale, namely to increase the ability of aminoglycosides to cross
bacterial cell membranes, aminoglycoside-AMP conjugates were designed to fight bacte-
rial pathogens encompassing MRSA, Salmonella, Mycobacterium, and Brucella, which are
internalized within mammalian cell macrophages [114–116]. Since aminoglycosides, along
with other antibiotics, are characterized by insufficient membrane permeability within
macrophages and suffer drug efflux, kanamycin was tethered to a modified proline-rich cell-
penetrating peptide with intrinsic, nonmembrane lytic antimicrobial activity targeting intra-
cellular pathogenic bacteria [117], through both a cleavable disulfide linker or non-cleavable
alkyl linker, generating P14kanS 58 and P14kanC 59, respectively, (Scheme 9A) [118]. Boc-
protected kanamycin 60 was reacted with 4,4′-dithiobutyric acid or sebacic acid, giving rise
to the formation of mixtures of isomers from which compounds 61 and 62 were isolated
and fully characterized by NMR spectroscopy. The obtained intermediates 61 and 62 were
coupled in SP to the N-terminus of the proline-rich AMP, and generated after cleavage from
the resin the target conjugates P14kanS 58 and P14kanC 59 (Scheme 9B). Very interestingly,
P14kanS 58 was more potent than P14kanC 59, P14LRR AMP, and the non-covalent mixture
of kanamycin and P14LRR against different Gram-negative and Gram-positive bacteria,
encompassing intracellular pathogens. Since the conjugates did not lyse membranes, as
demonstrated by monitoring the β-galactosidase release from E. coli after the addition of
the conjugates, these results demonstrated the synergistic effect of the antibiotics, which
can operate when the disulfide bond is cleaved in the reductive environment inside the cell,
and kanamycin is released. Moreover, in successive work, P14kanS 58 has proved to have
potent antimicrobial activity against ESKAPE pathogens, along with anti-inflammatory
activity and a great ability to treat biofilms [119].

Another proline-rich antimicrobial peptide (PrAMP) is Bac7, and in particular, the
segments Bac7(1–16) and Bac7(1–35), the 16-mer and 35-mer N-terminal segments that
showed comparable antimicrobial activity to the parent full peptide [120,121]. These
functional fragments are referred to as bacteria-penetrating peptides (BPPs) since they
cross the bacterial inner membrane via the SbmA transporter without permeabilizing
the membrane at active concentrations to eventually interact with the target ribosome
and inhibit protein synthesis. To target bacterial ribosomes with two distinct synergistic
mechanisms, Bac7(1–16) and Bac7(1–35) fragments were tethered to tobramycin with a
cleavable disulfide linker that would release the active components in the intracellular
reductive environment (Scheme 10A) [122]. Resin-bound Cys 66, which was obtained by
anchoring FmocNH-Cys(Tr)-OH to the Rink resin, was Fmoc-deprotected and coupled with
succinyl Boc-trobamycin 47, obtained as described in Scheme 7B, leading to the formation
of tobramycin-Cys conjugate 67 after cleavage from the resin (Scheme 10B). Conjugate 67
was reacted with 2,2′-dithiopyridine to yield 68, which was submitted to conjugation with
Bac7(1–15)[Cys16]NH2 and Bac7(1–35)[Cys36]NH2, producing the final hybrid antibiotics
mTob-Bac7(1–15)[Cys16]NH2 64 and mTob-Bac7(1–35)[Cys36]NH2 65, respectively. The
resulting conjugates showed activity against strains to which tobramycin and the Bac7
segments were inefficient, such as clinically isolated Gram-negative bacteria strains E. coli
and P. aetuginosa, and other Gram-negative species (A. baumanii and S. enteridis), proving
that the conjugation strategy is rewarding even if the real mechanism of action is not
yet clear.

The antibacterial activity of PrAMPs depends also on the propensity of such peptides
to assume more stable secondary conformations that have been shown to be very important
to their ability to permeate and destabilize the bacterial cell membrane. A common strategy
to stabilize the secondary structure of peptides, other than the introduction of prolines in
the sequence, is peptide stapling [123], a technique that has been successfully exploited
in the design of active stapled antimicrobial peptides (StAMPs) [124]. A peptide that has
witnessed an improvement in terms of proteolytic stability and antibacterial activity, thanks
to the stabilization of its helical structure upon hydrocarbon stapling, is anoplin [125].
Recently, anoplin and stapled anoplin have been tethered to amikacin and neomycin
through both a non-cleavable triazole linker and a cleavable disulfide linker, generating a



Antibiotics 2024, 13, 783 21 of 36

small library of two non-cleavable neomycin-anoplin conjugates, namely Neo-anoplin 69
and Neo-anoplin[2–6] 70, two cleavable neomycin-anoplin conjugates, i.e., Neo-SS-anoplin
71 and Neo-SS-anoplin[2–6] 72, and two non-cleavable amikacin-anoplin conjugates, i.e.,
Amk-anoplin 73 and Amk-anoplin[2–6] 74, whose structures are reported in Figure 7 [126].
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For the synthesis of these conjugates, the presence of only one primary hydroxy group
on both the aminoglycosides neomycin and amikacin was exploited. As an example,
neomycin was first Boc-protected at the amino functions, then reacted with bulky triiso-
propylsulfonyl chloride (TIPS-Cl) to selectively transform the primary hydroxy group in
sulfate which was transformed into the corresponding azide 75 by nucleophilic substitution
(Scheme 11). Azide 75 can be either clicked with anoplin or anoplin[2–6], functionalized at
the N-terminus with dec-9-ynoic acid for the synthesis of the non-cleavable derivatives 69
and 70, respectively, or reacted with thiourea followed by 2-mercaptopryridined to afford
intermediate 76, which were reacted in solution to anoplin or anoplin[2–6], functionalized at
the N-terminus with Cys to afford cleavable Neo-SS-anoplin 71 and Neo-SS-anoplin[2–6] 72,
respectively. In this case, the conjugates obtained, regardless of the nature of the linker and
the structure of the AMP, were only slightly more active, or as active as the corresponding
components, showing no synergistic effect.
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The improvement of the uptake of aminoglycosides to make them able to fight intra-
cellular bacterial infections has also been explored in combination with CPPs. In particular,
two peptides, α1H and α2H, which are two α-helices responsible for the penetration
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ability of the bacterial effector protein YopM into eukaryotic cell [127], have been teth-
ered to gentamycin through a non-cleavable linker producing two conjugates, namely
α1H-gentamycin 77 and α2H-gentamicin 78, along with a third conjugate synthetized by
anchoring gentamycin to the well-known polyarginine Tat peptide, i.e., Tat-gentamycin 79
(Scheme 12A) [128]. Accordingly, by reacting gentamycin 80 with cross-linker succinimidyl-
4-(N-maleimidomethyl)cyclohexane-1-carboxylate (SMCC), the intermediate 81 was ob-
tained as the main product (Scheme 12B). Conjugate 81 was then clicked through thiol-
maleimide chemistry to Cys-modified Tat, α1H, and α2H peptides, leading to the formation
of the final conjugates 77–79, respectively.

Both α1H, α2H, and Tat peptides were able to promote cellular internalization of
gentamycin since the corresponding conjugates 77–79 were active against multiple in-
tramolecular Gram-negative pathogenic bacteria, such as E. coli K1, Salmonella enterica, and
Shigella flexneri.

4.4. Miscellanous

Apart from β-lactams, vancomycin, and aminoglycosides, other classes of antibiotics
have also been used to build antibiotic–AMP conjugates.

Inspired by the observation that when fluoroquinolones are administered with AMPs,
the resulting cocktail shows a synergistic effect, broadening the antibacterial spectrum
of the antibiotics along with a decreasing therapeutic dose that would result in lower
adverse reactions [120,129], Toh et al. reasoned that a similar result could be obtained by
linking levofloxacin to indolicin—an AMP with a broad spectrum of activity against Gram-
negative and Gram-positive bacteria [130]—through a labile ester linkage or a more stable
amide linker. The conjugation produced two AMP-levofloxacin conjugates, namely the
prodrug levo-O-indolicidin 82 and the corresponding amide derivative levo-N-indolicidin
83, whose ability to cross the outer membrane of bacteria could be higher than that of
levofloxacin due to the present of the highly lipophobic peptide (Scheme 13A) [131]. The
two conjugates 82 and 83 were synthetized through SPPS by reacting the free carboxylic
acid of levofloxacin 86 with the N-terminus of the peptide tagged with glycolic acid or
Gly 84 and 85, respectively (Scheme 13B). While the physical mixture of indolicin and
levofloxacin was slightly more active compared to both antibiotics, in particular against
B. subtilis ATCC 6633, the conjugates did not show the same effect.
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Levofloxacin, along with another fluoroquinolone ciprofloxacin, was also tethered to
a different AMP, namely HLopt2, which is an antimicrobial analog of HLP-2, a segment
of Lactoferrin with potent antimicrobial activity against both Gram-negative and Gram-
positive bacteria [132]. The three conjugates were designed and synthetized to increase the
permeability of the fluroquinolone antibiotics thanks to the ability of HLopt2 to destroy
the bacterial cell through pore formation mechanisms (Figure 8) [133]. All the conjugates
were synthetized through SPPS, LVX-HLopt2-NH2 87 by anchoring the carboxylic acid of
levofloxacin to the N-terminus of HLopt2, CIP-CH2CO-HLopt2-NH2 88 by coupling the
secondary amine of ciprofloxacin with the N-terminus of HLopt2 previously functionalized
with bromoacetic acid, while CIP-Cys-SS-HLopt2-NH2 89, the only conjugate with a stimuli-
responsive linker, by formation of a disulfide bond between Cys-modified ciprofloxacin
and Cys residue, was linked to the N-terminus of HLopt2 [134]. Interestingly, all the
conjugates showed increased activity along with low toxicity to mammalian cells and
very low hemolytic activity, CIP-Cys-SS-HLopt2-NH2 89 being the most active against
S. aures due to the reducing environment that trigged the disulfide bridge cleavage with
the corresponding release of the two antibiotics.
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Other than to increase the permeability of small-molecule antibiotics, the conjuga-
tion strategy with AMP could be exploited to overcome the non-specificity of potent
broad-spectrum antibiotics which suffer severe toxic side effects [135]. For instance, chlo-
ramphenicol (CAP) is one of the most effective broad-spectrum antimicrobial agents whose
clinical use was hampered by its high risk of bone marrow toxicity [136]. CAP, being
lipid-soluble, diffuses through the bacterial cell membrane and reversibly binds to the L16
protein of the 50S subunit of bacterial ribosomes. This binding prevents the transfer of
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amino acids to growing peptide chains, likely by suppressing peptidyl transferase activity,
thereby inhibiting peptide bond formation and subsequent protein synthesis. To overcome
its non-specificity, chloramphenicol was tethered to UBI29–41, which is a cationic AMP
highly investigated for its capacity to bind bacteria with high affinity [137], through a non-
cleavable glutaric linker, leading to the formation of CAP-UBI29–41 90 (Scheme 14A) [138].
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CAP 91 was reacted with glutaric anhydride, yielding a mixture of products due to the
indiscernible reactivity of the two hydroxy groups, from which intermediate 92 was isolated
at around 50% yield. After that, 92 was coupled in solution with commercially available
UBI29-41 yielding, after HPLC purification, CAP-UBI29–41 conjugate 90. Gratifyingly,
in vitro studies demonstrated that CAP-UBI29–41 90 has enhanced antibacterial effects on
S. aureus and E. coli., also showing significantly reduced toxicity to normal cells compared
to CAP. Most importantly, this result was also obtained in bacteria-bearing mouse models,
indicating that UBI29-41 is an ideal targeting ligand for constructing antibacterial agents
for bacteria-targeting therapy.

Differently from CAP, selectivity is not a big issue for the use of macrolides, since
their mechanism of action depends on their affinity to the so-called “macrolide-binding
site” which allows them to selectively inhibit translation in bacteria. However, this class of
antibiotics suffers antibiotic resistance due to the ability of bacteria to modify the target-
binding site [58]. To fight antibacterial resistance, a huge body of work has been devoted to
chemically modifying the different scaffolds of macrolides. For instance, the modification
of the 4′- and 4′′-hydroxyl groups of the mycaminose moiety of desmycosin (DES) leads
to analogs able to fight antibacterial resistance [139]. With the same aim, DES was conju-
gated to fragments of oncocin, an AMP whose activity depends on the interaction with a
binding site that overlaps with the binding site of macrolides [109,140]. DES-oncocin 93
(Scheme 15A) was synthetized starting from tylosin antibiotic 94, which was acetylated
and hydrolyzed under acidic conditions, producing DES derivative 95 and having the
hydroxyl group in the 4′ position unprotected, thus ready to be selectively functionalized
(Scheme 15B) [141]. Accordingly, 95 was coupled with the Boc-γ-aminobutyric acid (GABA)
linker, affording, after deprotection, intermediate 96, which was coupled with three differ-
ent oncocin-fragments, the longer being Boc-Val-Asp(tBu)-Lys(Boc)-Pro-Pro-Tyr(tBu)-OH
previously prepared through SPPS, yielding the target conjugate 93 after deprotection of all
the side chains.
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The resulting conjugates showed activity against some macrolide-resistant bacteria
strains by binding to the E. coli 70S ribosome, thus inhibiting bacterial protein synthesis
and suppressing bacterial growth.

5. Conclusions

Despite their widespread use and success in treating bacterial infections, conventional
antibiotics face several significant challenges. One of the primary issues is the rapid de-
velopment of bacterial resistance, which can render these drugs ineffective over time. The
discovery and development of new antibiotics have slowed down significantly due to high
costs, lengthy development times, and stringent regulatory requirements, making it difficult
to keep pace with emerging resistant strains. AMPs are an alternative to small-molecule
antibiotics, offering several promising advantages in combating bacterial infections and
antimicrobial resistance. One of their primary benefits is their broad-spectrum activity,
allowing them to target a wide range of pathogens, including bacteria, fungi, and viruses.
AMPs typically act rapidly with a mode of action that is less specific than traditional
antibiotics, reducing the likelihood of resistance development. Moreover, they can disrupt
biofilms, which are protective layers formed by bacterial communities that conventional
antibiotics often cannot penetrate. However, AMPs also suffer from some drawbacks, such
as susceptibility to proteolytic degradation by enzymes in the human body, cytotoxicity
towards human cells at higher concentrations, and poor pharmacokinetic properties, neces-
sitating frequent dosing or alternative administration routes, which can be less convenient
for patients.

Combination therapy with old antibiotics and AMPs represents a promising frontier
in the fight against AMR, overcoming most of the drawbacks associated with the use of



Antibiotics 2024, 13, 783 30 of 36

single components. This innovative therapy combines the potent, broad-spectrum activity
of AMPs with the targeted efficacy of traditional antibiotics, resulting in enhanced antimi-
crobial effectiveness. The choice between antibiotic–AMP conjugates and coadministration
depends on various factors, including the type of infection, the specific pathogens involved,
patient characteristics, and available resources. Coadministration provides flexibility and
simplicity but requires careful management to avoid issues with drug interactions and
resistance. Conjugates offer the potential for highly targeted and effective treatment with
lower resistance development, but they come with challenges related to complexity and
cost. By leveraging the membrane-active properties of AMPs, antibiotic–AMP conjugates
facilitate improved antibiotic penetration and intracellular concentration, while also en-
suring more specific targeting of bacterial cells over host cells. This dual-action approach
not only increases the potency of the treatment but also allows for lower dosages, reducing
potential side effects and minimizing the risk of developing resistance.

Although no antibiotic–AMP conjugates have successfully reached the market thus far,
as research continues, with ongoing advancements in technology, innovations in peptide
synthesis, delivery methods, and conjugation technologies, alongside a deeper understand-
ing of bacterial biology and the mechanisms by which AMPs and small-molecule antibiotics
operate, antibiotic–AMP conjugates are emerging as a versatile and powerful strategy for
addressing the global challenge of AMR.

Peptide synthesis technologies are evolving, allowing for the creation of more complex
and stable AMPs with enhanced therapeutic properties. Advances in delivery methods
are ensuring that these conjugates can be effectively transported to the target sites within
the body, maximizing their efficacy while minimizing potential side effects. Additionally,
new conjugation technologies are enabling the precise linkage of AMPs and antibiotics,
enhancing their synergistic effects and overcoming bacterial defenses more effectively.

Our growing understanding of bacterial biology is crucial in this fight. Insights into
bacterial resistance mechanisms, biofilm formation, and virulence factors are guiding the
design of more effective conjugates. By targeting specific bacterial pathways and structures,
these conjugates can disrupt the bacteria’s ability to survive and replicate, even in the
presence of traditional antibiotics. Furthermore, the mechanisms of action of AMPs and
antibiotics are being elucidated in greater detail. This knowledge is instrumental in creating
conjugates that can bypass resistance mechanisms, such as efflux pumps and enzymatic
degradation, which bacteria commonly use to neutralize antibiotics. By combining the
membrane-disrupting properties of AMPs with the intracellular-targeting capabilities
of antibiotics, these conjugates can deliver a one-two punch that bacteria find difficult
to counteract. Additionally, the versatility of antibiotic–AMP conjugates lying in their
potential to be tailored for specific infections and bacterial strains can lead to more effective
treatments with fewer side effects, as therapies can be designed to target only the pathogenic
bacteria without harming the beneficial microbiota. This precision medicine approach not
only enhances patient outcomes but also reduces the likelihood of resistance development.

Finally, economic and regulatory incentives must play a critical role in the development
and deployment of antibiotic–AMP conjugates. Governments and health organizations are
recognizing the urgent need to combat AMR and are providing funding, tax incentives,
and streamlined regulatory pathways to accelerate the development of new antimicrobial
agents. These incentives are crucial for encouraging pharmaceutical companies to invest in
this high-risk, high-reward area of research and development.

In conclusion, the integration of cutting-edge technologies, a deepening understanding
of bacterial biology, and supportive economic and regulatory frameworks are paving the
way for antibiotic–AMP conjugates to become a cornerstone in the fight against AMR. These
conjugates hold promise for revitalizing the efficacy of existing antibiotics and introducing
new, potent antimicrobial therapies to safeguard public health for future generations.
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