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Abstract—We consider the problem of designing a disturbance
compensator for a discrete time linear system, so as to optimize
a performance index while satisfying probabilistic state and
input constraints in steady-state conditions. The problem is
formulated as a chance-constrained program that depends on the
compensator parameters through the state and input stationary
distributions. In this paper, we focus on the Gaussian noise
case and provide an analytic expression of the stationary state
distribution as a function of the compensator parameters. This
expression can be used in the chance-constrained program, which
can then be tackled via the scenario approach. Some useful
extensions of the set-up are also discussed to further broaden
the applicability of the approach. Performance of the proposed
design methodology is shown on a building energy management
problem where cyclostationary disturbances are compensated,
thus providing a stochastic periodic control solution.

Index Terms—Disturbance compensation, optimal constrained
control, stochastic linear systems.

I. INTRODUCTION

THIS paper is concerned with the design of a disturbance
compensator optimizing performance for a constrained

discrete time linear system affected by an additive white
Gaussian noise and operating in stationary conditions.

The compensator design entails characterizing and opti-
mally shaping the distribution of the stationary state process,
which depends on the compensator parameters. The problem
addressed resembles the ones tackled by the minimum variance
(MV) ([1]), generalized minimum variance (GMV) ([2], [3],
[4], [5], [6], [7]), and H2 ([8, pag. 273]) control approaches,
where the stationary state distribution is shaped so as to
minimize the variance of a given output signal. However, in
contrast to those design methodologies, we are not limited to
the variance as cost function, and we can explicitly enforce
(probabilistic) state and input constraints without resorting to
the constraint softening solution adopted in the MV and GMV
literature, where a penalty term is added to the cost function,
see e.g., [9]. In turn, we address the design of a disturbance
compensator and not of a state feedback controller.

Our set-up is motivated by problems arising in the energy
domain, such as the optimal operation of building Heating
Ventilation and Air Conditioning (HVAC) systems and grid-
connected solar photovoltaic power plants, where disturbances
(specifically, the ambient temperature and the solar energy
production) can be easily measured and directly compensated.
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In some applications also, the state of the system is hardly
accessible and feedback control strategies cannot be applied.
An example is represented by the thermal control of a building,
where the state variables are the temperatures of the slices
of the walls modeling the inertia of the building acting as a
passive storage, [10], [11], [12].

The optimal design of a steady-state disturbance compen-
sator for a constrained system subject to unbounded stochastic
disturbances is naturally formulated as a chance-constrained
optimization program, where constraints are imposed in prob-
ability. This kind of program is, in general, hard to solve
exactly, [13], and analytic ([14], [15], [16]) as well as ran-
domized ([17], [18], [19], [20]) methods have been introduced
to solve them by approximating the probabilistic constraints.
Unfortunately, these methods are not directly applicable in
our setting because of the dependence of the constraints
on the compensator parameters through the stationary state
distribution.

In this paper, we show that, if the system is affected by white
Gaussian noise, then the Gaussian stationary state distribution
can be explicitly characterized through its mean and covari-
ance, which are both computed as analytic functions of the
compensator parameters. As a result of this characterization,
the so-called scenario approach ([21], [22], [18], [17]) can
be directly applied so as to provide a randomized solution with
guarantees of chance-constrained feasibility.

In our recent work [23], [24], we addressed the same
problem but without assuming the noise to be either Gaussian
or white. though the setup is more general than that of the
present paper, the solution in [23], [24] is completely different
from the one introduced here because the stationary state
distribution is generally not Gaussian and, hence, cannot be
characterized only through its first and second order mo-
ments. In [23], [24] then, the distribution is approximated
by introducing a suitable truncation of the series defining the
stationary state process, and one has to resort to a tightening
of the constraints to compensate for the introduced error and
allow for the guarantees of the scenario approach to still hold,
resulting in a possibly conservative solution. In the approach
proposed in this paper we avoid any approximation and
tightening, while retaining the advantages of the solution in
[23], which are: i) the compensator parameters are computed
once and off-line, and ii) the system with the compensator is
guaranteed to achieve the designed performance and satisfy
the probabilistic constraints, in steady-state conditions. Also,
apart from convexity, no specific functional form of cost
and constraints is assumed, enhancing the applicability of the
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approach.
A further contribution of this paper is represented by the

extension of the proposed methodology in several directions in
order to deal with average cost functions, non-asymptotically
stable systems, disturbance compensation in presence of noisy
measurements, and cyclostationary disturbances.

Infinite horizon optimal control problems that account for
probabilistic constraints are typically tackled within a stochas-
tic model predictive control (SMPC) framework (see [25] for
a survey). However, SMPC requires to measure the state of
the system and solve on-line an optimization problem at each
time instant. Also, we are not aware of any result on the
characterization of SMPC performance in the long run, and
not even on the satisfaction of the state and input constraints
in probability.

The rest of the paper is organized as follows. We first
provide some notations. The compensator design problem is
formulated in Section II and the proposed resolution strategy
is given in Section III. Then we discuss several extensions
including periodic stochastic control in Section IV. Finally, a
numerical case study related to building energy management
is illustrated in Section V and some concluding remarks are
drawn in Section VI. The proofs of the main results are
deferred to Appendices A-C.

a) Notations: Given a discrete time process {vk, k ∈ Z},
we denote it as v and the probability distribution of v as Pv .
Correspondingly, the expected value operator with respect to
Pv is denoted as Ev[ · ]. For a vector v, [v]i denotes its i-
th element and for a matrix X , [X]ij denotes the element
corresponding to row i and column j. In denotes the identity
matrix of order n (the subscript is dropped when it is obvious
from the context), J = blkdiag(J1, . . . , Jm) is the block
diagonal matrix built from the square matrices J1, . . . , Jm,
vec(X) is the vectorization operator applied to the matrix X
which stacks all columns of X into a single column vector,
⊗ denotes the Kronecker product, and X ′ and X> denote
the transpose and conjugate transpose of X , respectively. The
Euclidean norm of a vector v is denoted as ‖v‖2. With dae
we denote the smallest integer greater than or equal to a,
mod(b, c) denotes the remainder of b divided by c, with b and
c integers, and

(
n
k

)
denotes the binomial coefficients, which is

assumed to be zero if n < k, with n and k integers.

II. PROBLEM FORMULATION

Consider a discrete time linear system with state xk ∈ Rnx

evolving according to the following recursive equation

xk+1 = Axk +Buk +Wdk, (1)

where uk ∈ Rnu is the control input, dk ∈ Rnd is a stochastic
disturbance, and A, B, and W are matrices of appropriate
dimensions.

We make the following assumptions.

Assumption 1 (Asymptotic stability). The spectral radius of
matrix A satisfies ρA < 1.

Assumption 2 (Gaussian white noise). The process d is a
sequence of independent and identically distributed Gaussian

random vectors with zero mean and covariance matrix Σd =
SdS

>
d .

Note that, in case the state is available for feedback,
Assumption 1 can be relaxed to a stabilizability requirement on
the couple (A,B), as discussed in Section IV-B. Furthermore,
the zero mean assumption is without loss of generality, since
if this is not the case, we can introduce x̄k+1 = Ax̄k + Wd̄,
where d̄ = Ed[dk], and reformulate the problem in terms
of ∆xk = xk − x̄k which evolves according to ∆xk+1 =
A∆xk + Buk + W∆dk, and is affected by the zero mean
process ∆dk = dk − d̄.

Let us further assume that the value taken by dk, at any time
k ∈ Z, is available for compensation purposes.1 Extension to
the case of noisy measurements of dk will be discussed in
Section IV-C.

Our aim is designing a disturbance compensator so as to
optimize some performance criterion while satisfying state
and input constraints for the controlled system operating
in stationary conditions. We consider a compensator of the
following form:

uk = γ + ϑdk, (2)

where the control input uk is taken to be an affine function
of dk, with the compensator parameters γ and ϑ taking values
in the convex and compact sets Γ ⊂ Rnu and Θ ⊂ Rnu×nd ,
respectively.

Note that if we apply the compensator (2) to system (1),
we get

xk+1 = Axk +Bγ + (Bϑ+W )dk, (3)

which originates a well-defined stationary process. Indeed,
under Assumptions 1 and 2, by [26, Theorem 1.4, pag. 80],
for any k ∈ Z there exists a measurable function xk,∞ of
the process dk−1 = {. . . , dk−2, dk−1} such that the process
x∞ = {xk,∞, k ∈ Z} satisfies (3) and is strictly stationary
with finite first and second order moments. Furthermore, xk,∞
is unique (see [26, Theorem 3.2, pag. 101]), its probability dis-
tribution is Gaussian (see [27, pag. 304]) and is induced from
that of dk−1. Evidently, the mean and the covariance matrix
characterizing the distribution of the Gaussian process xk,∞
depend on the optimization variables γ and ϑ. Since xk,∞
depends on dk−1 and process d is white (see Assumption 2),
xk,∞ and dk are independent.

Let `(x, u, d) : Rnx × Rnu × Rnd → R be a function
associating a cost to the state/control input pair (x, u) when
the disturbance value is d. Moreover, suppose that the state
x and the input u are subject to a joint constraint defined by
imposing that some scalar function f(x, u) : Rnx×Rnu → R
is not positive.2

1Note that in general is not possible to cancel out the contribution of dk
on the state dynamics (1) by setting uk so that Buk = −Wdk because B
is typically not invertible and uk may be subject to constraints.

2The fact that f(·) is a single constraint function is without loss of general-
ity because if multiple constraint functions f1(·), . . . , fm(·) are present, then,
we can redefine f(·) as the point-wise maximum of these f1(·), . . . , fm(·).
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Then, our optimal compensator design problem can be
formulated as the following chance-constrained optimization
program:

min
γ∈Γ,ϑ∈Θ,h

h (4)

subject to: Pdk

{
`(xk,∞, γ + ϑdk, dk) ≤ h,

∧ f(xk,∞, γ + ϑdk) ≤ 0
}
≥ 1− ε,

where ε ∈ (0, 1) is a user-chosen probability level and Pdk is
the probability distribution of process dk = {. . . , dk−1, dk}.

The interpretation of the design problem formulation (4)
is that we are minimizing the cost and requiring that the
constraint is satisfied over all disturbance realizations except
for a violation set of probability measure at most ε. This ε acts
as a tuning parameter making the solution more conservative
as it decreases to 0 (worst case solution).

Notice that functions `(x, u, d) and f(x, u) in (4) are
evaluated in stationary conditions, i.e., with x set equal to
the stationary state xk,∞ and with u given by the disturbance
compensator in (2). Solving the optimal compensator design
problem then amounts to characterizing and suitably shaping
the Gaussian distribution of the stationary process xk,∞. By
the joint stationarity of processes x∞ and d, the solution to
(4) is optimal and satisfies the probabilistic constraint in (4)
for every time instant k. Optimality and feasibility, however,
are guaranteed only when the system is operating in stationary
conditions. In practice, thanks to Assumption 1, stationarity is
always reached in the long run, with a convergence rate that
depends on ρA. This makes our compensator design particu-
larly appealing because the control law can be computed once
(off-line) and then applied at each time step without solving
any further on-line optimization problem.

Chance-constrained problems like (4) are generally chal-
lenging to solve because of the presence of the probabilistic
constraint, which, apart from some notable exceptions (see
also Remark 3), is not easy to express analytically as a function
of the optimization variables and can be non convex even when
both `(·) and f(·) are convex functions and the probability
distribution is Gaussian, [13], [28].

In the next section, we will show how to approximately
solve (4) via the scenario approach, under the following
assumption on functions `(x, u, d) and f(x, u).

Assumption 3 (Convexity). The cost function `(x, u, d) and
the constraint function f(x, u) are convex with respect to
(x, u) ∈ Rnx × Rnu .

The scenario solution will be feasible for the original
chance-constrained problem (4), with a certain confidence
level, thus providing a compensator satisfying the joint state-
input constraint and with guaranteed performance (the value
obtained for the h optimization variable) for all disturbance
realizations except for a set of probability measure at most ε.

III. PROPOSED SOLUTION

According to the scenario theory, an approximate solution to
(4) can be computed solving a sampled version of (4), where

the constraint in probability is replaced with N realization of
the inequalities inside the probability. Such realizations are
computed evaluating `(·) and f(·) at N samples {d(i)

k }Ni=1

and {x(i)
k,∞}Ni=1 (which are called scenarios) of the stochastic

variables dk and xk,∞, respectively.
Both dk and xk,∞ are Gaussian random variables, but whilst

one can easily extract random samples of dk since it has zero
mean and known covariance matrix Σd, generating samples
of xk,∞ is not straightforward since its mean and covariance
matrix depend on the optimization variables γ and ϑ, which
are yet to be determined.

A first and main contribution of this paper is to provide (i)
a characterization of the probability distribution of xk,∞ as a
function of γ and ϑ and (ii) an expression for the generic i-th
sample x(i)

k,∞ of xk,∞ whose dependency on γ and ϑ results
in `(·) and f(·) being convex as a function of γ and ϑ.

Theorem 1 (Characterization of xk,∞). Under Assumptions 1
and 2, we have that xk,∞ is a stationary Gaussian process
with mean x̄ = (I − A)−1Bγ and covariance matrix Σx =
Sx(ϑ)Sx(ϑ)>, with

Sx(ϑ) = T Ω̄(ϑ)(Ind
⊗ SJ), (5)

where T is a nonsingular transformation matrix that re-
duces A to a matrix J in Jordan canonical form, SJS>J =∑∞
s=0 vec(Js) vec(Js)> < ∞, and Ω̄(ϑ) = (vec(T−1(Bϑ +

W )Sd)
′ ⊗ Inx

) is linear as a function of ϑ.

Proof. See Appendix B.

Remark 1 (Computing SJ appearing in (5)). An explicit
expression for J̃ = SJS

>
J is omitted from the statement of

Theorem 1 but is given within its proof (see (29) together
with (19)). In practice, one can compute J̃ according to its
definition as a series, by summing vec(Js) vec(Js)> over
s = 0, 1, 2, . . . until the changes in the elements of J̃ are
below the machine precision. SJ is then obtained by means
of the Cholesky decomposition of J̃ .

The following result is an immediate consequence of The-
orem 1.

Corollary 1 (Sampling from xk,∞). Under Assumptions 1
and 2, a sample x(i)

k,∞ from xk,∞ can be obtained as

x
(i)
k,∞ = (I −A)−1Bγ + Sx(ϑ)e(i), (6)

where Sx(ϑ) is linear in ϑ and its expression is given by (5),
and e(i) ∈ Rn2

xnd is extracted at random according to a n2
xnd-

variate standard Gaussian probability distribution.

Now that we are able to generate samples of the stationary
state process parametrically in the optimization variables, we
can formulate the scenario optimization program

min
γ∈Γ,ϑ∈Θ,h

h (7)

subject to: `(x(i)
k,∞, γ + ϑd

(i)
k , d

(i)
k ) ≤ h

f(x
(i)
k,∞, γ + ϑd

(i)
k ) ≤ 0

i = 1, . . . , N,
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where d(i)
k and x

(i)
k,∞, i = 1, . . . , N , are samples of indepen-

dent random variables and each x
(i)
k,∞ is obtained according

to (6) in Corollary 1. Given that x(i)
k,∞ depends linearly on γ

and ϑ, and since ` and f are convex, (7) is a program with N
convex constraints that can be solved via standard software.

Denote as (γ?, ϑ?, h?) the solution to the scenario program
(7). Under the following technical assumption, we are able to
prove the feasibility of (γ?, ϑ?, h?) for the original problem (4)
(see Theorem 2), which entails also performance guarantees
through the upper bound h? on the cost function.

Assumption 4 (Existence and uniqueness). For any N , for any
sample of the random quantities, the constrained optimization
problem (7) has a unique solution.

Remark 2. Assumption 4 is quite standard in scenario-based
optimization (see, e.g., [18], [19], [29]). The uniqueness part
of Assumption 4 can be relaxed by considering a suitable
convex tie-break rule to single out a unique solution (see [18]).
Also the existence part of Assumption 4 can be relaxed, see
e.g. [30].

Theorem 2 (Feasibility guarantees). Choose a confidence
parameter β ∈ (0, 1) and select N so as to satisfy

n∑
i=0

(
N

i

)
εi(1− ε)N−i ≤ β, (8)

where n is the number of scalar optimization variables in the
controller parametrization (γ, ϑ).
Then, if Assumptions 1-4 hold, the solution (γ?, ϑ?, h?) of
the scenario program (7) is feasible for the original chance-
constrained problem (4) with probability larger than or equal
to 1− β, i.e.,

PNdk
{Pdk{`(x?k,∞, γ? + ϑ?dk, dk) ≤ h? (9)

∧ f(x?k,∞, γ
? + ϑ?dk) ≤ 0} ≥ 1− ε} ≥ 1− β,

where x?k,∞ is the stationary Gaussian process with mean (I−
A)−1Bγ? and covariance matrix given by Sx(ϑ?)Sx(ϑ?)>

defined by (3) with γ = γ? and ϑ = ϑ?.

Proof. See Appendix C.

Remark 3 (Alternative approaches to chance-constraint op-
timization). If `(·) and f(·) belong to specific classes of
functions, for example if they are both linear, then, given
the Gaussian nature and complete characterization of the
stationary process xk,∞ provided by Theorem 1, one can
solve (4) by replacing the chance constraint with a tractable
analytic approximation as suggested in [15]. Notably, the
scenario solution adopted in this paper does not require `(·)
and f(·) to have a special form but only to be convex.

IV. EXTENSIONS

The results of this paper encompass also other formulations
than the one described in Section II. We discuss them next.

A. Average cost

Suppose that the average cost

J(γ, ϑ) = Edk [`(xk,∞, γ + ϑdk, dk)]

can be computed analytically as a function of (γ, ϑ) ∈ Γ×Θ.
This is the case, e.g., when `(·) is the classical quadratic cost
in the state and control input variables.

Then, one can minimize J(γ, ϑ), instead of the upper bound
h on `(xk,∞, γ+ϑdk, dk) over a set of probability 1− ε (see
problem (4)), thus leading to

min
γ∈Γ,ϑ∈Θ

J(γ, ϑ) (10)

subject to: Pdk{f(xk,∞, γ + ϑdk) ≤ 0} ≥ 1− ε.

Under Assumption 3, J(·) is also convex and, mutatis mutan-
dis, the theory developed remains valid also in the average
cost set-up. Specifically, Theorem 2 still holds with a slightly
modified statement, where (4) is replaced with (10), (7) with
the sampled counterpart of (10)

min
γ∈Γ,ϑ∈Θ

J(γ, ϑ)

subject to: f(x
(i)
k,∞, γ + ϑd

(i)
k ) ≤ 0, i = 1, . . . , N,

and `(·) is removed from the probability in (9).
To see that J(·) is convex, start noticing that xk,∞ = x̄(γ)+

Sx(ϑ)ek and γ + ϑdk are affine maps of γ and ϑ. Then, let
δk = (dk, ek) and ˜̀(γ, ϑ, δk) = `(xk,∞, γ+ϑdk, dk). Clearly,
under Assumption 3, ˜̀(γ, ϑ, δk) is convex in (γ, ϑ). Then

J(γ, ϑ) = Eδk
[
˜̀(γ, ϑ, δk)

]
=

∫
˜̀(γ, ϑ, δk)dPδk

which can be shown to be convex by definition of convexity,
as follows. Take α ∈ [0, 1] and (γ1, ϑ1), (γ2, ϑ2) ∈ Γ × Θ.
Then, we have that

J(αγ1 + (1− α)γ2, αϑ1 + (1− α)ϑ2)

=

∫
˜̀(αγ1 + (1− α)γ2, αϑ1 + (1− α)ϑ2, δk)dPδk

≤
∫ (

α˜̀(γ1, ϑ1, δk) + (1− α)˜̀(γ2, ϑ2, δk)
)

dPδk

= α

∫
˜̀(γ1, ϑ1, δk)dPδk + (1− α)

∫
˜̀(γ2, ϑ2, δk)dPδk

= αJ(γ1, ϑ1) + (1− α)J(γ2, ϑ2),

where the inequality is due to ˜̀(γ, ϑ, δk) being convex and
the monotonicity property of the integral with respect to the
measure Pδk .

B. Non-asymptotically stable systems

Let us now consider the case in which A in (1) does not
satisfy Assumption 1.

Suppose instead that the matrix pair (A,B) is stabilizable
and the state is available for feedback. We can then first apply
a state feedback stabilizing control law

uk = Kxk + ũk, (11)
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that makes the closed-loop system

xk+1 = (A+BK)xk +Bũk +Wdk

= Ãxk +Bũk +Wdk (12)

asymptotically stable. System (12) satisfies Assumption 1
with Ã in place of A and fits the framework described in
Section II, with ũk as control input in place of uk. We can
thus readily apply the proposed methodology to devise an
optimal disturbance compensator ũk = γ? + ϑ?dk for (12)
and then, by (11), feed the original system with the control
law uk = Kxk + γ? + ϑ?dk.

The reader should note, however, that matrix K has to be
chosen prior to solving (7). Indeed, the joint optimization
of K with γ and ϑ would render the expression of `(·)
and f(·) non-convex as a function of K, thus violating
Assumption 3. If minimizing the cost function `(·) entails
minimizing the variance of the steady-state distribution, then
K can be set equal to the linear quadratic regulation (LQR)
gain by neglecting the constraints or it can be tuned via the
generalized minimum variance approach by accounting for the
constraints within the cost function.

C. Compensator using noisy measurements of the disturbance

Suppose that only noisy measurements of the form

wk = Cdk + nk

of the disturbance dk are available, where nk and dk are jointly
Gaussian. We shall show that the proposed approach is still
applicable with minor modifications.

The compensator in (2) now takes the form

uk = γ + ηwk. (13)

Substituting (13) in (1) yields

xk+1 = Axk +Bγ + (BηC +W )dk +Bηnk

= Axk +Bγ +
(
B
[
ηC η

]
+
[
W 0

]) [dk
nk

]
,

which still fits the structure of (3) setting ϑ = [ηC η] with
η being the compensator to design, using [W 0] in place of
W and d̃k = [d>k n>k ]> in place of dk. Similarly, we need
to replace dk and ϑ with, respectively, d̃k and [ηC η] in
problems (4) and (7). If we then use η as decision variable
in place of ϑ, the resulting scenario program (7) is convex
in η and, as long as the extended disturbance d̃k satisfies
Assumption 2, Theorem 2 is still valid. In particular, the joint
statistical properties of dk and nk will be used in (7) to design
the parameters γ? and η? of the disturbance compensator
uk = γ? + η?wk, adopting the noisy measurements wk of
dk. Since the same degree of freedom (i.e., the choice of η) is
used to simultaneously counteract the effect of dk and nk, the
effectiveness of the compensator will depend on the relative
magnitude between dk and nk. An appropriate tuning will be
automatically realized when solving program (7).

D. Stochastic periodic control

Let us now consider the case in which the disturbance
process d is cyclostationary (rather than stationary), meaning
that it has periodic statistical properties. More specifically,
according to [31], d is cyclostationary if its mean and au-
tocorrelation function are periodic with some period Th > 0,
i.e.

E[ds+Th
] = E[ds],

E[ds+Th
d>s+Th+τ ] = E[dsd

>
s+τ ],

for all s, τ ∈ Z. Similarly to Section II, we assume that d is a
Gaussian process with zero mean, known autocorrelation func-
tion, and with independent random variables across different
periods. That is, for all s ∈ Z

E[ds] = 0, (14)

and for all k ∈ Z and t ∈ {0, . . . , Th − 1}

E[dkTh+td
>
kTh+τ ] =

{
Σt,τd τ ∈ {0, . . . , Th − 1}
0 otherwise.

(15)

The condition on the autocorrelation function is the counter-
part in the cyclostationary realm of the independence part of
Assumption 2. However, differently from Assumption 2, we
allow for correlations between ds and ds′ as long as they
belong to the same period. By setting Th = 1, (14) and (15)
are equivalent to Assumption 2.

Optimal stochastic periodic control of the system

xs+1 = Axs +Bus +Wds (16)

can then be embedded in our framework by adopting the so-
called lifting transformation, i.e., by unrolling the original
system dynamics over a time window of length equal to
the period Th and referring to the system dynamics from
one period k to the next one. To this end, let Xk =
xkTh

denote the system state at the beginning of period k,
Uk = [u>kTh

· · · u>(k+1)Th−1]> the sequence of inputs during
period k, and Dk = [d>kTh

· · · d>(k+1)Th−1]> the sequence
of disturbances affecting the system within period k. Then,
iterating (16) starting from s = kTh up to (k + 1)Th, we
obtain

Xk+1 = x(k+1)Th

= AThxkTh
+

Th−1∑
s=0

ATh−1−s(BukTh+s +WdkTh+s)

= AXk + BUk +WDk, (17)

for appropriately defined matricesA, B, andW . Note thatA =
ATh , which inherits the asymptotic stability properties of A. If
ds is Gaussian with zero mean (cf. (14)), also Dk is Gaussian
with zero mean. Moreover, by (15), we know that E[DkD

>
κ ] =

0 for all k, κ ∈ Z with k 6= κ, meaning that Dk satisfies
Assumption 2 with Σd = E[DkD

>
k ], which has Σt,τd in (15)

as sub-matrices. System in (17) then fits the structure of (1)
and Assumptions 1 and 2 of Section II are satisfied, so that
our approach can be readily applied on the lifted system (17).
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Note that the compensator parameter matrix ϑ for (17)
needs to be restricted to have a lower block-diagonal struc-
ture to avoid ukTh+s being dependent on future values
dkTh+s+1, . . . , d(k+1)Th−1 of the disturbances, for s =
0, . . . , Th − 2. This requirement can be easily accounted for
via an additional constraint on the set Θ.

An example of a system affected by a cyclostationary
disturbance is given in the following section.

V. APPLICATION TO BUILDING ENERGY MANAGEMENT

In this section, we present an energy management applica-
tion example with the twofold purpose of better motivating the
considered disturbance compensation set-up and showing the
efficacy of the proposed scenario-based design methodology.

Consider an office building consisting of a single thermally
controlled zone. Our goal is to set the zone temperature Tz
along a 24-hours time horizon discretized into Th = 144 time
slots of ∆T = 10 minutes each so as to compensate the
outdoor temperature To, longwave solar radiation LW , and
shortwave solar radiation SW , which act as disturbances on
the thermal evolution of the building. The temperature Tz is
assumed to be regulated by a low-level controller so as to
perfectly track in one time slot a desired temperature set-point,
which represents the control input in our case study. The cost
to be minimized over the one-day time horizon is represented
by the electrical energy consumption E` of the chiller plant
that provides the cooling energy request Ec needed to make
the zone temperature tracking the desired set-point. Constraints
are introduced to represent the chiller actuation limits and to
ensure a certain comfort level to the occupants of the building
during working hours.

The electric energy consumption E` depends on the cooling
energy request Ec according to a nonlinear convex function
E` = ch(Ec), derived from the Ng-Gordon model of the
chiller plant, [32] (see Eq. (21) in [12] with Ec in place of
Ech,c and with To = 22◦C for simplicity), which can be re-
placed by a piece-wise affine approximation for computational
purposes (cf. [12, Eq. (23)]).

In turn, the cooling energy Ec is the sum of three contri-
butions:

Ec = Ew + Ez + Eo, (18)

where Ew is the energy exchanged between the zone and
the building walls, Ez is associated with the zone thermal
inertia, and Eo is related to other thermal phenomena such
as occupancy, solar radiation through windows, equipment,
lighting, etc.

The first term Ew depends on the thermal behavior of
the building described by the temperatures of the layers
composing its walls, which together with the zone temperature
Tz(s∆T ) constitute the state vector xs. Given the assumption
that the actuator is able to perfectly track the reference set-
point u, we have Tz((s + 1)∆T ) = us, and altogether xs
evolves according to a linear difference equation of the form
(16), where ds is a scalar cyclostationary disturbance with
a one-day period that represents the joint contribution of
To(s∆T ), LW (s∆T ), and SW (s∆T ). The second term Ez in

(18) depends affinely on the control input, and the third term
Eo is affine in the disturbances.

Interestingly, in our approach we do not need any mea-
surement of the state xs – that would be hardly available
– and exploit instead measurements of ds for compensation
purposes to save electrical energy. Since ds is cyclostationary
with one-day period, we can use the theory developed in
Section IV-D, setting Th = 144 and applying the lifting
transformation with the following definitions: Xk = xkTh

as the system state at the beginning of the k-th day (time
0 a.m), Uk = [ukTh

· · · u(k+1)Th−1]> as the sequence of
inputs during day k, and Dk = [dkTh

· · · d(k+1)Th−1]> as
the sequence of disturbances affecting the system within day
k. By means of principal component analysis of historical
data, Dk is described as the weighted sum of a finite number
of one-day profiles through coefficients that are modeled as
uncorrelated Gaussian variables so that E[DkD

>
k ] = Σd and

E[DkD
>
κ ] = 0 for all k 6= κ. Note that Dk has not zero mean,

but our design methodology can still be applied as explained
after Assumption 2.

Following [12, Sections 2.1.1-2.1.5], all terms contributing
to Ec are affine functions of Xk, Uk, and Dk, thus yielding

Ec,k = FcXk +GcUk +HcDk + Lc,

where Ec,k = [Ec,kTh+1 · · · Ec,(k+1)Th
]> is the cooling

energy request within period k. The electrical energy con-
sumption can be thus easily computed as

E`,k = ch(Ec,k),

where the function ch(·) is meant to be applied component-
wise to the Ec,k vector.

The cost function `(·) in (4) is thus given by the steady-state
daily electrical energy consumption

`(·) = 1
>E`,k,∞

= 1
> ch(Ec,k,∞)

= 1
> ch(FcXk,∞ +GcUk +HcDk + Lc),

with 1 = [1 · · · 1]> and Uk = γ + ϑDk, while the con-
straint f(·) ≤ 0 embeds all comfort and actuation constraints
evaluated every ∆T minutes.

In particular, we impose

21 ≤ [Uk,∞]i ≤ 24 ∀i ∈ {48, . . . , 108},
15 ≤ [Uk,∞]i ≤ 30 ∀i 6∈ {48, . . . , 108},
0 ≤ [Ec,k,∞]i ≤ Emax

c , ∀i

that is, the zone temperature set-point is constrained to be
between 21◦C and 24◦C during the working hours (from 8
a.m. to 6 p.m.), and between 15◦C and 30◦C otherwise, and the
chiller is required not to produce heating energy (Ec < 0) but
cooling energy only, and not to exceed its maximum capacity
Emax
c = 30 MJ.
Similarly to [33], in order to reduce the number of pa-

rameters of the disturbance compensator Uk = γ + ϑDk,
only a subset of the temperature set-point collected in Uk –
those components [Uk]j18, j = 1, . . . , Th/18, corresponding
to the set-point values sampled every 18∆T minutes (i.e.
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Fig. 1. Temperature set-point obtained with the optimal compensator at day
k = 100 for 1000 realizations of the disturbance dk. The value at time zero
is the set-point at the end of the previous day. Grey areas denote non-comfort
zones.

every three hours) – are chosen as a function of Dk, while
the intermediate ones are obtained by linear interpolation.
Additionally, each value [Uk]j18, j = 1, . . . , Th/18 is set as a
function of the average of the scalar disturbance ds computed
over the previous time slot of duration 18∆T . Formally, for
all j = 1, . . . , Th/18,

[Uk]j18 = %j + θj
1

18

18j−1∑
i=18(j−1)

[Dk]i

[Uk]j18+i = 18−i
18 [Uk]j18 + i

18 [Uk](j+1)18 i = 1, . . . , 17.

All these requirements on Uk translates into deterministic
constraints on γ and ϑ

[γ]j18 = %j

[ϑ]j18,s = 1
18θj s = 18(j − 1), . . . , 18j − 1

[ϑ]j18,s = 0 s 6= 18(j − 1), . . . , 18j − 1

[γ]j18+i = 18−i
18 [γ]j18 + i

18 [γ](j+1)18 i = 1, . . . , 17

[ϑ]j18+i,s = 18−i
18 [ϑ]j18,s + i

18 [ϑ](j+1)18,s i = 1, . . . , 17,∀s

for all j = 1, . . . , Th/18, which parametrize γ and ϑ through
the decision variables %j and θj , j = 1, . . . , Th/18.

The total number of decision variables is then n = 2 ·
Th/18 = 16, and, setting a violation ε = 0.02 with a
confidence parameter β = 10−3, we get N = 1555 from
(8). Solving the scenario program (7), we obtain a disturbance
compensator yielding a daily electrical consumption smaller
than or equal to h? = 1435 MJ for all disturbance realizations
excepts for a set with probability smaller than or equal to 0.02
with confidence larger than or equal to 1− 10−3.

To validate the result, we performed Nv = 104 simulations
of 100 days each, to make the transient behavior vanish and
the state reach its stationary distribution. To this purpose, we
extracted 100Nv one-day realizations of Dk, different from the
ones used to solve (7). In each simulation we set the initial
thermal state of the building at its expected value in stationary
conditions X̄ = (I −A)−1Bγ?.

Fig. 2. Histograms of the upper bound h (with compensator) and hwo

(without compensator) on the daily electrical energy consumption at day
k = 100, obtained through Nv realizations of the disturbance dk.

Figure 1 shows the zone temperature set-point Uk at day
k = 100 for 1000 of the Nv simulations. Grey areas denotes
non-comfort zones and, as can be seen from the picture, most
temperature set-point profiles stay within the comfort limits.

To show the benefits of introducing the disturbance compen-
sator, we also solved the same problem forcing ϑ = 0 in (2),
which resulted in an optimal daily electrical consumption of
h?wo = 2990 MJ without (wo) compensation. Note that in this
case the total number of decision variable is n = Th/18 = 8
and, to get the same violation of ε = 0.02 with the same
confidence parameter β = 10−3, according to (8), only
N = 975 scenarios are needed for the solution of (7).
Remarkably, by comparing the values of h? and h?wo, it appears
that introducing the compensator, we can reduce the daily
energy consumption of an amount that is more than a half
(precisely, 52%) in the worst case. To strengthen this result
we also computed the value of the daily electrical energy
consumption hwo at day k = 100 for Nv realizations for the
disturbances, when input Uk designed without the compensator
was applied, and then, we used the same Nv realizations
to determine the daily electrical energy consumption h at
day k = 100 with the compensator. For the case without
compensator we set the initial state of all realization equal
to X̄wo = (I−A)−1Bγ?wo. Figure 2 compares the histograms
of the values obtained for h and hwo for the Nv realizations.
As can be seen from the picture, most of the mass of the
two histograms is on the left of the corresponding optimal
values for h (grey triangles), h? and h?wo, respectively, with
an empirical violation that is 0.0127 and 0.0029, respectively.
In both cases the empirical violation is below our choice
of ε, thus validating the guarantees provided by Theorem 2.
Furthermore, we can clearly see the benefits of introducing the
compensator since the mass of the histogram related to the case
with the compensator is shifted towards much smaller values
of the energy consumption with respect to the one without
compensator.

In Figures 3a and 3b, we also report a bi-variate histogram
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(a) without compensator (b) with compensator

Fig. 3. Histogram of h and ‖X̃k − Edk
[X̃k]‖2 at day k = 100 for Nv realizations of the disturbance dk. Bright colors indicate most probable values,

darker colors indicate less likely realizations.

of the two quantities h and ‖X̃k − Edk[X̃k]‖2, where the
variable X̃k is the part of the state vector Xk representing
the temperatures of the building walls, without and with the
compensator, respectively, obtained based on the Nv realiza-
tions. The quantity ‖X̃k − Edk[X̃k]‖2 measures the deviation
of the temperatures of the building walls with respect to their
expected value. As can be seen from the two pictures, the
introduction of the compensator reduces the dispersion of the
daily electrical energy consumption h (horizontal axis) by
moving part of the dispersion induced by the disturbances to
the building structure, since the building walls temperatures
appear to be more spread (vertical axis).

VI. CONCLUSIONS

In this paper we addressed the optimal design of a distur-
bance compensator for the steady-state operation of a discrete
time linear systems affected by white Gaussian noise. The
design problem was formalized as a chance-constraint program
for the system operating in stationary conditions so that, in
the long run, the designed compensator exhibits optimal per-
formance and satisfies the imposed probabilistic constraints.
The chance-constraint optimization problem is solved (off-
line and only once!) by means of an exact characterization
of the stationary state distribution as a linear function of
the compensator parameters and the use of randomization
to deal with the probabilistic constraints. We also discussed
the extension of the proposed methodology to the case of
average cost function and stochastic periodic compensation for
a system affected by cyclostationary Gaussian disturbances,
the latter extension being of interest in the energy management
application example. The proposed approach is promising and
competitive in terms of ease of computation, applicability, and
performance guarantees with respect to alternative approaches
to optimal constrained control, especially when state measure-
ments are not available for feedback.
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APPENDIX A
A SUMMABILITY RESULT

Lemma 1. For any m1,m2 ∈ N and z1, z2 ∈ C such that
|z1z2| < 1 we have
∞∑
s=0

(
s

m1

)(
s

m2

)
zs−m1

1 zs−m2
2

=

m∑
r=0

(
m1 +m2 − r

r,m1 − r,m2 − r

)
zm2−r

1 zm1−r
2

(1− z1z2)m1+m2+1−r , (19)

where m = min{m1,m2} and
(

n
k1,k2,k3

)
is the multinomial

coefficient.

Proof. Using the fact that(
s

m1

)(
s

m2

)
=

m∑
r=0

(
m1 +m2 − r

r,m1 − r,m2 − r

)(
s

m1 +m2 − r

)
,

we have
M∑
s=0

(
s

m1

)(
s

m2

)
zs−m1

1 zs−m2
2

=

M∑
s=0

m∑
r=0

(
m1 +m2 − r

r,m1 − r,m2 − r

)(
s

m1 +m2 − r

)
zs−m1

1 zs−m2
2

=

m∑
r=0

(
m1 +m2 − r

r,m1 − r,m2 − r

)
z−m1

1 z−m2
2

M∑
s=0

(
s

m1 +m2 − r

)
(z1z2)s, (20)
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where the second equality is obtained by exchanging the
two summations first and then collecting all quantities not
depending on s outside the inner sum. By taking the limit
as M →∞ on both sides of (20) and using the fact that

∞∑
s=0

(
s

p

)
zs =

zp

(1− z)p+1

for any complex number z with |z| < 1 and any p ∈ N (see
[34, eq. (5.57), pag. 199]), (19) follows, thus concluding the
proof.

APPENDIX B
PROOF OF THEOREM 1

Given that x∞ satisfies (3), it is easily seen that
Edk [xk,∞] = x̄ = (I − A)−1Bγ, while the covariance
matrix Σx, under Assumption 1, is the unique solution of the
Lyapunov equation

P = APA> + (Bϑ+W )Σd(Bϑ+W )>, (21)

and is given by

Σx = Edk

[
(xk,∞ − x̄)(xk,∞ − x̄)>

]
= lim
M→∞

M∑
s=0

As(Bϑ+W )SdS
>
d (Bϑ+W )>As>︸ ︷︷ ︸

PM

. (22)

Let A = TJT−1 where J is the Jordan normal form of A
and T is a suitable nonsingular transformation matrix. By the
Jordan form of A we can compute As = TJsT−1. If we
define Ω = T−1(Bϑ + W )Sd, then, PM can be compactly
rewritten as

PM = T

(
M∑
s=0

JsΩΩ>Js>
)
T>. (23)

By using the identity

JsΩ = (vec(Ω)′ ⊗ Inx
)︸ ︷︷ ︸

Ω̄

(Ind
⊗ vec(Js))︸ ︷︷ ︸
J̄s

, (24)

the right hand side of (23) can be rewritten as

T

(
M∑
s=0

JsΩΩ>Js>
)
T> = T

(
M∑
s=0

Ω̄J̄sJ̄
>
s Ω̄>

)
T>

= T Ω̄

(
M∑
s=0

J̄sJ̄
>
s

)
Ω̄>T>. (25)

Moreover,
M∑
s=0

J̄sJ̄
>
s =

M∑
s=0

(Ind
⊗ vec(Js))(Ind

⊗ vec(Js))>

=

M∑
s=0

(Ind
⊗ vec(Js))(Ind

⊗ vec(Js)>)

=

M∑
s=0

(Ind
⊗ vec(Js) vec(Js)>)

=

(
Ind
⊗

M∑
s=0

vec(Js) vec(Js)>

)
, (26)

where the first equality is due to the definition of J̄s in
(24), the second equality to the distributive property of the
conjugate-transpose operator over the Kronecker product, the
third equality is given by the mixed product property of the
Kronecker product, and the fourth equality is given by the
distributive property of addition over the Kronecker product.

Combining (23), (25), and (26), we have

PM = T Ω̄

(
Ind
⊗

M∑
s=0

vec(Js) vec(Js)>

)
Ω̄>T>. (27)

As indicated by (22), it remains to compute the limit on both
sides of (27) for M →∞ to get the variance of xk,∞.

The `-th element of vec(Js) can be expressed as
[vec(Js)]` = [Js]rc with c = d`/nxe and r = mod(` −
1, nx) + 1. The Jordan matrix J is known to have a block-
diagonal structure J = blkdiag(J1, . . . , Jnb

), whose b-th
block Jb of order mb is associated to the b-th eigenvalue λb
of A.

Since Js = blkdiag(Js1 , . . . , J
s
nb

), each element (r, c) of
Js can be defined as follows. Let

br = min
{
b̄ ∈ N |

∑b̄
p=1mp ≥ r

}
bc = min

{
b̄ ∈ N |

∑b̄
p=1mp ≥ c

}
be the row and column index of the block of Js containing the
element (r, c). Due to the block structure of Js, if br = bc = b,
then [Js]rc belongs to the b-th Jordan block, otherwise [Js]rc
is outside the block diagonal and is therefore equal to zero.
Accordingly,

[Js]rc =

{
[Jsb ]ij b = br = bc

0 otherwise
with

{
i = r −

∑b−1
p=1mp

j = c−
∑b−1
p=1mp

where i and j denote respectively the row and column index
of an element within the b-th Jordan block Jsb , and can take
a value between 1 and mb. Recall that, for a Jordan block Jb
of order mb, the (i, j)-th element of Jsb is given by

[Jsb ]ij =

{(
s
j−i
)
λ
s−(j−i)
b 0 ≤ j − i ≤ s

0 otherwise,
(28)

with 1 ≤ i ≤ mb and 1 ≤ j ≤ mb. Thus, we can finally
express the (`1, `2) element of vec(Js) vec(Js)> as

[vec(Js) vec(Js)>]`1`2

=

[Jsb1 ]i1j1 [Jsb2 ]i2j2
b1 = br,1 = bc,1
b2 = br,2 = bc,2

0 otherwise,

where

br,q = min
{
b̄ ∈ N |

∑b̄
p=1mp ≥ mod(`q − 1, nx) + 1

}
,

bc,q = min
{
b̄ ∈ N |

∑b̄
p=1mp ≥ d`q/nxe

}
,

iq = mod(`q − 1, nx) + 1−
∑bq−1
p=1 mp,

jq = d`q/nxe −
∑bq−1
p=1 mp,
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q = 1, 2 and, according to (28),

[Jsb1 ]i1j1 [Jsb2 ]i2j2

=


(

s
j1−i1

)(
s

j2−i2

)
λ
s−(j1−i1)
b1

λ̄
s−(j2−i2)
b2

0 ≤ j1 − i1 ≤ s
0 ≤ j2 − i2 ≤ s

0 otherwise,

λ̄b2 being the complex conjugate of λb2 .
Letting J̃ =

∑∞
s=0 vec(Js) vec(Js)> and setting m1 = j1−

i1 and m2 = j2 − i2, one has

[J̃ ]`1`2 =

∞∑
s=0

[vec(Js) vec(Js)>]`1`2

=

∞∑
s=0


(
s
m1

)(
s
m2

)
λs−m1

b1
λ̄s−m2

b2

b1 = br,1 = bc,1
b2 = br,2 = bc,2
0 ≤ m1,m2 ≤ s

0 otherwise

=


∞∑
s=0

(
s

m1

)(
s

m2

)
λs−m1

b1
λ̄s−m2

b2

b1 = br,1 = bc,1
b2 = br,2 = bc,2
m1,m2 ≥ 0

0 otherwise,
(29)

with m1 and m2 depending on `1 and `2 through (i1, j1) and
(i2, j2) respectively.

Using Lemma 1 in (29) with z1 = λb1 , z2 = λ̄b2 , and
m = min{m1,m2}, we obtain

[J̃ ]`1`2 =

m∑
r=0

(
m1 +m2 − r

r,m1 − r,m2 − r

)
λm2−r
b1

λ̄m1−r
b2

(1− λb1 λ̄b2)m1+m2+1−r

if b1 = br,1 = bc,1, b2 = br,2 = bc,2, and m1,m2 ≥ 0; or
[J̃ ]`1`2 = 0 otherwise.

Since the quantities appearing in the expression of
[J̃ ]`1`2 are all finite, we can conclude that J̃ =∑∞
s=0 vec(Js) vec(Js)> <∞ and its (`1, `2) element is given

by [J̃ ]`1`2 . By taking the limit for M →∞ on both sides of
(27) and recalling (22), we obtain

Σx = T Ω̄(ϑ)(Ind
⊗ J̃)Ω̄(ϑ)>T>.

We now show that Sx(ϑ)Sx(ϑ)> = Σx where Sx(ϑ) is given
by (5):

Sx(ϑ)Sx(ϑ)> = T Ω̄(ϑ)(Ind
⊗ SJ)(T Ω̄(ϑ)(Ind

⊗ SJ))>

= T Ω̄(ϑ)(Ind
⊗ SJ)(Ind

⊗ SJ)>Ω̄(ϑ)>T>

= T Ω̄(ϑ)(Ind
⊗ SJ)(Ind

⊗ S>J )Ω̄(ϑ)>T>

= T Ω̄(ϑ)(Ind
⊗ SJS>J )Ω̄(ϑ)>T>

= T Ω̄(ϑ)(Ind
⊗ J̃)Ω̄(ϑ)>T>

= Σx.

This concludes the proof.

APPENDIX C
PROOF OF THEOREM 2

Under Assumptions 1 and 2, by Theorem 1 and Corollary 1,
x

(i)
k,∞ in problem (7) is extracted at random according to the

distribution of xk,∞, so that (7) is the sampled version of (4).

Considering also Assumptions 3 and 4, the result in Theorem 2
then follows immediately from the standard scenario theory,
see [18, Theorem 1].
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[1] K. Åström, Introduction to Stochastic Control Theory, ser. Mathematics
in Science and Engineering. A Series of Monographs and Textbooks.
Academic Press, 1970.

[2] D. Clarke and R. Hastings-James, “Design of digital controllers for
randomly disturbed systems,” Proc. IEE, vol. 118, no. 10, pp. 1503–
1506, 1971.

[3] V. Peterka, “On steady state minimum variance control strategy,” Ky-
bernetika, vol. 8, no. 3, pp. 219–232, 1972.

[4] U. Shaked and P. Kumar, “Minimum variance control of discrete time
multivariable armax systems,” SIAM Journal on Control and Optimiza-
tion, vol. 24, no. 3, pp. 396–411, 1986.

[5] M. Grimble, “Generalized minimum variance control law revisited,”
Optimal Control Applications and Methods, vol. 9, no. 1, pp. 63–77,
1988.

[6] B. Huang, “Minimum variance control and performance assessment of
time-variant processes,” Journal of Process Control, vol. 12, no. 6, pp.
707–719, 2002.

[7] P. J. Gawthrop, “Minimum-variance control,” in Encyclopedia of Life
Support Systems (EOLSS). UNESCO, 2004.

[8] A. Sinha, Linear systems: optimal and robust control. CRC press, 2007.
[9] M. Grimble, “Controller performance benchmarking and tuning using

generalised minimum variance control,” Automatica, vol. 38, no. 12,
pp. 2111 – 2119, 2002.

[10] D. Ioli, A. Falsone, and M. Prandini, “Optimal energy management of
a building cooling system with thermal storage: a convex formulation,”
in 9th IFAC Symposium on Advanced Control of Chemical Processes
(ADCHEM 2015), Whistler, British Columbia, Canada, 2015.

[11] D. Ioli, A. Falsone, S. Schuler, and M. Prandini, “A compositional
framework for energy management of a smart grid: a scalable stochastic
hybrid model for cooling of a district network,” in 12th IEEE Interna-
tional Conference on Control and Automation (ICCA 2016), Kathmandu,
Nepal, 2016.

[12] D. Ioli, A. Falsone, A. Papadopoulos, and M. Prandini, “A compositional
modeling framework for the optimal energy management of a district
network,” Journal of Process Control, vol. 74, pp. 160 – 176, 2019.

[13] A. Prèkopa, Stochastic programming. Kluwer, 1995.
[14] Z. Zhou and R. Cogill, “Reliable approximations of probability-

constrained stochastic linear-quadratic control,” Automatica, vol. 49,
no. 8, pp. 2435 – 2439, 2013.

[15] E. Cinquemani, M. Agarwal, D. Chatterjee, and J. Lygeros, “Convexity
and convex approximations of discrete-time stochastic control problems
with constraints,” Automatica, vol. 47, no. 9, pp. 2082–2087, 2011.

[16] D. Bertsimas and D. Brown, “Constrained stochastic LQC: A tractable
approach,” IEEE Transactions on Automatic Control, vol. 52, no. 10,
pp. 1826–1841, 2007.

[17] M. Campi, S. Garatti, and M. Prandini, “The scenario approach for
systems and control design,” Annual Reviews in Control, vol. 33, no. 2,
pp. 149 – 157, 2009.

[18] M. Campi and S. Garatti, “The exact feasibility of randomized solutions
of uncertain convex programs,” SIAM Journal on Optimization, vol. 19,
no. 3, pp. 1211–1230, 2008.

[19] M. C. Campi and S. Garatti, “A sampling-and-discarding approach to
chance-constrained optimization: Feasibility and optimality,” Journal of
Optimization Theory and Applications, vol. 148, no. 2, pp. 257–280,
2011.

[20] T. Alamo, R. Tempo, A. Luque, and D. R. Ramirez, “Randomized meth-
ods for design of uncertain systems: Sample complexity and sequential
algorithms,” Automatica, vol. 52, pp. 160 – 172, 2015.

[21] G. Calafiore and M. Campi, “Uncertain convex programs: randomized
solutions and confidence levels,” Mathematical Programming, vol. 102,
no. 1, pp. 25–46, 2005.

[22] ——, “The scenario approach to robust control design,” IEEE Transac-
tions on Automatic Control, vol. 51, no. 5, pp. 742–753, 2006.

[23] A. Falsone, L. Deori, D. Ioli, S. Garatti, and M. Prandini, “Optimal
disturbance compensation for constrained linear systems operating in
stationary conditions: a scenario-based approach,” Automatica, vol. 110,
2019.



11

[24] ——, “Optimally shaping the stationary distribution of a constrained
discrete time stochastic linear system via disturbance compensation,” in
56th IEEE Conference on Decision and Control (CDC), Dec 2017, pp.
629–634.

[25] A. Mesbah, “Stochastic model predictive control: An overview and
perspectives for future research,” IEEE Control Systems Magazine,
vol. 36, no. 6, pp. 30–44, 2016.

[26] P. E. Caines, Linear stochastic systems. Wiley New York, 1988.
[27] A. N. Shiryaev, Probability. Springer, 1996.
[28] D. Dentcheva, “Optimization models with probabilistic constraints,” in

Probabilistic and Randomized Methods for Design under Uncertainty,
G. Calafiore and F. Dabbene, Eds. London: Springer-Verlag, 2006.
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