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Abstract

Parameters in mathematical models for glioblastoma multiforme (GBM) tumour growth
are highly patient specific. Here we aim to estimate parameters in a Cahn–Hilliard type
diffuse interface model in an optimised way using model order reduction (MOR) based on
proper orthogonal decomposition (POD). Based on snapshots derived from finite element
simulations for the full order model (FOM) we use POD for dimension reduction and solve
the parameter estimation for the reduced order model (ROM). Neuroimaging data are used
to define the highly inhomogeneous diffusion tensors as well as to define a target functional in
a patient specific manner. The reduced order model heavily relies on the discrete empirical
interpolation method (DEIM) which has to be appropriately adapted in order to deal with
the highly nonlinear and degenerate parabolic PDEs. A feature of the approach is that
we iterate between full order solves with new parameters to compute a POD basis function
and sensitivity based parameter estimation for the ROM problems. The algorithm is applied
using neuroimaging data for two clinical test cases and we can demonstrate that the reduced
order approach drastically decreases the computational effort.
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1 Introduction

Glioblastoma multiforme (GBM) is a malignant primary brain tumour characterised by high
infiltration into the parenchyma and wide phenotypic heterogeneity [28]. These characteris-
tic features of GBM provoke recurrence and marked resistance to adjuvant therapy, resulting
into poor prognosis and very low survival rates [34]. Thus, the emergent development of
precision medicine in neuro-oncology mainly concern the patient-specific optimisation of the
clinical treatment of GBM, with the aim to guide the decision making of medical doctors
for improving the quality of life of each patient [33].

In this context, mathematical models have proved useful as in-silico benchmarks to
improve the prognostic prediction and to tailor personalised strategies in clinical practice
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[47, 25]. Most existing mathematical approaches to neuro-oncology are based on reaction-
diffusion partial differential systems or agent-based models, that mimic the chemical ex-
changes driving the tumour growth and transport properties of the tumour cells as well
as the response to adjuvant therapy [22, 24, 38, 4]. Recent developments also enable the
possibility to integrate neuroimaging data in the virtual reconstruction of the patient’s
brain, gaining insight on the effect of the brain micro–structure on the invasive pathway
[26, 46, 36, 29, 13, 45, 14]. Despite the great progress in assessing accurate mathematical
predictions of the prognostic clinical outcomes, the complexity underlying the physical and
biological cues driving GBM invasion make it particularly difficult to quantify the accuracy
of a given class of models in reproducing the observable clinical events [23].

In this work we propose a new strategy for optimising the parameter estimation of a
nonlinear degenerate diffuse interface model which describes the GBM evolution integrating
neuroimaging data, recently proposed and analysed in [2, 3]. This partial differential model
consists of a Cahn–Hilliard equation with a single–well potential of Lennard-Jones type, a
non-conserved order parameter and a degenerate mobility, that couples the growth of the
tumour phase with a reaction–diffusion equation for the oxygen concentration in the brain,
including the effects of the standard Stupp protocol of adjuvant therapy. In particular, it
accounts for the augmented tumour motility along white matter fibers tracts, which is a
typical hallmark of GBM, through the definition of heterogeneous diffusion and chemotactic
coefficients directly extracted from Magnetic Resonance (MRI) and Diffusion Tensor (DTI)
imaging data. Because of the peculiar non-convexity and nonlinearity of the chemical poten-
tial driving the local cell-cell interactions, the finite element approximation of the discrete
model has a high computational cost, since it requires sophisticated numerical techniques
to select the physical solution representing the expanding GBM boundary whilst avoiding
numerical instabilities [2].

A proof-of-concept of the predictive ability of this model in clinical practice has been
presented in [3], showing by a manual tuning of the model parameters how the numerical
simulations on a growing GBM tumour inside the virtual brain reconstructed by segmenta-
tion of neuroimaging data could accurately fit the observed invasion patterns observed at key
clinical stages after surgical removal and during adjuvant therapy. Here we propose a robust
automated procedure to optimise the parameter estimation by minimising the L2-distance
between the indicator functions of the tumour distribution sets in numerical simulations and
the corresponding clinical data of the GBM mass at a key time identified by our medical
collaborators in the clinical protocol. The constrained optimisation problem is formulated at
the numerical level as a Mathematical Problem with Equilibrium Constraints (MPEC) [30].
Due to the high computational cost of solving the Full Order Model (FOM), the numerical
solution of the MPEC will be given using model order reduction. In particular, we propose
an iterative algorithm extending the one proposed in [21], which computes a snapshot based
POD-ROM with the help of simulations at the FOM level and estimates parameter for the
Reduced Order Model (ROM) level through sensitivity analysis. The main challenge with
respect to existing approach is the derivation of a ROM dealing with a singular single-well
potential and a degenerate anisotropic mobility. The goal is to derive a robust iterative
algorithm which converges to an optimal state, that explores new regions in the parameter
space by changing the ROM basis and minimises the optimisation functional at the ROM
level avoiding the ROM solution to violate the physical constraints satisfied by the full order
solution. For this scope, the bottleneck is the definition of an effective order reduction of
the degenerate and nonlinear terms of the diffuse interface model.

The paper is organised as follows. In Section 2 we summarise the diffuse interface model
of GBM invasion and we derive the corresponding FOM and ROM discretised problems.
In Section 3, we introduce a novel optimisation algorithm for parameter estimation. In
Section 4, we apply this algorithm using neuroimaging data corresponding to two clinical
test cases: the growth of a primary GBM and the recurrence pattern after surgical resections.
The accuracy and the computational gain of the proposed numerical procedure are finally
discussed in Section 5, together with few concluding remarks.
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2 Mathematical model

In this section, we first summarise the diffuse interface model employed for the patient-
specific description of GBM evolution, followed by the presentation of its FOM and ROM
discretisations.

2.1 The diffuse interface model

The patient-specific GBM evolution is described using the diffuse interface model proposed
in [2]. The model considers the brain tissue as a saturated mixture composed by a tumour
phase with a volume fraction φ = φ(x, t) that expands at the expense of another phase made
of cells and fluids, so that 0 ≤ φ ≤ 1. The mass exchanges are regulated by the oxygen
concentration n = n(x, t) that is produced by the vascular network and consumed by the
tumour cells. This multi-phase framework has proved to give a more realistic representation
of the mechano-biological features underlying the tumour growth processes [39, 49, 10, 19].

Within the domain Ω representing the brain, the mathematical model is given by the
following coupled PDEs:

∂φ
∂t = ∇ ·

(
φ(1−φ)2

M T∇Σ(φ)

)
+ Γφ(φ, n)−∇ ·

(
χnφ(1− φ)2T∇n

)
in Ω× (0, T ),

∂n
∂t = ∇ · (D∇n) + Γn(φ, n) in Ω× (0, T ),

(1)

where D and T are the diffusion tensors of oxygen and the tensor of preferential mobility,
that can be extracted from neuroimaging data as in [3], M is a friction parameter that
penalises the relative velocity between the phases, and χn is a chemotactic coefficient, that is
considered to be 4 times higher in the White Matter (WM) than its value in the Grey Matter
(GM) and in the Cerebrospinal Fluid (CSF). We set χn = knχ where kn is a chemotactic
parameter which we need to estimate and χ = 4 in the White Matter (WM) and χ = 1 in
the Grey Matter (GM) and the Cerebrospinal Fluid (CSF).

The first equation in (1) is a Cahn–Hilliard (CH) type equation with degenerate mobility
and non-conserved order parameter; the chemical potential is defined by

Σ(φ) = E(1− φe)ψ′1(φ) + Eψ′2(φ)− γ2∆φ, (2)

where E is the Young modulus of the healthy tissue, γ a characteristic short-range interac-
tion coefficient, and φe is the homeostatic value of the volume fraction. We note that, due
to the non-smoothness in space of the chemotactic coefficient χn, the chemotactic term is
inserted in the first equation of system (1), due to stability issues of the associated numerical
approximation, while it should be more natural to consider it as a micro–force term asso-
ciated to a coupling energy between cells and nutrient directly in the form of the chemical
potential Σ as in [19]. The local interaction potential is given by:

ψ1(φ) := − log(1− φ), ψ2(φ) := −φ
3

3
− (1− φe)

(
φ2

2
+ φ

)
,

and it is split into a convex ψ1 and a non-convex ψ2 term for future convenience. Such a
functional form of the Lennard-Jones type describes attraction at low volume fraction and
repulsion at beyond the homeostatic threshold φe, as proposed in [9]. A simple functional
form is given for the growth term Γn for the oxygen :

Γn(φ, n) = −δnφn+ Sn(1− n)(1− φ)

where Sn is the production rate from the vascular network and δn gives the characteristic
decay time. Similarly, the tumour growth rate is assumed in the form:

Γφ(φ, n) = νφ(n− δ)(1− φ)− kT (t)φ
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where ν is the production rate mediated by the local oxygen concentration, and kT is a
decay rate that accounts for apoptosis and/or adjuvant therapy. The latter contribution is
defined by the clinical Stupp protocol consisting of radiotherapy and chemotherapy as in
[37], reading:

kT (t)φ = kR(t)φ+ kC(t)φ. (3)

The functions kR(t) and kC(t) are the temporal profiles of the radio- and chemo-therapy
schedules, respectively:

kR(t) =

{
Reff ti ≤ t ≤ ti+1

0 otherwise
kC(t) =


kC1 s0 ≤ t ≤ s1

kC2 s2 ≤ t ≤ s3

kC3 sj ≤ t ≤ sj+1

0 otherwise

(4)

where the coefficients kC1, kC2 and kC3 are extracted by clinical data and reflect the in-
creasing drug dosage at different chemotherapy cycles, while ti, ti+1 are the days at the
beginning and at the end of radiotherapy administration periods and sj , sj+1 are the days
at the beginning and at the end of chemotherapy administration cycles. The radiotherapy
death rate Reff is modelled via the linear-quadratic (LQ) model [48] as

Reff = αmd+ βmd2 , (5)

where d [Gy] is the dose of radiation for every fraction, m is the number of fractions per
day (here, m = 1 day−1), α [Gy−1] and β [Gy−2] are two tissue-dependent parameters for
cell kill [40, 42].
The model (1) is complemented by the following initial and boundary conditions:{

∇φ · ν = ∇Σ · ν = ∇n · ν = 0 on ∂Ω× (0, T ),

φ(., 0) = φ0, n(., 0) = 1 in Ω,
(6)

where ν is the outer unit normal vector to ∂Ω and φ0 is the initial distribution of tumour
concentration, that will be given by a neuroimaging datum at the beginning of the clinical
follow-up. A list of reference biological ranges for the values of the parameters in (1) and
the corresponding source is reported in Table 1.

Parameter description Range of values Ref.

M Tumour inter-phase friction 1377.86–5032.2 (Pa day)/mm2 [44]
ν Tumour cells proliferation rate 0.012–0.5 day−1 [46, 31]
kn Chemotactic parameter 0.007–90.72 mm2/(day) [2, 3, 15]
Sn Oxygen supply rate 104 day−1 [10]
δn Oxygen consumption rate 8640 day−1 [17, 31]

γ Diffuse interface thickness 0.29–0.78 Pa1/2mm [2]
E Brain Young modulus 689.8 Pa–698.2 Pa [12]
δ Hypoxia threshold 0.1–0.33 [6, 32]
φe Equilibrium cell volume fraction 0.389–0.8 [8]

m Radiation fractions per day 1 day−1 [43]
d Radiation dose 2 Gy [43]
α Linear coefficient for RT induced cell kill 0.027 Gy−1 [40, 37]
β Quadratic coefficient for RT induced cell kill 0.0027 Gy−2 [37, 41, 16]
kC1 Concomitant chemotherapy death rate 0.00735 day−1 [37]
kC2 First cycle of adjuvant CHT death rate 0.0147 day−1 [37]
kC3 Remain. cycles of adjuvant CHT death rate 0.0196 day−1 [37]

Table 1: Values or ranges of values for parameters used in the model.

As first highlighted in [7], the presence of compactly supported weak solutions of the degen-
erate Cahn–Hilliard equation in (1) is linked to the non-uniqueness of the solution, with the
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existence of physical solutions with moving free boundary at a finite speed and unphysical
ones with fixed support in time. Due to the degeneracy of the mobility and the logarithmic
singularity of the potential, we remark that a weak solution of (1), (6) satisfies the positivity
and separation constraints

0 ≤ φ < 1 a.e in Ω× (0, T ).

For future convenience, we finally define the following set of model parameters

P ≡ {L := 1/M, ν, kn, Sn, δn, γ
2, E, δ, ce := 1− φe},

whose optimal value will be searched for in the parameters optimisation problem introduced
in the following sections.

2.2 FOM discretisation

In order to discretise the initial boundary value problem given by (1), (6) we start from the
MRI and DTI data collected at the initial time t = 0 to generate the tetrahedral mesh for
the discretised geometry of the brain Th, the map which specifies the location of the brain
tissues, the initial tumour distribution and the tensors D and T.
We solve the following Initialisation problem:
Problem 1
Initialisation: Given MRI(t = 0) and DTI(t = 0), determine the set

Th,
map(WM,GM,CSF),

φ0,

D,T

= Initialization(MRI(t=0), DTI(t=0)). (7)

The Initialisation procedure is defined as follows. Starting from a segmentation of the
brain tissues and of the initial tumour distribution, we extract the external brain surface
and generate the computational surface and the tetrahedral internal mesh, conveniently
refined around the tumour region. We also generate the labelled mesh map(WM,GM,CSF )
which maps each cell of the mesh to an integer value identifying the cerebral tissue the
cell barycentre belongs to, together with the map for the characteristic function of the
tumour distribution. The initial tumour distribution φ0 is then obtained as the characteristic
function of the tumour extension multiplied by the equilibrium value φ̄. The value φ̄ is
obtained by solving Γφ(φ̄, n̄) = 0 = Γn(φ̄, n̄) with kT (0) = 0, i.e. n̄ = δ and

φ̄ =
Sn(1− δ)

Sn + δ(δn − Sn)
.

This means that we are considering that the tumour phase is in an homogeneous equilib-
rium value in the tumour support at the initial temporal stage, before the application of the
therapy. We finally generate the meshes containing the values of the independent compo-
nents of the tensors D and T by analysing the log–signal associated to the DTI data. The
extrapolation processes performed in Problem 1 are described in detail in [2, 3].
The FOM discretisation of system (1) is obtained through the finite element method, by
following the approach introduced in [2, 5]. Let us introduce the following finite element
spaces:

Qh := {χ ∈ C(Ω̄) : χ|K ∈ P1(K) ∀K ∈ Th} ⊂ H1(Ω),

Q+
h := {χ ∈ Qh : χ ≥ 0 in Ω}

where P1(K) indicates the space of polynomials of total order one on K. We set ∆t = T/N
for a N ∈ N and tn = n∆t, n = 0, ..., N . Starting from initial data φ0

h = πhφ0, n0
h = πhn0,

where πh is the standard Lagrangian interpolation operator, and from a set of parameters
Pk, we consider the following FOM discretisation. (Note that if no mesh vertex is on the
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boundary of the tumour support, the Lagrangian projection φ0
h = πh(φ0) is well defined.

Otherwise, we take a smoothing of φ0 such that φ0 ∈ C(Ω̄).)
Problem 2
FOM:
For n = 1, . . . , N , given (φn−1

h , nn−1
h ) ∈ Q+

h ×Q
+
h , we define

(φnh,Σ
n
h, n

n
h) = Fnk (Initialization,Pk) = Fnk (Th,map(WM,GM,CSF ), φ0,D,T,Pk), (8)

where (φnh,Σ
n
h, n

n
h) ∈ Q+

h ×Qh ×Q
+
h satisfies, ∀(vh, wh, qh) ∈ Qh ×Q+

h ×Qh,

(
φnh − φ

n−1
h

∆t
, vh

)h
= −Lk(φn−1

h (1− φn−1
h )2T∇Σnh,∇vh) + νk(φn−1

h (nnh − δk)(1− φn−1
h ), vh)h

+knk(χφn−1
h (1− φn−1

h )2T∇nnh,∇vh)− (kTφ
n−1
h , vh)h,

γ2
k(∇φnh,∇(wh − φnh))+ (Ekcekψ

′
1(φnh), wh − φnh)h ≥

(
Σnh + Ekψ

′
2(φn−1

h ), wh − φnh
)h
,(

nnh − n
n−1
h

∆t
, qh

)h
= −(D∇nnh,∇qh) + Snk((1− nnh)(1− φn−1

h ), qh)h − δnk(φn−1
h nnh, qh)h.

(9)

The finite element approximation (9) has the form of a discrete variational inequality,
where the positivity of the discrete solution is enforced as a constraint. Indeed, φnh is
projected onto the space with positive values Q+

h . This projection aims at recovering the
analytical properties of the continuous solution [2, 5].

Remark 2.1 For a solution of (9), we obtain that φnh(xj) ≥ 0 and if φnh(xj) > 0 holds the
equality

γ2
k(∇φnh,∇χj) + (Ekcekψ

′
1(φnh) + Ekψ

′
2(φn−1

h )− Σnh, χj)
h = 0 (10)

is true, with χj the basis function associated to the node j. To prove this we choose in
the case φnh(xj) > 0 in (9) the test functions wh = φnh ± 1

2φ
n
h(xj)χj and obtain (10) as

φnh(xj) > 0. This shows that Σnh(xj) is uniquely defined if φnh(xj) > 0.

The lumped mass approximation of the L2-scalar product is introduced in (9) in order for
the discrete solution to be able to track compactly supported solutions with a moving free
boundary from the unphysical ones with fixed support.
Note that the convex part of the cellular potential is treated implicitly in time, whereas
the concave part is treated explicitly. The well posedness of system (9) can be shown
expressing its equations as the KKT conditions of a convex minimisation problem with
regular inequality constraints. It is solved by a null–space gradient projection algorithm.

2.3 ROM discretisation

We use Proper Orthogonal Decomposition (POD) reduced order modelling to obtain a ROM
of the full order system (9). We follow [20], which formulates a ROM of a Cahn–Hilliard
equation with constant mobility and advection by projecting the equations for φ and Σ onto
the spaces spanned by the POD basis obtained from the time snapshots matrices associated
to φ and Σ, respectively, and which approximates the nonlinear convex term in the double–
well potential using the Discrete Empirical Interpolation Method (DEIM). In the present
case, this formalism is extended to take into account for the degeneracy of the mobility
and the physical constraints expected to be satisfied by the ROM solution, as well as for
the presence of anisotropy and the presence of the dynamics of the nutrient. In particular,
our strategy is to use DEIM interpolation to approximate the nonlinear terms ψ′1 and ψ′′1 ,
(the latter term is needed to solve the nonlinear ROM system by a Newton method), and
to project the equations for φ, Σ and n in (9) onto the space spanned by the POD basis
associated to φ, Σ and n, respectively. The mobility and chemotactic terms, which contain
polynomial nonlinearities in the variable φ, are written as higher order tensors acting on the
reduced order space associated to φ.
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We start by calculating the POD basis obtained from the snapshots matrices associated to
φ, Σ, n, ψ′1(φ) and ψ′′1 (φ). In what follows we do not distinguish between a finite element
function fh and its nodal vector and it will be clear from the context which object is meant.
For a given snapshot matrix F =

[
f0
h , . . . , f

N
h

]
the POD basis elements ξfs of the POD basis{

ξfl

}
l=1,...,NPOD

are obtained as follows:

• prescribe the required information content to be covered by the POD basis as ic ∈ (0, 1];

• compute the trace tr(F tF ) of the correlation matrix F tF = (fmh , f
l
h)ml ∈M(N+1,R),

where (·, ·) denotes the chosen inner product;

• set NPOD
f := min

{
m,

( ∑
i≤m

λi

)
/tr(F tF ) ≥ ic

}
;

• (successively) compute the eigensystem {vi, λi}i=1,...,NPOD
f

of F tF ;

• set ξfs := 1√
λs

∑
j

vsjf
j
h (1 ≤ s ≤ NPOD

f ).

With this procedure we set up the POD bases for our reduced order models, whose con-
struction is summarised in
Problem 3:
POD:
With the given time snapshots form the corresponding snapshot matrices in correspon-
dence of the parameter set Pk according to F1 :=

[
φ0
h, . . . , φ

N
h

]
, F2 :=

[
Σ0
h, . . . ,Σ

N
h

]
,

F3 :=
[
n0
h, . . . , n

N
h

]
, ψ′1(F1) :=

[
ψ′1(φ0

h), . . . , ψ′1(φNh )
]
, and ψ′′1 (F1) :=

[
ψ′′1 (φ0

h), . . . , ψ′′1 (φNh )
]
.

Then compute the POD systems corresponding to the correlation matrices matrices (F1)TF1,
(F2)TF2, (F3)TF3, (ψ′1(F1))Tψ′1(F1), (ψ′′1 (F1))Tψ′′1 (F1) and set

NPOD := max{NPOD
φ , NPOD

Σ , NPOD
n , NPOD

ψ′1
, NPOD

ψ′′1
}.

If the respective bases are computed successively complete them by adding the remaining
NPOD − NPOD

θ basis elements to the basis
{
ξθl
}
l=1,...,NPOD

θ

, where θ ∈ {φ,Σ, n, ψ′1, ψ′′2}.
Finally assemble the respective bases in the array

Pk := (Pk1,Pk2,Pk3,Pk4,Pk5) , (11)

where

Pk1 :=
{
ξφl

}
l=1,...,NPOD

,Pk2 :=
{
ξΣ
l

}
l=1,...,NPOD

,Pk3 := {ξnl }l=1,...,NPOD
,

Pk4 :=
{
ξ
ψ′1
l

}
l=1,...,NPOD

, and Pk5 :=
{
ξ
ψ′′1
l

}
l=1,...,NPOD

.

We note that POD basis elements are finite element functions. In the numerical examples
we will specify NPOD

φ , NPOD
Σ , NPOD

n , NPOD
ψ′1

, NPOD
ψ′′1

such that the required information

contents of the POD bases satisfy ic = 0.9999, i.e. all the POD bases contain at least
99.99% of the snapshot information.

Then we make the ansatz

φnh =

NPOD∑
i=1

αnikξ
φ
i , Σnh =

NPOD∑
i=1

βnikξ
Σ
i , nnh =

NPOD∑
i=1

ηnikξ
n
i . (12)

We moreover approximate the singular nonlinear terms ψ′1(φnh) and ψ′′1 (φnh) by a greedy
algorithm using DEIM interpolation [11], i.e. by computing the nonlinearities only on the
nodes of the mesh which give the greatest interpolation contribution for each of their POD
basis elements,

ψ′1

(NPOD∑
i=1

αnikξ
φ
i

)
=

NPOD∑
i=1

(PT2,ijUψ′1,js)
−1ψ′1(PT2,slΦlmα

n
mk)ξ

ψ′1
i , (13)

ψ′′1

(NPOD∑
i=1

αnikξ
φ
i

)
=

NPOD∑
i=1

(PT2,ijUψ′′1 ,js)
−1ψ′′1 (PT2,slΦlmα

n
mk)ξ

ψ′′1
i , (14)
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where i, j, s, l,m = 1, . . . , NPOD, Uψ′1 :=
[
ξ
ψ′1
1 , . . . , ξ

ψ′1
NPOD

]
, Uψ′′1 :=

[
ξ
ψ′′1
1 , . . . , ξ

ψ′′1
NPOD

]
, Φ :=[

ξφ1 , . . . , ξ
φ
NPOD

]
and P2 is the row selection operator of the DEIM interpolation nodes for

the term ψ′′1 (·). The DEIM algorithm is reported in the Appendix. We observe that we are
computing both (13) and (14) on the same interpolation nodes (associated to the ψ′′1 (·) term

only). This is needed to practically enforce the separation property
∑NPOD

i=1 αn,pik ξ
φ
i < 1,

driven by the singularities in the terms ψ′1(·) and ψ′′1 (·), throughout the steps of the Newton
algorithm.
Substituting (12) and (13) into (9), choosing vh ≡ ξφm, wh ≡ ξΣ

m, qh ≡ ξnm, we - after
replacing the original variational inequality by an equation as in the original equation (2) -
obtain the following ROM system

V1,mi
αnik − α

n−1
ik

∆t
= −Lk

(
αn−1
ik αn−1

jk αn−1
sk V2,ijsmlβ

n
lk − 2αn−1

ik αn−1
jk V3,ijmsβ

n
sk + αn−1

ik V4,imjβ
n
jk

)
+

knk
(
αn−1
ik αn−1

jk αn−1
sk V8,ijsmlη

n
lk − 2αn−1

ik αn−1
jk V9,ijmsη

n
sk + αn−1

ik V10,imjη
n
jk

)
+

νk(αn−1
ik V5,ims − αn−1

ik αn−1
jk V6,ijms)η

n
sk − (νkδk +KT )V1,miα

n−1
ik + νkδkα

n−1
ik V7,imsα

n−1
sk ,

U1,miβ
n
ik = γ2

kU6,miα
n
ik + EkcekU2,mi(P

T
2,ijUψ′1,js)

−1ψ′1(PT2,slΦlmα
n
mk)− Ekαn−1

ik U3,imjα
n−1
jk −

EkcekU4,miα
n−1
ik − EkcekU5,m,

W1,mi
ηnik − η

n−1
ik

∆t
= −W2,miη

n
ik + Snk

(
αn−1
ik W3,imjη

n
jk +W4,m −W5,miα

n−1
ik −W1,miη

n−1
ik

)
−

δnkα
n−1
ik W3,imjγ

n
jk.

(15)

Here, i, j, s, l,m = 1, . . . , NPOD, and the initial conditions are given by α0
ik = (φ0

h, ξ
φ
i )h and

η0
ik = (n0

h, ξ
n
i )h. The second order and higher order tensors V1, V2, . . . , V10, U1, U2, . . . , U6,

W1, . . . ,W5 in (15) and U7 (needed for the Newton problem) are defined by the following
Assemble problem in terms of Pk defined in (11).
Problem 4
Assemble:

Ak(Pk1,Pk2,Pk3,Pk4,Pk5) := (V1, . . . , V10, U1, U2, . . . , U6,W1, . . . ,W5, U7), (16)

where
V1,ji := (ξφi , ξ

φ
j )h, U1,ji := (ξΣ

i , ξ
Σ
j )h, U2,ji := (ψ′1,i, ξ

Σ
j )h,

U4,ji := (ξφi , ξ
Σ
j )h, U5,i := (1, ξΣ

i )h, U6,ji := (∇ξφi ,∇ξ
Σ
j ),

W1,ji := (ξni , ξ
n
j )h, W2,ji := (D∇ξni ,∇ξnj ), W4,i := (1, ξni )h, W5,ji := (ξφi , ξ

n
j )h,

for the second order tensors corresponding to the bilinear forms in (9), with i, j = 1, . . . , NPOD.
For the higher order tensors of the polynomial nonlinear forms we for i, j, k, l,m = 1, . . . , NPOD

find

V2,ijkml := (ξφi ξ
φ
j ξ

φ
kT∇ξΣ

l ,∇ξφm), V3,ijlk := (ξφi ξ
φ
j T∇ξΣ

k ,∇ξ
φ
l ), V4,ikj := (ξφi T∇ξΣ

j ,∇ξ
φ
k ),

for the mobility term;

V8,ijkml := (χξφi ξ
φ
j ξ

φ
kT∇ξnl ,∇ξφm), V9,ijlk := (χξφi ξ

φ
j T∇ξnk ,∇ξ

φ
l ), V10,ikj := (χξφi T∇ξnj ,∇ξ

φ
k ),

for the chemotactic term;

V5,ikj := (ξφi ξ
n
j , ξ

φ
k )h, V6,ijlk := (ξφi ξ

φ
j ξ

n
k , ξ

φ
l )h, V7,ijk := (ξφi ξ

φ
j , ξ

φ
k )h,

for the source term for φ,

U7,ikj := (ψ′′1,iξ
φ
j , ξ

Σ
k )h, U3,ikj := (ξφi ξ

φ
j , ξ

Σ
k )h,

8



for the terms containing ψ′′1 and ψ′2, and

W3,ikj := (ξφi ξ
n
j , ξ

n
k )h

for the source term for n.
We highlight that it is of utmost importance to assemble the higher order tensors V2 ,

V3 , V4 and V8 , V9 , V10, which project the mobility and chemotactic terms onto the ROM
space, instead of approximating them through tensor interpolation. The former approach
avoids to loose informations about the anisotropy of the tensor of preferential directions T
and the heterogeneity of the chemotactic function χ.

Due to the nonlinearity in the term ψ′1, we solve (15) by means of the Newton method,
defining the ROM Newton problem:
Problem 5
ROM Newton:

(αnik, β
n
ik, η

n
ik)i=1,...,NPOD;n=0,...,N = RNn

k (Ak,Pk, φ0
h, n

0
h). (17)

The Newton algorithm, which defines the function RNn
k is reported in the Appendix.

We finally search for the solutions of the nine ROM linearised systems obtained from
varying Pk = Pk + δP in (15), defining
Problem 6
ROM linearised:

∇Pk~αk =

[
∂~αk
∂Lk

∂~αk
∂νk

∂~αk
∂knk

∂~αk
∂Snk

∂~αk
∂δnk

∂~αk
∂γ2

k

∂~αk
∂Ek

∂~αk
∂δk

∂~αk
∂cek

]t
=

RLk(Ak,Pk, (RNn
k )n=0,...,N ). (18)

The construction of the functions RLk is reported in the Appendix.

3 Optimisation algorithm

In the following we propose an algorithm to learn the parameters of our model from clinical
neuroimaging data. For this purpose we set up a minimisation problem for the model
parameters which we solve iteratively with the help of reduced order models aligned with
the parameter sets associated to the respective iteration. We refer to [1] where this concept
was proposed for optimal flow control using POD surrogate models.

The set of model parameters is given by

P = {L, ν, kn, Sn, δn, γ2, E, δ, ce}.

To formulate the parameter learning problem as an optimisation problem we introduce the
functional

J(φ(P),P) =
1

2||H(φdata(T ))||2L2(Ω)

||Hφe(φ(T ))−H(φdata(T ))||2L2(Ω)+
η

2

|P|∑
m=1

(
Pm − Pexp,m

Pexp,m

)2

,

(19)
where φ is a solution of the system (1) supplemented with the initial and boundary con-
ditions (3). The set Pexp contains estimates of expected values for the parameters, η is a
regularisation parameter and T is the time at which we compare the simulations and the
data tumor extensions. A regularised Heaviside function Hφe with slope 2/φe is used to
approximate the characteristic function of the tumor extension

Hφe(φ) :=


1, if φ ≥ φe/2,
2φ/φe if φ ≥ 0 and φ ≤ φe/2,
0, if φ ≤ 0.

9



This means that we are considering φ = φe/2 as the equation for the hypersurface defining
the boundary of the tumour extension, since we can assume that the tumour profile given as
a solution of the degenerate Cahn–Hilliard equation (without growth) with the single well
cellular potential has a kink–like form between the two equilibria φ = 0 and φ = φe. Finally,
H(φdata(T )) is the characteristic function of the tumour extension from data, computed
through the Target problem:
Problem 7
Target:
Given MRI(t = 0), determine

H(φdata(T )) = Target(MRI(t = T )), (20)

where, given a segmentation map of the tumour extension from MRI(t = T ), the function
H(φdata(T )) takes the value 1 on the tumour map and the value 0 outside.
The functional J measures the L2(Ω) distance between the characteristic functions of the
tumor extensions from simulations and data. Note that, due to the fact that we cannot
easily obtain informations about the tumor cell densities from the MRI images, we are going
to consider the distance between the characteristic functions of the tumor extensions from
simulations and data, and not the distance between the tumor distributions.
The value of the functional J calculated at the FOM level is

J(F1k,Pk) =
1

2||πhH(φdata(T ))||2h
||πh[Hφe(φ

N
h )−H(φdata(T ))]||2h+

η

2

|P|∑
m=1

(
Pk,m − Pexp,m

Pexp,m

)2

,

(21)
where ||fh||2h = (fh, fh)h = {fh}TMh{fh} is the lumped L2(Ω) norm, with Mh the lumped
mass matrix. We define the following
Problem 8
FOM optimisation problem:

min
Pk∈Pbio

J(F1k,Pk), Fk solution of (9). (22)

Here, Pbio is the set of biological ranges for each parameter in the set P, as given in
Table 1.
In order to solve (22), we will write an iterative algorithm which, given the FOM solution
Fk corresponding to a parameter set Pk at iteration k, computes the associated ROM and
ROM linearised solutions from Problem 5 and Problem 6, and minimises the functional
J at the ROM level through sensitivity analysis, updating the parameter set and initiating
a new iteration k + 1 until convergence. The value of the functional J calculated at the
ROM level is

J(RN1k,Pk) =
1

2||πhH(φdata(T ))||2h

∣∣∣∣∣∣∣∣πhHφe

(NPOD∑
i=1

αNikξ
φ
i

)
−πhH(φdata(T ))

∣∣∣∣∣∣∣∣2
h

+
η

2

|P|∑
m=1

(
Pk,m − Pexp,m

Pexp,m

)2

.

(23)
In order to calculate a minimum for (23), for Pk ∈ Pbio and with RN the solution of
(15), we use sensitivity analysis to define a projected gradient algorithm which updates the
parameters set along descent directions of the functional J . We define the weighted gradient
directions, for each component m = 1, . . . , 9 in the parameter set Pk,

∇Pk,wJ(RN1k,Pk)|m := (24)(
Jα(RN1k,Pk)T (RLN1kdiag[dP0])

)T
m

+ diag[dP0]JPk(RN1k,Pk)|m =
1

||πhH(φdata(T ))||2h
×[{

πhHφe(Φ~α
N
k )− πhH(φdata(T ))

}T
Mh

(
diag

{
πh

∂Hφe

∂Φ~αNk
(Φ~αNk )

}
Φ

(
∂~αNk
∂Pk,m

dP0,m

))
+

{
πhHφe(Φ~α

N
k )− πhH(φdata(T ))

}T
Mh

{
πh
∂Hφe

∂cek
(Φ~αNk )dcek,0

}∣∣∣∣
m=9

]
+ η

(Pk,m − Pexp,m)

P2
exp,m

dP0,m,
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where
dP0 := 10−nwP0, nw ∈ N+,

is the vector of weights, which defines a weighted Euclidean scalar product in the parameter
space. Mh denotes the lumped scalar mass matrix. We note that the weighted gradient
(24) can be obtained in an equivalent way using the standard Euclidean inner product
in parameter space and solving the linearised problems (18) at Pk for a definite variation
Pk + dP0.
Then, we define the projection function

Pk(λ) := max(Pbio,min,min(Pbio,max,Pk − λ∇Pk,wJ(RN1k,Pk))),

which updates the values of the parameters Pk along the weighted gradient directions with
a learning rate λ and projects them onto the feasible set.
Following [27], we define the
Problem 9
Projected Weighted Gradient Algorithm: Given RN, RL, Pk, we update

a: Given β < 1 and λ = β, compute Pk(λ).
b: Find the least integer m such that λk = βm and

J(RN(Pk(λk)),Pk(λk))− J(RN1k,Pk) ≤ −10−4

λk
|Pk(λk)− Pk|2;

c:
Pk+1 = PWG(RNk,RLk,Pk) := Pk(λk). (25)

We finally formulate the following Optimization algorithm:
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Algorithm 1 Optimization Algorithm

Require: MRI(t=0), DTI(t=0), MRI(t=T), P0,Pbio,Pav;
Initialisation(MRI(t=0), DTI(t=0)) (Problem (7));
Target(MRI(t=T)) (Problem (20));
for k ≥ 0 do

Step 1–FOM: Fk(Initialisation,Pk) (Problem (8));
Compute J(F1k,Pk);
if k ≥ 1 and J((F1k,Pk) ≥ J((F1k−1,Pk−1) then
Popt ← Pk−1;
break;

else if k ≥ 1 and |J(F1k,Pk)− J(F1k−1,Pk−1)| ≤ tolF |J(F11,P1)− J(F10,P0)| then
Popt ← Pk;
break;

Step 2–POD: Pk(Fk) (problem (11));
Step 3–Assemble the ROM systems: Ak(Pk) (problem (16));
Step 4–ROM Optimization:
for l ≥ 0 do
Pl ← Pk,
Step A: RNl(Al,Pl, φ0

h, n
0
h); RLl(Al,Pl,RNl) (problems (17),(18));

Step B Compute J(RN1l,Pl);
Step C: Pl+1 = PWG(RNl,RLl,Pl) (problem (25));

if maxi=1,...,|P|

(
(Pi,l+1 − Pi,l)/Pi,l

)
≤ tolRa and

|J(RN1l+1,Pl+1)− J(RN1l,Pl)| ≤ tolRb|J(RN11,P1)− J(RN10,P0)|and
|Pl+1(1)− Pl+1| ≤ tolPa|P0|+ tolPr|P0(1)− P0| then

Pk+1 ← Pl+1;
break.

The Algorithm 1 stops at an iteration k when the functional J , calculated at the FOM
level, decreases, with respect to its value at k−1, by an amount which is a sufficiently small
fraction of the initial decrease between iteration 1 and 0, which means that a local minimum
is being approached. In the same way, the projected gradient iterations stop at an itera-
tion l when the following termination criteria are simultaneously satisfied: the functional
J , calculated at the ROM level, decreases of a sufficiently small amount with respect to
the initial decrease attained at the first iteration, the parameters are changing by a relative
small amount along the descent directions and the Euclidean norm of Pl(1)−Pl, which is a
measure of stationarity related to the magnitude of the weighted gradient of J , is sufficiently
small with respect to the norm of P0 and the initial norm of P0(1) − P0. After Step 4,
we go back to Step 1 and calculate the new POD basis associated to the FOM solutions
obtained with the new set of parameters Pl+1. We thus dynamically span the space of
parameters by solving the optimization algorithm over ROM systems associated to different
POD bases for each set Pk at each step k. This is indeed an alternative way to consider
parameters variability in the MOR of evolution equations with respect to the local reduced
basis method used e.g. in [35], which would request the static computation by k-means
clustering of different local POD basis from FOM solutions performed for different sets of
parameters, performing the minimisation problem on a ROM level by choosing properly the
local basis along the flow of projected gradient parameter updates.

We finally observe that the weights in (24) are needed to precondition the ill–conditioned
gradient projected algorithm (25). Indeed, due to the large differences in the order of magni-
tude of the parameters in the set P (see Table 1), the solutions of the linearised systems (18)
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differ accordingly (higher linearised solutions for smaller parameters) by order of magnitudes
and some parameters may undergo large variations during the first step of the Armijo pro-
cedure in Problem 9. These variations could not be fully represented by the information
contained in the starting POD basis, which is based on FOM solutions which satisfy the
physical constraints, thus causing the Newton algorithm to compute RN(Pk(β))) to diverge
and the solution to violate the physical constraints. The latter fact happens when the neg-
ative values associated to the higher order POD basis are amplified during the algorithm.
An alternative way to proceed would be to regularise the ROM system in order to eliminate
its instability when the ROM solutions take values in an unphysical range and to penalise
unphysical solutions, by choosing a convex potential containing a smooth penalisation of
negative values. This method was found to be unnecessary when weights are introduced in
(24).

4 Results

In this section we apply the proposed algorithm to optimise the parameter estimation from
the neuroimaging data of two test cases provided by a clinical study conducted at the Istituto
Neurologico Besta in Milan. Test case 1 is a clinical follow-up of a primary tumour subjected
to adjuvant therapy, optimising the model parameters by following-up the tumour growth
until surgical removal. Test case 2 concerns the recurrence pattern of a GBM after surgery
until the start of radiotherapy. While in the first case the tumour mass keeps a round shape,
in the latter it grows in an irregular manner infiltrating the peritumoral brain tissue after
surgery.

Since the biological range of the model parameters to be estimated can vary as sum-
marised in Table 1, we use as our initial guess for the optimisation algorithm the manually
tuned parameters in [2, 3], reading

P0 ≡{(1/5000), (0.08), (2.0), (104), (8640), (0.1225), (694), (0.3), (0.611)},
Pbio ≡{[1/5032.2, 1/1377.86], [0.012, 0.5], [0.007, 90.72], [103, 105], [103, 105],

[0.0841, 0.6084], [106.66, 1533.3], [0.1, 0.33], [0.2, 0.611]},
Pexp ≡{(1/3991.06), (0.06), (2.0), (104), (8640), (0.1225), (694), (0.3), (0.611)}, (26)

with units mm2/(Pa day), day−1, mm2/day, day−1, day−1, Pamm2 and Pa for the first
seven parameters respectively, whereas δ and ce are dimensionless. Moreover, we set η =
10−4, tolF = tolRa = tolRb = tolPr = 10−3, tolPa = 10−6, nw = 1.

4.1 Test case 1: clinical follow-up of a primary tumour

We first apply the proposed Optimization Algorithm for a test case which investigates the
clinical follow-up of a primary tumour.
A patient diagnosed with multiple GBM lesions underwent a surgical removal, which left
one posterior temporal mass untouched. The patient started radiotherapy with concomi-
tant chemotherapy (Temozolomide) 25 days after surgery following the Stupp protocol; the
pre-Radiotherapy MRI confirmed the presence of the primary GBM mass in the posterior
temporal area. The patient completed the standard radiation protocol, and performed post-
radiotherapy MRI immediately after the treatment and then every two months. These MRI
scans depict the progression of the posterior temporal lesion. Further 6 MRI scans were
taken on following the schedule of the clinical protocol until a post-radiotherapy stage at 8
months after surgery. Our numerical simulations investigate the follow-up of the growing
posterior lesion from 6 months after surgery (initial time t = 0 days in the simulations) to
8 months after surgery (final time t = T := 2 months). At t = T we compare data and
simulations, searching for the optimal set of parameters Popt which locally minimises the
functional (19), obtained by solving Algorithm 1. Between t = 0 and t = 2 months the
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patient underwent two chemotherapy cycles, so that

KT (t) =

{
KC3

0 ≤ t ≤ 8, 33 ≤ t ≤ 38 [days],

0 otherwise.

In Figure 1 we show the axial, sagittal and coronal slices of the T1-weighted MRI at different
temporal stages. The clinicians observed that at t = 4 months (10 months after surgery),
the posterior lesion joins the infiltrated mass re–grown from the peritumoral area affected by
surgery. Therefore, we choose to set the optimization problem only between t = 0 and t = 2
months, when the posterior lesion can be considered as a single tumour mass expanding in
a healthy brain tissue.

4.1.1 Initialisation

In Figures 2 and 3 we represent the results of the initialisation step of Algorithm 1,
which defines the domain Ω (Figure 2), the map(WM,GM,CSF), the initial condition φ0

h

and the tensors D and T (Figure 3), extracted from the segmentation of the MR images
and from the study of the log-signal associated to the DTI at t = 0.

The number of elements and the number of nodes of the mesh Th are 301867 and 50713
respectively. Moreover, we choose ∆T = 0.1225 (days), and N = 490.
The characteristic function of the tumour extension φdata(T ) has been extracted from the
segmentation of the MR images at t = 2 month.

4.1.2 Step 1

In Figure 4 we report the values of the functional J(φNh (Pk),Pk), calculated in step 1 of
Algorithm 1, and of the set of parameters Pk, for different values of k. We also plot the iso–
surfaces φdata(T ) = 0 from the MRI data and φNh (Pk) = φe/2 from the FOM simulations,
reporting the value of the Jaccard index, defined as the intersection over union ratio between
the two volumes enclosed within these two surfaces.
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Figure 1: Axial (first column), sagittal (second column) and coronal (third column) slices of
the T1-weighted MRI at different temporal stages. First row: before surgery; second raw: after
surgery; third row: 6 months after surgery; fourth row: 8 months after surgery; fifth row: 10
months after surgery. It is possible to appreciate the progressive volumetric increase of the
posterior temporal mass. The segmented boundary of the tumour is highlighted in red color.
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A B C

D E F

A B C

Figure 2: (A) External brain surface extracted from the medical images; (B) Smoothed and
re–meshed external surface; (C) Tetrahedral mesh generated within the external surface, con-
veniently refined in the peritumoral area.

MRI

DTI - Dxx

Brain tissue labels

Initial tumor concentration

Figure 3: 3D virtual reconstructions of the MRI (top) and DTI (bottom) data, with the corre-
sponding computational meshes containing the labels of the brain tissues and the xx component
of the tensors D and T. White matter, grey matter and CSF are highlighted in white, grey and
blue colors respectively. The initial tumour distribution is also highlighted in brown color, as
segmented from the T1-weighted MRI.

The Algorithm 1 stops at k = 2, since

J(φNh (Pk+1),Pk+1) = J(φNh (Pk),Pk)

for k = 2. Indeed, the ROM optimization algorithm for k = 2 makes no advances in the
parameter space (see Figure 7). We thus identify

Popt ≡ P2 =

{L = 0.0002, ν = 0.0213, kn = 1.9842, Sn = 10000.04, δn = 8639.95, γ2 = 0.1225,

E = 693.99, δ = 0.3271, ce = 0.611}, (27)

with the corresponding units. We observe that during the optimization process at different
k levels the overall overlapping between the tumour extensions from FOM simulations and
from data is increasing, which is shown by the corresponding increase in the value of the
Jaccard index.

4.1.3 Step 2

In Table 2 we report, for each step k of Algorithm 1, the values of the cumulated frac-
tions of trFT1 F1, trF

T
2 F2, trF

T
3 F3, tr(ψ

′
1(F1))Tψ′1(F1), tr(ψ′′1 (F1))Tψ′′1 (F1) associated to the

eigenvalues of the corresponding matrices, arranging them starting from the eigenvalue with
the highest magnitude and following a decreasing order.
We thus have that NPOD = NPOD

φ = 5 for k = 0 and NPOD = NPOD
φ = 4 for k = 1, 2. In

Figure 5 we show the basis elements ξφi , corresponding to the highest eigenvalues needed to
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Iteration
k=0

J(P0)
0.32328

L0

0.0002
ν0

0.08
kn0

2
Sn0

10000
δn0

8640
γ2

0

0.1225
E0

694
δ0

0.3
ce0

0.611

MRI FOM Comparison

J = 0.4663J = 0.8504

Jaccard = 0.5359

T = 2 months

Iteration
k=1

J(P1)
0.08001

L1

0.0002
ν1

0.02352
kn1

1.9769
Sn1

9999.99
δn1

8640.00
γ2

1

0.1225
E1

693.99
δ0

0.3237
ce0

0.5755

MRI FOM Comparison

J = 0.4663J = 0.8504

Jaccard = 0.7823

T = 2 months

Iteration
k=2

J(P2)
0.07167

L2

0.0002
ν2

0.0213
kn2

1.9842
Sn2

10000.04
δn2

8639.95
γ2

2

0.1225
E2

693.99
δ0

0.3271
ce0

0.611

MRI FOM Comparison

J = 0.4663J = 0.8504

Jaccard = 0.77789

T = 2 months

Figure 4: Values of J(φNh (Pk),Pk) and of Pk for different iteration steps k of Algorithm
1, with a comparison between the isosurfaces φdata(T ) = 0 (highlighted in blue color) and
φNh (Pk) = φe/2 (highlighted in red color).

explain the 99.99% variance of the data, for k = 0, 1, superposed with the initial condition
and final distribution of cell concentration (highlighted by a distribution of green and red

points respectively). We observe that ξφ1 and ξφ2 are distributed over the bulk of the final

state φNh and the initial condition φ0
h respectively, whereas ξφ3 , ξφ4 and ξφ5 are oscillating

functions over the set where the tumour is expanding during its temporal evolution, and
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Table 2: Values of the cumulated fraction of trFT
1 F1,trFT

2 F2,trFT
3 F3,tr(ψ′1(F1))Tψ′1(F1),tr(ψ′′1(F1))Tψ′′1(F1)

for the first eigenvalues with the highest magnitude.

Iteration
k=0

Eigenvalue % trFT
1 F1 % trFT

2 F2 % trFT
3 F3 % tr(ψ′1)Tψ′1 % tr(ψ′′1)Tψ′′1

First 95.1394 99.9195 99.9695 99.9098 99.3874
Second 99.4332 99.9868 99.9964 99.9778 99.8069
Third 99.8773 99.9970 99.9991 99.9950 99.9483
Fourth 99.9695 99.9986 99.9996 99.9983 99.9882
Fifth 99.9912 99.9997 99.9999 99.9997 99.9980

Iteration
k=1

Eigenvalue % trFT
1 F1 % trFT

2 F2 % trFT
3 F3 % tr(ψ′1)Tψ′1 % tr(ψ′′1)Tψ′′1

First 97.6975 99.9483 99.9891 99.9133 99.0374
Second 99.6790 99.9950 99.9987 99.9932 99.9278
Third 99.9524 99.9989 99.9997 99.9985 99.9849
Fourth 99.9912 99.9996 99.9998 99.9996 99.9971

Iteration
k=2

Eigenvalue % trFT
1 F1 % trFT

2 F2 % trFT
3 F3 % tr(ψ′1)Tψ′1 % tr(ψ′′1)Tψ′′1

First 97.7632 99.9500 99.9890 99.9105 99.0029
Second 99.6881 99.9953 99.9988 99.9933 99.9280
Third 99.9542 99.9990 99.9997 99.9986 99.9855
Fourth 99.9917 99.9997 99.9999 99.9996 99.9973

thus contain the information about the tumour boundary and its expansion.
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We observe that the number of basis functions needed to explain the 99.99% variance of the
data is small, which depends on the fact that the region of tumour expansion small and there
are no significant topological changes in the evolution dynamics of the FOM solution, which
also spreads in a smooth manner. In order to deal with a sufficiently smooth FOM dynamics
we needed to choose a mesh Th sufficiently refined in the region of tumour evolution. This
turned out to be necessary in order to deal with low dimensional higher order tensors in
Problem 4 (16) and to deal with ROM systems which are solvable with low computational
resources and in highly reduced computational times.

Iteration k=0
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Iteration k=1

Figure 5: Plot of the basis elements ξφi corresponding to the highest eigenvalues needed to
explain the 99.99% variance of the data, for k = 0, 1. Green and red points are distributed over
the initial condition and final distribution of cell concentration, respectively.

We finally show in Figure 6 a comparison between the final state φNh calculated from the
FOM simulation through Algorithm 2 with parameter set P0 and the corresponding final
state

∑NPOD

i=1 αNi0ξ
φ
i obtained as a solution of the ROM system (15) through Algorithm 4.

Figure 6: Comparison between the final state φNh , solution of the FOM simulation with param-

eter set P0 and the corresponding final state
∑NPOD

i=1 αNi0ξ
φ
i , solution of the ROM system (15).

The iso–surfaces φNh = φe/2 and
∑NPOD

i=1 αNi0ξ
φ
i = φe/2 are highlighted in red colors.

We observe that the ROM solution is approximating the FOM solution with a very high
fidelity.
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4.1.4 Steps 3 and 4

In Figure 7 we report the values of the functional J(~αl,Pl), of the normalised set of param-
eters

Pl/Pexp = {Ll/Lexp, νl/νexp, knl/knexp, Snl/Snexp, δnl/δnexp, γ
2
l /γ

2
exp, El/Eexp, δc/δcexp, ce/ceexp},

and of |Pl(1) − Pl|, computed in Steps 3 and 4 of Algorithm 1, for k = 0, 1, 2. We also

plot the iso–surfaces φdata(T ) = 0 from the MRI data and
∑NPOD

i=1 αN
il̄
ξφi = φe/2 from the

ROM simulations, where l̄ is the number of the last iteration of Step 4, reporting the value
of the Jaccard index between the two volumes enclosed by these surfaces.
For k = 0 the ROM optimization process in Steps 3 and 4 goes through 11 steps be-
fore matching the termination conditions. We also observe that only the model parameters
L, ν, δ, ce change significantly from their starting values during the optimization process,
being the system quite insensitive to changes of the remaining parameters kn, Sn, δn, γ

2, E.
The proliferation rate ν is the most sensitive parameter whose variations lead to the func-
tional minimisation. This is in accordance to the sensitivity analysis found in the literature
for tumour growth models based on Cahn–Hilliard–Darcy–Forchheimer–Brinkman equations
with logistic growth [18].
For k = 1 the ROM optimization process in Steps 3 and 4 goes through 45 steps. Finally,
for k = 2 the ROM optimization process is making no progress.
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MRI ROM (Pl̄=45) Comparison
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Figure 7: Values of the functional J(~αl,Pl), of the normalised set of parameters Pl/Pexp and
of |Pl(1) − Pl| for steps k = 0, 1, 2 of Algorithm 1, together with a comparison between the

isosurfaces φdata(T ) = 0 (highlighted in blue color) and
∑NPOD

i=1 αN
il̄
ξφi = φe/2 (highlighted in

red color).

4.1.5 Computational cost

We conclude by reporting in Table 3 the elapsed time (in seconds) for the computation of
steps 1 − 4 of Algorithm 1 for the different values of the iteration step k. We observe

Table 3: Elapsed time (in seconds) for the computation of steps 1 − 4, for the different values
of the iteration step k.

Iteration
k=0

Step 1
201914.27

Step 2
12.42

Step 3
6281.31

Step 4
157.8289

Iteration
k=1

Step 1
201425.71

Step 2
12.89

Step 3
2600.37

Step 4
587.07

Iteration
k=2

Step 1
213040.53

Step 2
11.44

Step 3
2544.43

Step 4
42.53

that the computational time for the projected gradient iterations at the ROM level is 3 to
4 order of magnitude smaller than the time needed to solve the FOM problem. We thus
can very efficiently minimise the functional J at the ROM level, checking at the FOM level
the effective functional decrease and updating the POD basis to span the parameters space.
In order to have light ROM systems, we need to have higher order tensors in Problem 4
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(16) with low dimension. Indeed, with only 4 or 5 basis functions Step 3 of Algorithm (1)
requires a heavy computational cost, which is only 2 orders of magnitude smaller than the
time needed to solve the FOM problem.

4.1.6 Some remarks on benchmark results

In this paragraph we report some numerical results to show how the POD analysis in Step
2 of Algorithm (1) varies when the tumour concentration in the FOM simulations in Step
1 is spreading on a larger region than the one observed in Test Case 1. This happens if we
consider a tumour dynamics over a larger time interval and also if we consider an initial set
of parameters which induces a larger and more anisotropic tumour expansion. Moreover, we
report numerical results about the performance of Step 4 of Algorithm (1) when a different
initial set of parameter is considered and when a lower threshold of POD significance (namely
99.9%) is considered.
In Table 4 we report the POD analysis of the snapshot matrices obtained from the FOM
solution (8) at k = 0 of Algorithm 1 with N = 980, i.e. when the tumour dynamics span
a time interval of 120 days.

Table 4: Values of the cumulated fraction of trFT
1 F1,trFT

2 F2,trFT
3 F3,tr(ψ′1(F1))Tψ′1(F1),tr(ψ′′1(F1))Tψ′′1(F1)

for the first eigenvalues with the highest magnitude.

Iteration
k=0

N = 980

Eigenvalue % trFT
1 F1 % trFT

2 F2 % trFT
3 F3 % tr(ψ′1)Tψ′1 % tr(ψ′′1)Tψ′′1

First 90.2061 99.6130 99.8455 99.5709 97.7895
Second 98.5523 99.8068 99.9859 99.9554 99.6662
Third 99.5893 99.9866 99.9958 99.9836 99.8917
Fourth 99.8472 99.9967 99.9982 99.9928 99.9446
Fifth 99.9401 99.9989 99.9992 99.9968 99.9805
Sixth 99.9744 99.9995 99.9995 99.9987 99.9941
Seventh 99.9884 99.9998 99.9998 99.9995 99.9978
Eighth 99.9944 99.9999 99.9999 99.9998 99.9991

We thus have that NPOD = NPOD
φ = 8 for k = 0.

In Table 5 we report the same POD analysis for a time span of 120 days, choosing also an
initial set of parameters

Pbis
0 ≡ {(1/3205.13), (0.128), (3.00), (9 ∗ 103), (6184), (0.2862), (819.98), (0.215), (0.3364)};

in order to observe a larger and more anisotropic spread of the initial tumour distribution
during the dynamics.
We thus have that NPOD = NPOD

φ = 10 for k = 0.

In Figure 8 we also show the basis elements ξφi , corresponding to the highest eigenvalues
needed to explain the 99.99% variance of the data, for the case of N = 980 and initial
set Pbis

0 , superposed with the initial condition and final distribution of cell concentration
(highlighted by a distribution of green and red points respectively).
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Table 5: Values of the cumulated fraction of trFT
1 F1,trFT

2 F2,trFT
3 F3,tr(ψ′1(F1))Tψ′1(F1),tr(ψ′′1(F1))Tψ′′1(F1)

for the first eigenvalues with the highest magnitude.

Iteration
k=0

N = 980
Pbis

0

Eigenvalue % trFT
1 F1 % trFT

2 F2 % trFT
3 F3 % tr(ψ′1)Tψ′1 % tr(ψ′′1)Tψ′′1

First 89.5942 96.9529 99.2853 97.0274 93.7024
Second 97.6348 97.8125 99.9235 99.7625 99.3436
Third 99.3231 99.7177 99.9817 99.9318 99.7444
Fourth 99.7375 99.9534 99.9927 99.9631 99.8768
Fifth 99.8762 99.9866 99.9962 99.9850 99.9567
Sixth 99.9370 99.9944 99.9978 99.9930 99.9849
Seventh 99.9670 99.9975 99.9988 99.9969 99.9945
Eighth 99.9821 99.9987 99.9992 99.9986 99.9974
Nineth 99.9899 99.9993 99.9996 99.9992 99.9985
Tenth 99.9942 99.9996 99.9997 99.9996 99.9992

We can observe that, while ξφ1 and ξφ2 are distributed over the final state φNh and the bulk

of the initial condition φ0
h respectively, the higher order basis ξφi , i = 3, . . . , 10 are oscillating

functions over the set where the tumour is expanding during its temporal evolution, and
thus contain the information about the tumour boundary and its expansion. Since the latter
set is larger than the case shown in Figure 5, the number of oscillating functions over this
region with a frequency needed to explain the 99.99% of the data is increased.
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Iteration k=0, N = 980, Pbis
0

Figure 8: Plot of the basis elements ξφi corresponding to the highest eigenvalues needed to
explain the 99.99% variance of the data, for k = 0, N = 980, Pbis

0 .

We show in Figure 9 a comparison between the final state φNh calculated from the FOM
simulation through Algorithm 2 with parameter set Pbis

0 and the corresponding final state∑NPOD

i=1 αNi0ξ
φ
i obtained as a solution of the ROM system (15) through Algorithm 4, with

NPOD = 5 and NPOD = 10.
We observe that the ROM solution is approximating the FOM solution with a very

high fidelity when we consider 10 POD basis (corresponding to a 99.99% threshold of POD
variance), whereas a low fidelity approximation is obtained when considering 5 basis (cor-
responding to a 99.87% threshold of POD variance).

In Figure 10 we report the values of the functional J(~αl,Pl), of the normalised set of
parameters

Pl/Pexp = {Ll/Lexp, νl/νexp, knl/knexp, Snl/Snexp, δnl/δnexp, γ
2
l /γ

2
exp, El/Eexp, δc/δcexp, ce/ceexp},

and of |Pl(1)−Pl|, computed in Steps 3 and 4 of Algorithm 1, for k = 0, obtained when
starting from the initial set of parameters Pbis

0 and considering the time span N = 490. We
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Figure 9: Comparison between the final state φNh , solution of the FOM simulation with pa-

rameter set Pbis
0 and N = 980, and the corresponding final state

∑NPOD
i=1 αNi0ξ

φ
i , solution of the

ROM system (15). The iso–surfaces φNh = φe/2 and
∑NPOD

i=1 αNi0ξ
φ
i = φe/2 are highlighted in

red colors.

note that in this case we need NPOD = 6 to explain the 99.99% of variance of the data.
Moreover, in order for the Algorithm (25) to converge we need to choose nw = 2.

Iteration k=0, N = 490,
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Figure 10: Values of the functional J(~αl,Pl), of the normalised set of parameters Pl/Pexp and
of |Pl(1)− Pl| for step k = 0 of Algorithm 1, with N = 490 and starting from the set Pbis

0 .

We observe that the parameters ν and L go through a large excursion. The parameter
ν is decreasing to 1/3 of its initial value, whereas the parameter L reaches its active value
Lbio,max and remains stick to it, differently from the behaviour observed in Figure 7 where,
starting from P0, the parameter L reaches its maximum value and than relaxes to its initial
value. The functional J , starting from a value J = 0.3543 higher than J = 0.2847 reported
in Figure 7, relaxes onto a minimum value J = 0.0906 which is next to the value J = 0.0870
reported in Figure 7 in a number of steps l̄ = 136 much higher than l̄ = 11 in Figure 7.
Finally, we consider the results of the Steps 2–4 of Algorithm (1), for the first step k = 0,
with starting point P0, N = 490 and when a threshold value of 99.9% is considered in
the POD analysis. In Figure 11 we report the values of the functional J(~αl,Pl), of the
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normalised set of parameters

Pl/Pexp = {Ll/Lexp, νl/νexp, knl/knexp, Snl/Snexp, δnl/δnexp, γ
2
l /γ

2
exp, El/Eexp, δc/δcexp, ce/ceexp},

and of |Pl(1)−Pl|, computed in Steps 3 and 4 of Algorithm 1. We note that in this case
we need NPOD = 4 to explain the 99.9% of variance of the data.

Iteration k=0, 99.9% POD
threshold, N = 490, P0
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Figure 11: Values of the functional J(~αl,Pl), of the normalised set of parameters Pl/Pexp and of
|Pl(1)−Pl|for steps k = 0 of Algorithm 1, together with a comparison between the isosurfaces

φdata(T ) = 0 (highlighted in blue color) and
∑NPOD

i=1 αN
il̄
ξφi = φe/2 (highlighted in red color).

We observe that in this case of a lower POD threshold of 99.9% the value of the func-
tional J reaches a minimum value 0.0909 which is higher than the minimal value 0.0870
attained during the optimization algorithm with an higher threshold of 99.99% (see Figure
7). Moreover, in the former case the parameter ν varies by a smaller amount, whereas the
parameter L, once reached the active value Lmax, changes of a smaller amount.

28



4.2 Test case 2: clinical follow-up after surgical resection and re-
currence

Secondly, we apply the Optimization Algorithm so a clinical test case which followed the
surgical resection and the recurrence pattern of a GBM.
A patient diagnosed with giant cell GBM underwent subtotal tumour removal. The pa-
tient started radiotherapy with concomitant Temozolomide 42 days after surgery following
to Stupp protocol. The pre-Radiotherapy MRI showed tumour relapse. After 25 doses of
RT, the patient had a severe worsening of the clinical status.
MRI were taken at the pre-operative, immediate post-operative, pre-radiotherapy (34 days
after surgery) temporal stages and lastly at 5 days after the interruption of RT and con-
comitant CHT due to disease progression.
Our numerical simulations focus on the period starting with the surgical removal (initial
time t = 0 of simulations) up to the first application of radiotherapy (time t = T =: 34
days). At t = T we compare data and simulations, searching for the optimal set of param-
eters Popt which locally minimises the functional (19), obtained by solving Algorithm 1,
thus estimating the model parameters directing the recurrence growth without any adjuvant
therapy.
In Figure 12 we show the axial, sagittal and coronal slices of the T1-weighted MRI at
different temporal stages.

We can observe that, after the application of 25 fractions of RT, at t = 78 days after
surgery (Post Rad event) the GBM recurrence has grown in volume with respect to the Pre
Rad event, inducing a severe and rapid worsening of the patient’s clinical status. The aim of
the present work is to study the patient specific optimization of the growth parameters in the
temporal range of tumour evolution after surgery and before the application of radiotherapy
and chemotherapy.
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Figure 12: Axial (first column), sagittal (second column) and coronal (third column) slices of
the T1-weighted MRI at different temporal stages. First row: before surgery; second raw: after
surgery; third row: 34 days after surgery; fourth row: 78 days after surgery. It is possible to
appreciate the subtotal resection of the corpus callosum GBM and the early tumour relapse at
Pre Rad MRI and at Post Rad MRI. The segmented boundary of the tumour is highlighted in
red color.

4.2.1 Initialisation

In Figures 13 and 14 we represent the results of the initialisation step of Algorithm 1,
which defines the domain Ω (Figure 13), the map(WM,GM,CSF), the initial condition φ0

h

and the tensors D and T (Figure 14).
The number of elements and the number of nodes of the mesh Th are 305489 and 51005
respectively. Moreover, we choose ∆T = 0.1225 (days), than N = 280. As in Test Case 1, a
good refinement of the mesh in the region of tumour evolution is necessary to obtain ROM
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A B C

D E F

CC

Figure 13: (A) External brain surface extracted from the medical images; (B) Smoothed and
re–meshed external surface; (C) Tetrahedral mesh generated within the external surface, con-
veniently refined in the area surrounding the tumour.

MRI

DTI - Dxx

Brain tissue labels

Initial tumor concentration

MRI

DTI - Dxx

Figure 14: 3D virtual reconstructions of the MRI (top) and DTI (bottom) data, with the corre-
sponding computational meshes containing the labels of the brain tissues and the xx component
of the tensors D and T. White matter, grey matter and CSF are highlighted in white, grey and
blue colors respectively. The initial tumour distribution is also highlighted in brown color, as
segmented from the T1 MRI.

systems with sufficiently low dimensionality to be solved with low computational resources
and in highly reduced computational times.
In a similar way the characteristic function of the tumour extension φdata(T ) has been
obtained from the segmentation of the MR images at t = 34 days (PreRad event).

4.2.2 Step 1

In Figure 15 we report the values of the functional J(φNh (Pk),Pk), calculated in step 1
of Algorithm 1, and of the set of parameters Pk, for different values of k. We also plot
the isosurfaces φdata(T ) = 0 and φNh (Pk) = φe/2 from the FOM simulations, reporting the
Jaccard index between the two volumes enclosed by these surfaces.
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Figure 15: Values of J(φNh (Pk),Pk) and of Pk for different iteration steps k of Algorithm
1, with a comparison between the iso–surfaces φdata(T ) = 0 (highlighted in blue color) and
φNh (Pk) = φe/2 (highlighted in red color).
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The Algorithm 1 stops since

J(φNh (Pk+1),Pk+1) = J(φNh (Pk),Pk)

for k = 2. Indeed, the ROM optimization algorithm for k = 2 makes no advances in the
parameter space (see Figure 18). We thus identify

Popt ≡ P2 =

{L = 0.000532, ν = 0.10573, kn = 2.0805, Sn = 10000.05, δn = 8639.94, γ2 = 0.1225,

E = 693.97, δ = 0.2376, ce = 0.5792}, (28)

with the corresponding units. We observe that also in this case the overall overlapping
between the tumour extensions from FOM simulations and from data is increasing, which
is shown by the corresponding increase in the value of the Jaccard index. The Jaccard
indexes are anyhow smaller than the values computed for Test Case 1, reported in Figure 4,
due to greater uncertainty in the segmentation of initial left tumour particles after surgery
and in the segmentation of the tumour extension before radiotherapy, which consists in
peritumoural infiltrations which are not visible in the MRI data.

4.2.3 Step 2

In Table 6 we report, for each step k of Algorithm 1, the values of the cumulated frac-
tions of trFT1 F1, trF

T
2 F2, trF

T
3 F3, tr(ψ

′
1(F1))Tψ′1(F1), tr(ψ′′1 (F1))Tψ′′1 (F1) associated to the

eigenvalues of the corresponding matrices, arranging them starting from the eigenvalue with
the highest magnitude and following a decreasing order.

Table 6: Values of the cumulated fraction of trFT
1 F1,trFT

2 F2,trFT
3 F3,tr(ψ′1(F1))Tψ′1(F1),tr(ψ′′1(F1))Tψ′′1(F1)

for the first eigenvalues with the highest magnitude.

Iteration
k=0

Eigenvalue % trFT
1 F1 % trFT

2 F2 % trFT
3 F3 % tr(ψ′1)Tψ′1 % tr(ψ′′1)Tψ′′1

First 93.5098 99.9731 99.9904 99.9714 99.7753
Second 99.5129 99.9973 99.9993 99.9960 99.9577
Third 99.9574 99.9998 99.9999 99.9998 99.9984
Fourth 99.9957 99.9999 99.9999 99.9999 99.9998

Iteration
k=1

Eigenvalue % trFT
1 F1 % trFT

2 F2 % trFT
3 F3 % tr(ψ′1)Tψ′1 % tr(ψ′′1)Tψ′′1

First 92.6867 99.7216 99.9210 99.5998 99.3884
Second 98.8774 99.9860 99.9951 99.9878 99.9182
Third 99.8253 99.9980 99.9993 99.9980 99.9844
Fourth 99.9702 99.9996 99.9998 99.9997 99.9983
Fifth 99.9945 99.9999 99.9999 99.9999 99.9997

Iteration
k=2

Eigenvalue % trFT
1 F1 % trFT

2 F2 % trFT
3 F3 % tr(ψ′1)Tψ′1 % tr(ψ′′1)Tψ′′1

First 93.2361 99.9348 99.9793 99.9325 99.4953
Second 99.3359 99.9958 99.9988 99.9946 99.9383
Third 99.9291 99.9995 99.9998 99.9996 99.9971
Fourth 99.9915 99.9999 99.9999 99.9999 99.9996

We thus have that

NPOD = NPOD
φ = 4, for k = 0, 2, NPOD = NPOD

φ = 5, for k = 1.
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Iteration k=0

Iteration k=1

Figure 16: Plot of the basis elements ξφi , corresponding to the highest eigenvalues needed to
explain the 99.99% of the data, for k = 0, 1. Green and red points are distributed over the
initial condition and final distribution of cell concentration, respectively.

In Figure 16 we show the basis elements ξφi , corresponding to the highest eigenvalues needed
to explain the 99.99% variance of the data, for k = 0, 1.
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We observe, as in the previous Test Case 1, that ξφ1 and ξφ2 are distributed over the core

of the final state φNh and the initial condition φ0
h respectively, whereas ξφ3 , ξφ4 and ξφ5 are

oscillating functions over the set where the tumour is expanding during its temporal evolu-
tion, and thus contain the information about the tumour boundary and its expansion. We
observe that the low dimensionality of the ROM systems is preserved also in the case of
tumour dynamics with sparse tumour particles and infiltrations, if the mesh for the FOM
system is sufficiently well refined in the region of the tumour core and infiltrations.
We finally show in Figure 17 a comparison between the final state φNh calculated from the
FOM simulation through Algorithm 2 with parameter set P0 and the corresponding final
state

∑NPOD

i=1 αNi0ξ
φ
i obtained as a solution of the ROM system (15) through Algorithm 4.

Figure 17: Comparison between the final state φNh , solution of the FOM simulation with pa-

rameter set P0 and the corresponding final state
∑NPOD

i=1 αNi0ξ
φ
i , solution of the ROM system

(15). The iso–surfaces φNh = φe/2 and
∑NPOD

i=1 αNi0ξ
φ
i = φe/2 are highlighted in red color.

We observe also in this test case that the ROM solution is approximating the FOM solution
with a very high fidelity.

4.2.4 Steps 3 and 4

In Figure 18 we report the values of the functional J(~αl,Pl), of the normalised set of pa-
rameters

Pl/Pexp = {Ll/Lexp, νl/νexp, knl/knexp, Snl/Snexp, δnl/δnexp, γ
2
l /γ

2
exp, El/Eexp, δc/δcexp, ce/ceexp},

and of |Pl(1) − Pl|, computed in Steps 3 and 4 of Algorithm 1, for k = 0, 1, 2. We also

plot the isosurfaces φdata(T ) = 0 from the MRI data and
∑NPOD

i=1 αN
il̄
ξφi = φe/2 from the

ROM simulations, where l̄ is the value of the last iteration of Step 4, reporting the value
of the Jaccard index between the two sets enclosed by these surfaces.
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MRI ROM (Pl̄=34) Comparison
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Figure 18: Values of the functional J(~αl,Pl) and of the normalised set of parameters Pl/P0

for steps k = 0, 1, 2 of Algorithm 1, together with a comparison between the iso–surfaces
φdata(T ) = 0(highlighted in blue color) and

∑NPOD
i=1 αN

il̄
ξφi = φe/2 (highlighted in red color).

For k = 0 the ROM optimization process in Steps 3 and 4 goes through 249 steps before
matching the termination conditions. Thus the ROM Optimization Algorithm is much slower
in Test Case 2, corresponding to irregular initial data and target function, then in Test Case
1, which is characterised by more regular data. We also observe that, like in Test Case 1,
only the model parameters L, ν, δ, ce change significantly from their starting values during
the optimization process, being the system quite insensitive to changes of the remaining
parameters kn, Sn, δn, γ

2, E. The proliferation rate ν is the most sensitive parameter for
k = 0. For k = 1 the ROM optimization process in Steps 3 and 4 goes through 34
steps. We observe that for k = 1 also the parameter L varies by a large excursion along
the functional minimisation and relaxes in an oscillating manner onto its local equilibrium
value. Finally, for k = 2 the ROM optimization process is making no progress.

Comparing the output of the Optimization Algorithm (1) with the ones reported in
Figure 7 for Test Case 1, we observe that in Test Case 2 we need more iterations to converge
to an optimal state, that the functional overall decreases of a much smaller amount (due to
the uncertainty in identifying the target function) and that the computation of new POD
basis associated to different set of parameters introduces a higher degree of variability in
the tumour dynamics, causing the minimising sequences of parameters to show oscillations
instead of monotone relaxing to the optimal state like in Test Case 1.

4.2.5 Computational cost

We conclude by reporting in Table 7 the elapsed time (in seconds) for the computation of
steps 1 − 4 of Algorithm 1 for the different values of the iteration step k. Comparing
Table 7 with Table 3 we observe that in the case of tumour recurrence with sparse particles
and infiltrations the computational time for the projected gradient iterations at the ROM
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Table 7: Elapsed time (in seconds) for the computation of steps 1 − 4, for the different values
of the iteration step k.

Iteration
k=0

Step 1
144575.36

Step 2
8.58

Step 3
2438.42

Step 4
3431.52

Iteration
k=1

Step 1
164645.5

Step 2
11.75

Step 3
6453.26

Step 4
336.09

Iteration
k=2

Step 1
135222.43

Step 2
7.75

Step 3
2416.61

Step 4
45.14

level is 2 to 3 order of magnitude smaller than the time needed to solve the FOM problem,
provided to properly refine the mesh in the FOM simulations. We also note that the FOM
computations require a comparable computational time with respect to Test Case 1. The
same is valid for the computational time required to assemble the ROM systems in Step 3.
We finally conclude that the computational efficiency of the Optimization Algorithm (1) is
unaffected by the degree of regularity of the tumour dynamics, at least in the test cases
analysed here where no morphological transition happens during the evolution. The degree
of convergence of the optimization algorithm and the degree of variability of parameters
along the projected gradient directions introduced by exploring the parameter space through
different basis functions is instead affected by the tumour dynamics regularity.

4.2.6 Some remarks on benchmark results

In this paragraph we report some numerical results to show how the POD analysis in Step
2 of Algorithm (1) varies when the tumour concentration in the FOM simulations in Step
1 is spreading on a larger region than the one observed in Test Case 1, considering a tumour
dynamics over a larger time interval. Moreover, we report numerical results about the
performance of Step 4 of Algorithm (1) when a lower threshold of POD significance (namely
99.9%) is considered.
In Table 8 we report the POD analysis of the snapshot matrices obtained from the FOM
solution (8) at k = 0 of Algorithm 1 with N = 980 and initial set P0, i.e. when the tumour
dynamics span a time interval of 120 days.

Table 8: Values of the cumulated fraction of trFT
1 F1,trFT

2 F2,trFT
3 F3,tr(ψ′1(F1))Tψ′1(F1),tr(ψ′′1(F1))Tψ′′1(F1)

for the first eigenvalues with the highest magnitude.

Iteration
k=0

N = 980, P0

Eigenvalue % trFT
1 F1 % trFT

2 F2 % trFT
3 F3 % tr(ψ′1)Tψ′1 % tr(ψ′′1)Tψ′′1

First 89.4596 99.9168 99.9707 99.9142 97.3884
Second 98.1194 99.9783 99.9937 99.9737 99.7634
Third 99.6551 99.9931 99.9973 99.9925 99.9445
Fourth 99.9223 99.9991 99.9996 99.9989 99.9914
Fifth 99.9818 99.9998 99.9999 99.9998 99.9985
Sixth 99.9954 99.9999 99.9999 99.9999 99.9995

We thus have that NPOD = NPOD
φ = 6 for k = 0. We note that in this case the number

of basis functions needed to explain 99.99% of the data on a time window of 120 days is
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lower than in Test Case 1 (see Table 4). This is due to the fact that the tumour expansion
through time in Test Case 2 is limited by the presence of the ventricle’ walls, and thus the
region where the tumour is spreading from the initial tumour distribution is contained.
Finally, we consider the results of the Steps 2–4 of Algorithm (1), for the first step k = 0,
with N = 490 and starting set P0 and when a threshold value of 99.9% is considered in
the POD analysis. In Figure 19 we report the values of the functional J(~αl,Pl), of the
normalised set of parameters

Pl/Pexp = {Ll/Lexp, νl/νexp, knl/knexp, Snl/Snexp, δnl/δnexp, γ
2
l /γ

2
exp, El/Eexp, δc/δcexp, ce/ceexp},

and of |Pl(1)− Pl|, computed in Steps 3 and 4 of Algorithm 1, for k = 0. We note that
in this case we need NPOD = 3 to explain the 99.9% of variance of the data.

Iteration k=0, 99.9% POD
threshold, N = 490, P0
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Figure 19: Values of the functional J(~αl,Pl), of the normalised set of parameters Pl/Pexp and
of |Pl(1)− Pl| for steps k = 0 of Algorithm 1, with N = 490, P0 and 99.9% POD threshold,
together with a comparison between the isosurfaces φdata(T ) = 0 (highlighted in blue color) and∑NPOD

i=1 αN
il̄
ξφi = φe/2 (highlighted in red color).

We observe that in this case of a lower POD threshold of 99.9% the value of the functional
J reaches a minimum value 0.2738 which is higher than the minimal value 0.2667 attained
during the optimization algorithm with an higher threshold of 99.99% (see Figure 7). The
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local minimum is attained in a large number of steps l̄ = 776. Moreover, in the former
case the parameter ν varies by a much smaller amount, the parameters L and δ remain
unchanged and the parameter kn varies through the functional minimisation. We also see
more noise in the plot of |Pl(1)− Pl| with respect to the case with 99.99% threshold.

5 Conclusions

This work proposed a novel Optimization Algorithm (1) for the parameter estimation of a
nonlinear diffuse interface model of GBM evolution from neuroimaging data. The algorithm
solves a constrained optimization problem in the form of a MPEC defined in Problem 8
(22), where the objective functional is defined in (21) by a proper distance between the
tumour domain set in numerical simulations and the corresponding clinical data at a key
time of clinical interest. Due to the high computational cost of solving the FOM (defined
in Problem 2 (9)), the algorithm iteratively computes the optimization functional at the
FOM level and minimises it at the ROM level through sensitivity analysis.
First, an effective MOR is defined through Problems 3, 4, 5 (see (11), (16) and (17)), by
projecting the equations onto the POD basis obtained from the time snapshots of the FOM
solutions and approximating the nonlinear terms through DEIM interpolation. The non-
linearity of the ROM system is solved by a Newton algorithm, interpolating the nonlinear
terms associated to the singular potential and its first derivative on the same interpolation
nodes to enforce there the separation property of the FOM solution. Moreover, the degen-
erate mobility and chemotactic terms are transformed as higher order tensors acting on the
reduced order space, taking into account for both the degeneracy of the corresponding terms
at the FOM level and the heterogeneity and anisotropy of the tumour invasion pattern.
A sensitivity analysis is performed at the ROM level to minimise the optimization functional
by solving linearised systems defined in Problem 6 (18) and updating the parameters along
weighted gradient directions solving Problem 9 (25).
The algorithm ensures that the ROM solutions do not violate the physical constraints satis-
fied by the FOM solutions while dynamically spanning the space of parameters throughout
the iterative steps. In particular, new POD basis functions associated to the updated set of
parameters are calculated when the ROM minimisation problem has converged. This is an
alternative way to consider parameters variability in the MOR of evolution equations with
respect to the local reduced basis method used e.g. in [35].

Second, we applied the proposed algorithm using the neuroimaging data provided by
two clinical test cases: the growth of a primary GBM and a recurrent GBM after surgical
resection.
In both cases we observed the convergence of the algorithm to an optimal state, represented
by the optimal sets of parameters (27) and (28). These two sets display different optimal
values, since the GBM spreading dynamics during primary and recurrent growth are con-
trolled by intrinsically different biological processes. Moreover, the difference in the two
set of parameters reflects also the higher aggressiveness of giant GBM cells in Test Case 2,
which is reflected in higher values of motility and proliferation.
In both cases we observed that the ROM solution approximates the FOM solution with a
very high fidelity, and that the accuracy in reproducing the tumour domain from neuroimag-
ing data increases at each step during the optimization process.
The number of basis functions needed to explain the 99.99% variance of the data and the
kind of morphological informations contained in them are the same in both cases, probably
due to the fact that there are no significant topological changes in the evolution dynamics,
that occurs smoothly thanks to chosen mesh refinement in the tumour evolution region. This
turned out to be an important feature in order to deal with low dimensional higher–order
tensors in Problem 4 (16): ROM systems become indeed solvable with low computational
resources and in highly reduced computational times.
We also observe that the computational time for the projected gradient iterations at the
ROM level (Step 4 of Algorithm (1)) is 2 to 4 orders of magnitude smaller than the time
needed to solve the FOM problem, while the time for the assembly of the ROM systems
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(Step 3) is 2 orders of magnitude smaller. This makes the whole algorithm very efficient in
reducing the computational cost of the optimization process, both in the cases of the regular
growth of a primary tumour and in the case of tumour recurrence with sparse particles and
infiltrations. The overall time of a sensitivity analysis performed at the FOM level is finally
reduced by 2 order of magnitude.
Finally we note that the Jaccard indexes calculated at the optimal states for Test Case 2
are smaller than the values computed for Test Case 1, and that we need more iterations to
converge to an optimal state in the former case, with a smaller overall decrease of the objec-
tive functional and a higher degree of oscillations in the minimising sequences of parameters.
This is due partly to the sparse distribution of tumour cells in the initial segmentation after
surgery, and partly to the peritumoral infiltrations which may not be detectable by MRI
data at the final time.

In conclusion, we proposed an optimization algorithm that allows a robust parameter
estimation of a nonlinear diffuse interface model from neuroimaging data. The optimiza-
tion is performed at low computational cost using an automated procedure that allows to
solve the difficulties related the presence of a Cahn–Hilliard-type equation with single-well
potential, non-conserved order parameter and degenerate mobility. These features open the
path to the creation of an automated computational platform that may be integrated in
clinical practice to run simulations from neuroimaging data, thus to assist medical doc-
tors in evaluating patient-specific therapeutic options. Future developments will concern
the patient-specific therapy optimization in a given temporal range and the assessment of
uncertainty quantification of the underlying model.
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6 Appendix

We report here the DEIM algorithm for the nonlinear term ψ′1(φ) used to calculate the
associated POD basis and row selection operator (see [11] for details):

Algorithm 2 DEIM Algorithm

Require: Assemble the matrix Ψ1,ij := ψ′T1 (φih)ψ′1(φjh);

Step A Compute the POD basis ξ
ψ′
1

1 , . . . , ξ
ψ′
1

NPOD
ψ′

for Ψ1;

Step B l← arg maxj=1,...,Nh
|ξψ

′
1

1 (xj)|;
Step C Uψ′

1
= [ξ

ψ′
1

1 ], i = l, P1 = [~l];

for j = 2, . . . , NPOD
ψ′ do

u← ξ
ψ′
1

j ;
Solve Uψ′

1i
c = ui; r = u− Uψ′

1
c;

l← arg maxj=1,...,Nh
|r(xj)|; Uψ′

1
← [Uψ′

1
, u]; P1 = [P1,~l],

where ~l is the finite element vector with value 1 on the node l and zero otherwise. In the
same way, we obtain Uψ′′1 = (ξ

ψ′′1
1 , . . . , ξ

ψ′′1
NPOD
ψ′′

) and P2 for ψ′′1 (φ).

We also report here the Newton method RNk (17) used to solve (15). Let us define the
second order tensors

Bml(~α
n−1
k ) := αn−1

ik αn−1
jk αn−1

sk V2,ijsml − 2αn−1
ik αn−1

jk V3,ijml + αn−1
ik V4,iml,

Kml(~α
n−1
k ) := αn−1

ik αn−1
jk αn−1

sk V8,ijsml − 2αn−1
ik αn−1

jk V9,ijml + αn−1
ik V10,iml,

V5,ml(~α
n−1
k ) := αn−1

ik V5,iml V6,ml(~α
n−1
k ) := αn−1

ik αn−1
jk V6,ijml,

V7,ml(~α
n−1
k ) := αn−1

ik V7,iml U3,ml(~α
n−1
k ) := αn−1

ik U3,iml W3,ml(~α
n−1
k ) := αn−1

ik W3,iml.

We use the following algorithm to solve the ROM Newton problem.
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Algorithm 3 ROM Newton Algorithm

Initialisation

~ηnk =

[
1

∆t
W1 +W2 +(δnk−Snk)W3(~αn−1

k )+SnkW1

]−1( 1

∆t
W1~η

n−1
k +SnkW4−SnkW5~α

n−1
k

)
,

~αn,0k = ~αn−1
k , ~βn,0k = ~βn−1

k ;

error = 1, p = 0.

while error > 10−3 and p < 1000 do
Assemble second order tensors:

U22,ml(~α
n,p
k ) := (P T2,ijUψ′′,js)

−1ψ′′1(P T2,snΦnhα
n,p
hk )U22,iml,

C(~αn,pk ) := γ2
kU
−1
1 U6 + EkcekU

−1
1 U22(~αn,pk ),

D(~αn−1
k , ~αn,pk , ~βn,pk ) :=− U1

~βn,pk + γ2
kU6~α

n,p
k + EkcekU21(P T2 Uψ′)−1ψ′1(P T2 Φαn,pk )−

EkU3(~αn−1
k )~αn−1

k − EkcekU4~α
n−1
k − EkcekU5,

Solve for first order variations:

d~αk =

[
V1

∆t
+ LkB(~αn−1

k )C(~αn,pk )

]−1(
−LkB(~αn−1

k )U−1
1 D(~αn−1

k , ~αn,pk , ~βn,pk )− V1

∆t
~αn,pk −

LkB(~αn−1
k )~βn,pk + knkK(~αn−1

k )~ηnk + νk(V5(~αn−1
k )− V6(~αn−1

k ))~ηnk+(
νkδk(V7(~αn−1

k )− V1) +
V1

∆t
− kTV1

)
~αn−1
k

)
,

d~βk = C(~αn,pk )d~αk + U−1
1 D(~αn−1

k , ~αn,pk , ~βn,pk ),

Update the Newton iterations:

~αn,p+1
k = ~αn,pk + d~αk, ~βn,p+1

k = ~βn,pk + d~βk

error =

√
d~αTk d~αk + d~βTk d

~βk,

p = p+ 1.

Update the time step:
~αnk = ~αn,p+1

k , ~βnk = ~βn,p+1
k .

We finally define the ROM linearised systems RLk (18), obtained by varying Pk =
Pk + δP in (19). Let us define the second order tensors

B′ml,Pkh

(
~αn−1
k ,

∂~αn−1
k

∂Pkh

)
:= 3

∂αn−1
ik

∂Pkh
αn−1
jk αn−1

sk V2,ijsml−4
∂αn−1

ik

∂Pkh
αn−1
jk V3,ijml+

∂αn−1
ik

∂Pkh
V4,iml,

K ′ml,Pkh

(
~αn−1
k ,

∂~αn−1
k

∂Pkh

)
:= 3

∂αn−1
ik

∂Pkh
αn−1
jk αn−1

sk V8,ijsml−4
∂αn−1

ik

∂Pkh
αn−1
jk V9,ijml+

∂αn−1
ik

∂Pkh
V10,iml,
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V ′5,ml

(
∂~αn−1

k

∂Pkh

)
:=

∂αn−1
ik

∂Pkh
V5,iml, V ′6,ml

(
~αn−1
k ,

∂~αn−1
k

∂Pkh

)
:= 2

∂αn−1
ik

∂Pkh
αn−1
jk V6,ijml,

V ′7,ml

(
∂~αn−1

k

∂Pkh

)
:=

∂αn−1
ik

∂Pkh
V7,iml, U ′3,ml

(
∂~αn−1

k

∂Pkh

)
:=

∂αn−1
ik

∂Pkh
U3,iml, W ′3,ml

(
∂~αn−1

k

∂Pkh

)
:=

∂αn−1
ik

∂Pkh
W3,iml.

where i, j, k, s, l,m = 1, . . . , NPOD and Pkh is the h−th element of the set Pk, with h =
1, . . . , |Pk|. Then we obtain the following ROM linearised systems, for n = 0, . . . , N,

Linearised system for Lk → Lk + δL:

V1

∆t

∂~αnk
∂Lk

= −LkB(~αn−1
k )

∂~βnk
∂Lk
− LkB′Lk

(
~αn−1
k ,

∂~αn−1
k

∂Lk

)
~βnk −B(~αn−1

k )~βnk + knkK(~αn−1
k )

∂~ηnk
∂Lk

+

knkK
′
(
~αn−1
k ,

∂~αn−1
k

∂Lk

)
~ηnk + νk

(
V ′5

(
∂~αn−1

k

∂Lk

)
− V ′6

(
~αn−1
k ,

∂~αn−1
k

∂Lk

))
~ηnk+

νk
(
V5(~αn−1

k )− V6(~αn−1
k )

) ∂~ηnk
∂Lk

+

(
νkδk(V7(~αn−1

k )− V1) +

(
1

∆t −KT

)
V1

)
∂~αn−1

k

∂Lk
+

νkδkV
′
7

(
∂~αn−1

k

∂Lk

)
~αn−1
k ,

U1
∂~βnk
∂Lk

= γ2
kU6

∂~αnk
∂Lk

+ EkcekU22(~αnk )
∂~αnk
∂Lk
− EkU ′3

(
∂~αn−1

k

∂Lk

)
~αn−1
k − EkU3(~αn−1

k )
∂~αn−1

k

∂Lk
−

EkcekU4
∂~αn−1

k

∂Lk
,

W1

∆t

∂~ηnk
∂Lk

= −W2
∂~ηnk
∂Lk

+ (Snk − δnk)W ′3

(
∂~αn−1

k

∂Lk

)
~ηnk +

(
(Snk − δnk)W3(~αn−1

k )− SnkW1

)
∂~ηnk
∂Lk

−SnkW5
∂~αn−1

k

∂Lk
+ W1

∆t

∂~ηn−1
k

∂Lk
.

(29)

Linearised system for νk → νk + δν:

V1

∆t

∂~αnk
∂νk

= −LkB(~αn−1
k )

∂~βnk
∂νk
− LkB′Lk

(
~αn−1
k ,

∂~αn−1
k

∂νk

)
~βnk + knkK(~αn−1

k )
∂~ηnk
∂νk

+

knkK
′
(
~αn−1
k ,

∂~αn−1
k

∂νk

)
~ηnk + νk

(
V ′5

(
∂~αn−1

k

∂νk

)
− V ′6

(
~αn−1
k ,

∂~αn−1
k

∂νk

))
~ηnk+

νk
(
V5(~αn−1

k )− V6(~αn−1
k )

)∂~ηnk
∂νk

+

(
νkδk(V7(~αn−1

k )− V1) +

(
1

∆t −KT

)
V1

)
∂~αn−1

k

∂νk
+

νkδkV
′
7

(
∂~αn−1

k

∂νk

)
~αn−1
k +

(
V5(~αn−1

k )− V6(~αn−1
k )

)
~ηnk + δk(V7(~αn−1

k )− V1)~αn−1
k ,

U1
∂~βnk
∂νk

= γ2
kU6

∂~αnk
∂νk

+ EkcekU22(~αnk )
∂~αnk
∂νk
− EkU ′3

(
∂~αn−1

k

∂νk

)
~αn−1
k − EkU3(~αn−1

k )
∂~αn−1

k

∂νk
−

EkcekU4
∂~αn−1

k

∂νk
,

W1

∆t

∂~ηnk
∂νk

= −W2
∂~ηnk
∂νk

+ (Snk − δnk)W ′3

(
∂~αn−1

k

∂νk

)
~ηnk +

(
(Snk − δnk)W3(~αn−1

k )− SnkW1

)
∂~ηnk
∂νk

−SnkW5
∂~αn−1

k

∂νk
+ W1

∆t

∂~ηn−1
k

∂νk
.

(30)
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Linearised system for knk → knk + δkn:

V1

∆t

∂~αnk
∂knk

= −LkB(~αn−1
k )

∂~βnk
∂knk

− LkB′Lk

(
~αn−1
k ,

∂~αn−1
k

∂knk

)
~βnk + knkK(~αn−1

k )
∂~ηnk
∂knk

+

knkK
′
(
~αn−1
k ,

∂~αn−1
k

∂knk

)
~ηnk +K(~αn−1

k )~ηnk + νk

(
V ′5

(
∂~αn−1

k

∂knk

)
− V ′6

(
~αn−1
k ,

∂~αn−1
k

∂knk

))
~ηnk+

νk
(
V5(~αn−1

k )− V6(~αn−1
k )

) ∂~ηnk
∂knk

+

(
νkδk(V7(~αn−1

k )− V1) +

(
1

∆t −KT

)
V1

)
∂~αn−1

k

∂knk
+

νkδkV
′
7

(
∂~αn−1

k

∂knk

)
~αn−1
k ,

U1
∂~βnk
∂knk

= γ2
kU6

∂~αnk
∂knk

+ EkcekU22(~αnk )
∂~αnk
∂knk

− EkU ′3
(
∂~αn−1

k

∂knk

)
~αn−1
k − EkU3(~αn−1

k )
∂~αn−1

k

∂knk
−

EkcekU4
∂~αn−1

k

∂knk
,

W1

∆t

∂~ηnk
∂knk

= −W2
∂~ηnk
∂knk

+ (Snk − δnk)W ′3

(
∂~αn−1

k

∂knk

)
~ηnk +

(
(Snk − δnk)W3(~αn−1

k )− SnkW1

)
∂~ηnk
∂knk

−SnkW5
∂~αn−1

k

∂knk
+ W1

∆t

∂~ηn−1
k

∂knk
.

(31)

Linearised system for Snk → Snk + δSn:

V1

∆t

∂~αnk
∂Snk

= −LkB(~αn−1
k )

∂~βnk
∂Snk

− LkB′Lk

(
~αn−1
k ,

∂~αn−1
k

∂Snk

)
~βnk + knkK(~αn−1

k )
∂~ηnk
∂Snk

+

knkK
′
(
~αn−1
k ,

∂~αn−1
k

∂Snk

)
~ηnk + νk

(
V ′5

(
∂~αn−1

k

∂Snk

)
− V ′6

(
~αn−1
k ,

∂~αn−1
k

∂Snk

))
~ηnk+

νk
(
V5(~αn−1

k )− V6(~αn−1
k )

) ∂~ηnk
∂Snk

+

(
νkδk(V7(~αn−1

k )− V1) +

(
1

∆t −KT

)
V1

)
∂~αn−1

k

∂Snk
+

νkδkV
′
7

(
∂~αn−1

k

∂Snk

)
~αn−1
k ,

U1
∂~βnk
∂Snk

= γ2
kU6

∂~αnk
∂Snk

+ EkcekU22(~αnk )
∂~αnk
∂Snk

− EkU ′3
(
∂~αn−1

k

∂Snk

)
~αn−1
k − EkU3(~αn−1

k )
∂~αn−1

k

∂Snk
−

EkcekU4
∂~αn−1

k

∂Snk
,

W1

∆t

∂~ηnk
∂Snk

= −W2
∂~ηnk
∂Snk

+ (Snk − δnk)W ′3

(
∂~αn−1

k

∂Snk

)
~ηnk +

(
(Snk − δnk)W3(~αn−1

k )− SnkW1

)
∂~ηnk
∂Snk

−SnkW5
∂~αn−1

k

∂Snk
+ W1

∆t

∂~ηn−1
k

∂Snk
+W4 −W5~α

n−1
k + (W3(~αn−1

k )−W1)~ηnk .

(32)
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Linearised system for δnk → δnk + δδn:

V1

∆t

∂~αnk
∂δnk

= −LkB(~αn−1
k )

∂~βnk
∂δnk

− LkB′Lk

(
~αn−1
k ,

∂~αn−1
k

∂δnk

)
~βnk + knkK(~αn−1

k )
∂~ηnk
∂δnk

+

knkK
′
(
~αn−1
k ,

∂~αn−1
k

∂δnk

)
~ηnk + νk

(
V ′5

(
∂~αn−1

k

∂δnk

)
− V ′6

(
~αn−1
k ,

∂~αn−1
k

∂δnk

))
~ηnk+

νk
(
V5(~αn−1

k )− V6(~αn−1
k )

) ∂~ηnk
∂δnk

+

(
νkδk(V7(~αn−1

k )− V1) +

(
1

∆t −KT

)
V1

)
∂~αn−1

k

∂δnk
+

νkδkV
′
7

(
∂~αn−1

k

∂δnk

)
~αn−1
k ,

U1
∂~βnk
∂δnk

= γ2
kU6

∂~αnk
∂δnk

+ EkcekU22(~αnk )
∂~αnk
∂δnk

− EkU ′3
(
∂~αn−1

k

∂δnk

)
~αn−1
k − EkU3(~αn−1

k )
∂~αn−1

k

∂δnk
−

EkcekU4
∂~αn−1

k

∂δnk
,

W1

∆t

∂~ηnk
∂δnk

= −W2
∂~ηnk
∂δnk

+ (Snk − δnk)W ′3

(
∂~αn−1

k

∂δnk

)
~ηnk +

(
(Snk − δnk)W3(~αn−1

k )− SnkW1

)
∂~ηnk
∂δnk

−SnkW5
∂~αn−1

k

∂δnk
+ W1

∆t

∂~ηn−1
k

∂δnk
−W3(~αn−1

k )~ηnk .

(33)

Linearised system for γk → γk + δγ:

V1

∆t

∂~αnk
∂γ2

k

= −LkB(~αn−1
k )

∂~βnk
∂γ2
k
− LkB′Lk

(
~αn−1
k ,

∂~αn−1
k

∂γ2
k

)
~βnk + knkK(~αn−1

k )
∂~ηnk
∂γ2
k

+

knkK
′
(
~αn−1
k ,

∂~αn−1
k

∂γ2
k

)
~ηnk + νk

(
V ′5

(
∂~αn−1

k

∂γ2
k

)
− V ′6

(
~αn−1
k ,

∂~αn−1
k

∂γ2
k

))
~ηnk+

νk
(
V5(~αn−1

k )− V6(~αn−1
k )

)∂~ηnk
∂γ2
k

+

(
νkδk(V7(~αn−1

k )− V1) +

(
1

∆t −KT

)
V1

)
∂~αn−1

k

∂γ2
k

+

νkδkV
′
7

(
∂~αn−1

k

∂γ2
k

)
~αn−1
k ,

U1
∂~βnk
∂γ2

k

= γ2
kU6

∂~αnk
∂γ2
k

+ EkcekU22(~αnk )
∂~αnk
∂γ2
k
− EkU ′3

(
∂~αn−1

k

∂γ2
k

)
~αn−1
k − EkU3(~αn−1

k )
∂~αn−1

k

∂γ2
k
−

EkcekU4
∂~αn−1

k

∂γ2
k

+ U6~α
n
k ,

W1

∆t

∂~ηnk
∂γ2

k

= −W2
∂~ηnk
∂γ2
k

+ (Snk − δnk)W ′3

(
∂~αn−1

k

∂γ2
k

)
~ηnk +

(
(Snk − δnk)W3(~αn−1

k )− SnkW1

)
∂~ηnk
∂γ2
k

−SnkW5
∂~αn−1

k

∂γ2
k

+ W1

∆t

∂~ηn−1
k

∂γ2
k
.

(34)
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Linearised system for Ek → Ek + δE:

V1

∆t

∂~αnk
∂Ek

= −LkB(~αn−1
k )

∂~βnk
∂Ek
− LkB′Lk

(
~αn−1
k ,

∂~αn−1
k

∂Ek

)
~βnk + knkK(~αn−1

k )
∂~ηnk
∂Ek

+

knkK
′
(
~αn−1
k ,

∂~αn−1
k

∂Ek

)
~ηnk + νk

(
V ′5

(
∂~αn−1

k

∂Ek

)
− V ′6

(
~αn−1
k ,

∂~αn−1
k

∂Ek

))
~ηnk+

νk
(
V5(~αn−1

k )− V6(~αn−1
k )

) ∂~ηnk
∂Ek

+

(
νkδk(V7(~αn−1

k )− V1) +

(
1

∆t −KT

)
V1

)
∂~αn−1

k

∂Ek
+

νkδkV
′
7

(
∂~αn−1

k

∂Ek

)
~αn−1
k ,

U1
∂~βnk
∂Ek

= γ2
kU6

∂~αnk
∂Ek

+ EkcekU22(~αnk )
∂~αnk
∂Ek
− EkU ′3

(
∂~αn−1

k

∂Ek

)
~αn−1
k − EkU3(~αn−1

k )
∂~αn−1

k

∂Ek
−

EkcekU4
∂~αn−1

k

∂Ek
+ cekU21(PT2 Uψ′)

−1ψ′1(PT2 Φαnk )− (U3(~αn−1
k ) + cekU4)~αn−1

k −
cekU5,

W1

∆t

∂~ηnk
∂Ek

= −W2
∂~ηnk
∂Ek

+ (Snk − δnk)W ′3

(
∂~αn−1

k

∂Ek

)
~ηnk +

(
(Snk − δnk)W3(~αn−1

k )− SnkW1

)
∂~ηnk
∂Ek

−SnkW5
∂~αn−1

k

∂Ek
+ W1

∆t

∂~ηn−1
k

∂Ek
.

(35)

Linearised system for δk → δk + δδ:

V1

∆t

∂~αnk
∂δk

= −LkB(~αn−1
k )

∂~βnk
∂δk
− LkB′Lk

(
~αn−1
k ,

∂~αn−1
k

∂δk

)
~βnk + knkK(~αn−1

k )
∂~ηnk
∂δk

+

knkK
′
(
~αn−1
k ,

∂~αn−1
k

∂δk

)
~ηnk + νk

(
V ′5

(
∂~αn−1

k

∂δk

)
− V ′6

(
~αn−1
k ,

∂~αn−1
k

∂δk

))
~ηnk+

νk
(
V5(~αn−1

k )− V6(~αn−1
k )

)∂~ηnk
∂δk

+

(
νkδk(V7(~αn−1

k )− V1) +

(
1

∆t −KT

)
V1

)
∂~αn−1

k

∂δk
+

νkδkV
′
7

(
∂~αn−1

k

∂δk

)
~αn−1
k + νk(V7(~αn−1

k )− V1)~αn−1
k ,

U1
∂~βnk
∂δk

= γ2
kU6

∂~αnk
∂δk

+ EkcekU22(~αnk )
∂~αnk
∂δk
− EkU ′3

(
∂~αn−1

k

∂δk

)
~αn−1
k − EkU3(~αn−1

k )
∂~αn−1

k

∂δk
−

EkcekU4
∂~αn−1

k

∂δk
,

W1

∆t

∂~ηnk
∂δk

= −W2
∂~ηnk
∂δk

+ (Snk − δnk)W ′3

(
∂~αn−1

k

∂δk

)
~ηnk +

(
(Snk − δnk)W3(~αn−1

k )− SnkW1

)
∂~ηnk
∂δk

−SnkW5
∂~αn−1

k

∂δk
+ W1

∆t

∂~ηn−1
k

∂δk
.

(36)
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Linearised system for cek → cek + δce:

V1

∆t

∂~αnk
∂cek

= −LkB(~αn−1
k )

∂~βnk
∂cek
− LkB′Lk

(
~αn−1
k ,

∂~αn−1
k

∂cek

)
~βnk + knkK(~αn−1

k )
∂~ηnk
∂cek

+

knkK
′
(
~αn−1
k ,

∂~αn−1
k

∂cek

)
~ηnk + νk

(
V ′5

(
∂~αn−1

k

∂cek

)
− V ′6

(
~αn−1
k ,

∂~αn−1
k

∂cek

))
~ηnk+

νk
(
V5(~αn−1

k )− V6(~αn−1
k )

) ∂~ηnk
∂cek

+

(
νkδk(V7(~αn−1

k )− V1) +

(
1

∆t −KT

)
V1

)
∂~αn−1

k

∂cek
+

νkδkV
′
7

(
∂~αn−1

k

∂cek

)
~αn−1
k ,

U1
∂~βnk
∂cek

= γ2
kU6

∂~αnk
∂cek

+ EkcekU22(~αnk )
∂~αnk
∂cek
− EkU ′3

(
∂~αn−1

k

∂cek

)
~αn−1
k − EkU3(~αn−1

k )
∂~αn−1

k

∂cek
−

EkcekU4
∂~αn−1

k

∂cek
+ EkU21(PT2 Uψ′)

−1ψ′1(PT2 Φαnk )− EkU4~α
n−1
k − EkU5,

W1

∆t

∂~ηnk
∂cek

= −W2
∂~ηnk
∂cek

+ (Snk − δnk)W ′3

(
∂~αn−1

k

∂cek

)
~ηnk +

(
(Snk − δnk)W3(~αn−1

k )− SnkW1

)
∂~ηnk
∂cek

−SnkW5
∂~αn−1

k

∂cek
+ W1

∆t

∂~ηn−1
k

∂cek
;

(37)
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