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1. Introduction and main results

Waveguide arrays (WAs) have fundamental photonic properties that allow to describe
various classical optical phenomena, such as diffractive properties or the existence of soli-
tons. Such systems have also been successfully used in both theoretical investigations and
experimental verifications of optical phenomena predicted by non-relativistic quantum me-
chanics, see [26] and references therein.

Recently, binary waveguide arrays (BWAs) have been proposed to simulate quantum
relativistic effects. Those arrays consist of two different alternating types of waveguides
in which light propagation can be described, in suitable regimes, by a discrete model cor-
responding to discrete linear/nonlinear Dirac equations. Formal arguments in the Physics
literature show that the continuum limit of such models is given by Dirac equations, strongly
suggesting the possibility to use BWAs to simulate various phenomena, including Zitterbe-
wegung [18] (the trembling motion of a free electron), the Klein paradox and the existence
of Dirac solitons [26]. In recent works, the optical analogue of special states, known in
quantum field theory as Jackiw-Rebbi states (J-R states) [25], are shown to exist at the
interface of two BWAs with opposite masses. Pairs of vertically displaced BWAs have been
proposed to simulate neutrino oscillations [20], corresponding to two coupled cubic Dirac
equations in the continuum limit. The systems described above are essentially two dimen-
sional, and the transverse spatial variable formally plays the role of time in the model.
Then various dynamical features of the evolution can be ‘read’ from the properties of the
system along the transverse direction. This strongly indicates that BWAs can be used to
efficiently simulate relativistic phenomena in optical systems.

The aim of the present article is to rigorously prove the convergence of solutions to
discrete models of BWAs describing Dirac solitons and J-R states toward those of their
continuum limit, for which we also prove the existence of localized standing waves, numer-
ically investigated in the literature.

Let us describe the models under consideration.
In the monochromatic regime, light propagation in the BWAs is described [26] by the

following discrete equation

ı
dan(z)

dz
= −k[an+1(z)− an−1(z)] + (−1)nβan(z)− γ|an(z)|2an(z) , (1)
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where an(z) : R→ C is the n-th waveguide electric field amplitude, z ≥ 0 is the longitudinal
spatial coordinate, and 2β and k are the propagation mismatch and the coupling coefficient
of adjacent waveguides, respectively, while γ ∈ R is the nonlinear coefficients of waveguides.
In what follows we assume γ = 1, corresponding to a self-focusing medium. Here β, k are
suitable functions. Notice that in (1) z formally plays the role of time.

Equation (1) can be recast into a discrete nonlinear Dirac equation, as follows. Set{
ψ1
h(xn, ·) = (−1)na2n(·) ,
ψ2
h(xn, ·) = ı(−1)na2n−1(·) , n ∈ N .

Consider the position of the WAs on the lattice hZ, with spacing h > 0, the points being
denoted by xn, where xn = nh, n ∈ Z.

Using (1) we thus get, for n ∈ N, z ≥ 0,{
ı
dψ1

h
dz (xn, z) = −ık[ψ2

h(xn+1, z)− ψ2
h(xn, z)] + βψ1

h(xn, z)− |ψ1
h(xn, z)|2ψ1

h(xn, z) ,

ı
dψ2

h
dz (xn, z) = −ık[ψ1

h(xn, z)− ψ1
h(xn−1, z)]− βψ2

h(xn, z)− |ψ2
h(xn, z)|2ψ2

h(xn, z) ,
.

(2)
so that, taking

k(h) =
1

h
we find

ı
dψh
dz

(xn, z) = Dhψh(xn, z) + βσ3ψh(xn, z)−G(ψh)ψh(xn, z) , n ∈ N , (3)

where

Dh = −ı
(

0 ∂h
∂∗h 0

)
, σ3 =

(
1 0
0 −1

)
, G(ψ) =

(
|ψ1(xn, z)|2 0

0 |ψ2(xn, z)|2
)
. (4)

Here

∂hϕ := h−1[ϕ(xn+1)− ϕ(xn)] , ∂∗hϕ := h−1[ϕ(xn)− ϕ(xn−1)]

are the discrete right-hand derivative operator and its adjoint on `2(hZ,C2), respectively.
Then, letting h→ 0+ we formally get the following cubic Dirac equation on the real line

ı∂zΨ(x, z) = DΨ(x, z) + βσ3Ψ(x, z)−G(Ψ)Ψ(x, z) , (5)

for (x, z) ∈ R× (0,∞), where σ3 =

(
1 0
0 −1

)
is the third Pauli matrix and

D = −ıσ1∂x = −ı
(

0 ∂x
∂x 0

)
(6)

is the one-dimensional Dirac operator.
We consider both the case of a positive constant mass β = const. and of a domain wall

mass interpolating between two different asymptotic values.

Definition 1. An increasing C1 function β : R → R with bounded derivative is called a
domain wall if it is odd, i.e. β(x) = −β(x), and there holds

lim
x→∞

β(x) = β(∞) ∈ (0,+∞) , lim
x→−∞

β(x) = −β(∞) < 0 .

Moreover, the asymptotic limits are approached sufficiently rapidly∫ ∞
0
|β(y)− β(∞)| dy <∞ ,

∫ 0

−∞
|β(y) + β(∞)| dy <∞
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An example of such functions is given by β(x) = tanh(x), x ∈ R. Notice that our
definition is slightly more restrictive than the one given in [19], for technical reasons, but
it covers physically interesting cases.

When β is constant or a domain wall, the Dirac operator D + βσ3 is self-adjoint on
L2(R,C2), with domain H1(R,C2). When β is constant the spectrum is purely continuous
and it is given by

Spec(D + βσ3) = (−∞,−β] ∪ [β,+∞) ,

see [24]. The case of a domain wall mass has been treated in [19], where the authors shows
that, in addition to the continuous spectrum, finitely many simple eigenvalues can appear
in the mass gap

Spec(D + βσ3) = (−∞, β(−∞)] ∪ {λi}Ni=1 ∪ [β(∞),+∞) .

In particular, when β(·) = tanh(·), there is only one eigenvalue λ = 0.
We remark that the results in [19] also apply to non smooth functions like the signum

function

sign(x) =

{
1 , x > 0
−1 , x < 0

,

which is the one actually considered in [25] for the investigation of photonic J-R states.
Here we allow for general domain wall functions, as in Def. 1.

More details on the Dirac operators involved and on the functional setting can be found
in Section 2.

Before stating our main results, some definitions are needed.
Given a function f ∈ L1

loc(R), its discretization fh : hZ→ C is defined as

fh(xn) :=
1

h

∫ xn+1

xn

f(x) dx . (7)

The piecewise constant interpolation qhfh is given by

qhfh(x) := fh(xn) , x ∈ [xn, xn+1) . (8)

We define the piecewise linear interpolation phuh : R→ C of a lattice function uh : hZ→ C
setting

(phuh)(x) := uh(xn) + (∂huh)(xn)(x− xn) , x ∈ [xn, xn+1) , (9)

where ∂hv(x) := h−1[v(x+ h)− v(x)] is the discrete right-hand side derivative operator.

We first consider the case of a constant mass β.

Theorem 2. Take χ ∈ H1(R,C2), and consider its discretization χh : hZ → C2 defined
as in (1). Let ψh ∈ C1

z ([0,∞), L2
h(R2,C2))) be the unique global solution to (1) with initial

datum χh. Then there exist a constant C > 0, independent of χh and h, such that for every
0 < T < (2C‖ϕh‖2H1

h
)−1, there holds

phψh ⇀ Ψ , weakly-∗ in L∞([0, T ], H1(R,C2)) as h→ 0+ ,

where Ψ ∈ C0([0,∞), H1(R,C2)) is the unique global solution to (1) with initial datum χ.

Remark 3. Observe that in the above Theorem we can only consider timescales depending
on the size of the initial datum, in contrast to [14] where the result holds for all fixed T > 0.
This difference is due to the sign indefiniteness of the energy associated with the Dirac
equation which can not be used to obtain uniform estimates for solutions, contrary to what
can be done for Schrödinger type equations. The same observation, of course, applies to
Theorem 5.
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The second main result concerns the existence of standing waves for (1) for frequencies
in the mass gap. Such solutions are of the form

Ψ(z, x) = e−ıωzΦ(x) , ω ∈ R ,
that is, they are ‘time’ modulation of a fixed spatial profile Φ : R → C2. As already
remarked, in the model considered the oscillating factor corresponds to spatial periodicity
in the transverse direction. The function Φ(·) thus solves the following stationary equation

(D + βσ3 − ω)Φ(x) = G(Φ(x))Φ(x) , x ∈ R. (10)

Theorem 4. For every ω ∈ (0, β), equation (1) admits a smooth solution of the form
Φ = (u, ıv), with u, v real-valued, which decays exponentially at infinity

|Φ(x)| =
√
u2(x) + v2(x) ≤ Ce

√
β2−ω2|x| , ∀x ∈ R , (11)

for some constant C = C(β, ω) > 0.

The proof of the above theorem relies on a phase-plane analysis, which allows to get a
rather precise description of the shape of the solution.

The next results are the analogue of Theorem 2 and Theorem 4, when β is a domain wall
function.

Theorem 5. Take an initial datum χ ∈ H1(R,C2) and a domain wall function β ∈ C1(R).
Consider their discretization χh : hZ → C2, βh : hZ → R defined as in (1). Let ψh ∈
C1
z ([0,∞), L2

h(R2,C2))) be the unique global solution to (1) with initial datum χh and mass
βh. Then, there exist a constant C > 0, independent of χh and h, such that for every
0 < T < (2C‖ϕh‖2H1

h
)−1for every 0 < T < +∞, there holds

phψh ⇀ Ψ , weakly-∗ in L∞([0, T ], H1(R,C2)) as h→ 0+ ,

where Ψ ∈ C0([0,∞), H1(R,C2)) is the unique global solution to (1) with initial datum χ.

We mention that in the literature both dynamical systems and variational methods have
been successfully used to prove the existence of standing waves for nonlinear Dirac equa-
tions, see e.g. [5, 4, 9] and references therein. In particular, a variational approach allows
to prove an analogous result for equation (1) when β is a domain wall function, as in that
case the phase plane analysis used for Theorem 4 does not seem to be applicable.

Theorem 6. For every ω ∈ (0, β(∞)), ω /∈ Spec(D + βσ3), equation (1) admits a smooth
solution exponentially decaying at infinity

|Φ(x)| ≤ Ce−
√
β2(∞)−ω2|x| , ∀x ∈ R , (12)

for some constant C = C(β(∞), ω) > 0.

The proof of Theorem 2 and Theorem 5 follows [14], where the authors prove a similar
result for discrete cubic nonlinear Schrödinger equations with long-range lattice interactions,
whose solutions converge to (possibly fractional) Schrödinger equations on the real line.

We mention that, generally speaking, linear and nonlinear Dirac equations in low dimen-
sions recently attracted a considerable attention in the mathematical literature, starting
from the works [10, 11, 12] on two dimensional honeycomb structures. Natural nonlinear
models, as in the present paper, are given by cubic Dirac equations, which are Sobolev
critical. Consistency of the effective model and the existence of stationary solutions have
been investigated in [1], [4, 5, 7]. We mention that, to the best of our knowledge, global
well-posedness of the Cauchy problem is not known in that case for Kerr-type nonlineari-
ties, as available results rely on the null-structure of the nonlinearity [2, 8], which is absent
for Kerr-type nonlinear terms.
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2. Preliminaries

We collect here notions and basic definitions useful in the sequel.

2.1. Functional spaces. Consider the lattice hZ, with spacing h > 0. We denote by L2
h

the Hilbert space of sequences uh : hZ → C for which the norm ‖uh‖L2
h

is finite, endowed

with the inner product

〈uh, vh〉L2
h

:= h
∑
n∈Z

uh(xn)vh(xn), .

For uh ∈ L2
h, its Fourier transform ûh : [−π, π]→ C is defined as

ûh(ξ) :=
1√
2π

∑
n∈Z

uh(xn)e−ınξ ,

and there holds ûh ∈ L2([−π, π]). The Fourier inversion formula holds

uh(xn) =
1√
2π

∫ π

−π
ûh(ξ)eınξ dξ . (13)

The Sobolev norm is given by

‖uh‖2H1
h

:= h

∫ π

−π
(1 + h−2|ξ|2)|ûh(ξ)|2 dξ, ,

and the Sobolev space H1
h is defined accordingly. The following discrete uniform Sobolev

inequality holds.

Lemma 7. There holds

‖uh‖L∞h ≤
√

2

2
‖uh‖H1

h
,

for every uh ∈ H1
h, with ‖uh‖L∞h := supn∈Z |uh(xn)|.

Proof. By (2.1) and using the Cauchy-Schwarz inequality we find

‖uh‖L∞h ≤
1√
2π

∫ π

−π
|ûh(ξ)| dξ ≤ 1√

2π

(
h−1

∫ π

−π

dξ

1 + h−2|ξ|2

)1/2

‖uh‖H1
h

=
1√
2π

(∫ ∞
−∞

dξ

1 + |ξ|2

)1/2

‖uh‖H1
h
≤
√

2

2
‖uh‖H1

h
.

�

2.2. Discretization and interpolation. Recall the definitions (1) , (1) and (1). The
following estimates can be found in [14, Sec. 3.3]

Lemma 8. For any f ∈ H1(R) there holds

‖fh‖H1 ≤ C‖f‖H1 , ‖qhfh‖L2 ≤ ‖fh‖L2
h
, ‖phfh‖H1 ≤ C‖fh‖H1

h
,

for some constant C > 0.

The above definitions and results immediately extend to vector-valued functions.
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2.3. Dirac operators. The discrete Dirac operator Dh in (1) is easily seen to be self-adjoint
operator on L2

h, and as such it generates a strongly continuous unitary one-parameter group

(e−ızDh)z∈R.
Similarly, the operator D in (1) is self-adjoint on L2(R,C2), with domain and form-

domain given by the Sobolev spaces H1(R,C2) and H1/2(R,C2), respectively. Such prop-
erties follows from the fact that the matrix-valued symbol of the operator is

D̂(ξ) =

(
0 ξ
ξ 0

)
,

see [24]. As anticipated in the Introduction, when β is a positive constant, the spectrum

D + βσ3 = (−∞,−β] ∪ [β,+∞) ,

is purely absolutely continuous, with a spectral gap due to the mass term.
If β is a domain wall function (see Def. 1), additional finitely many simple eigenvalue

can appear in the gap

Spec(D + βσ3) = (−∞,−β] ∪ [β,+∞) ,

besides the purely continuous spectrum. We remark that in [19] the authors prove that
when β(·) = tanh(·), λ = 0 is the unique eigenvalue in the gap.

3. Estimates for the discrete equation

The following proofs apply to both the case of a constant mass and of a domain wall. In
the former β > 0 is constant, while in the latter β = βh is the discretization of a domain
wall function, see (1) and Def.1.

3.1. Well-posedness.

Proposition 9. For every initial datum ϕh ∈ L2
h there exists a unique global classical

solution ψh ∈ C1([0,∞), L2
h) to (1), with ψh(0, ·) = ϕh(·). Moreover, the norm

N(ψh) := ‖ψ‖L2
h

is conserved.

Proof. Rewrite (1) in Duhamel form

ψh(z) = e−ız(Dh+βσ3)ϕh − ı
∫ z

0
e−ı(z−s)(Dh+βσ3)G(ψh(x))ψh(s) ds . (14)

The map ψh 7→ G(ψh)ψh is locally Lipschitz in L2
h, by the embedding L2

h ⊆ L∞h . A standard
fixed-point argument gives local well-posedness in L2

h, that is, there exists 0 < T ≤ +∞ and
a solution ψh ∈ C1([0, T ), L2

h), with ψh(0) = ϕh. Global extendability of solutions follows
from the conservation of the norm, arguing as follows. Assume that T < +∞. It suffices
to show that the L2

h-norm of the solution remains bounded as z → T−. Suppose, for the
moment, that

sup
t∈[0,T )

‖ψh‖L2
h
≤M < +∞ ,

and let τ = τ(M) be the lifespan provided by the local well-posedness proof. Choose
0 < s ≤ T such that T − s < τ . Then the Cauchy problem (1) with initial datum ψh(s) at
t = s has a local solution up to z = s+ τ . By uniqueness we then conclude that ψh(·) can
be extended up to z = s+ τ > T , contradicting the maximality of T .
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The conservation of the L2
h-norm follows by a direct computation using (1). Indeed

d

dz
‖ψh‖2L2

h
= <(∂zψh, ψh)L2

h

= <(ı(Dh + βσ3)ψh, ψh)L2
h
−<γ(ıG(ψh)ψh, ψh)L2

h

= 0

where the first term on the r.h.s. vanishes by the self-adjointness of Dh. �

3.2. Auxiliary results. In this section we collect results used in the proof of the main
Theorem. We preliminarily state the following nonlinear Gronwall-type result [3], that we
use to obtain a priori estimates for solutions to (1).

Lemma 10 (Bihari inequality). Let u, f : [0,∞) → [0,∞) be continuous functions and
w : [0,∞)→ [0,∞) continuous non-decreasing such that w(u) > 0 on (0,∞). If there holds

u(t) ≤M +

∫ t

0
f(s)w(u(s)) ds , t ≥ 0

where M ≥ 0 is a constant, then

u(t) ≤ G−1

(
G(M) +

∫ t

0
f(s) ds

)
, t ∈ [0, T ].

The function G is defined by

G(x) =

∫ x

x0

dy

w(y)
, x ≥ 0, x > 0 ,

and G−1 is its inverse, while T > 0 is such that

G(M) +

∫ t

0
f(s) ds ∈ Dom(G−1) , ∀t ∈ [0, T ] . (15)

Lemma 11. Let ψ ∈ C1([0,∞), L2
h) be a solution to (1), with ψh(0, ·) = ϕh(·). Then there

exists C > 0 such that for any 0 < T < (2C‖ϕh‖2H1
h
)−1 there holds

sup
z∈[0,T ]

‖ψh(z)‖H1
h
≤ A(T, ‖ϕh‖H1

h
) , (16)

where A(T, ‖ϕ‖H1
h
) = 1

(‖ϕ‖−2

H1
h

−2CT )1/2

Proof. Fix T > 0, to be chosen later, and consider the Duhamel formula (3.1). Notice that
the following Parseval identity holds

‖ψh‖2L2 + ‖∂hψh‖22 = h

∫ π

−π
(1 + 4 sin2 ξ)|ψ̂h(ξ) |2 dξ

as a direct computation using the definition of the Fourier transform shows that

∂̂hψh(ξ) = 2ı(sin ξ)ψ̂h(ξ) .

Then, being a Fourier multiplier, the propagator (e−ızDh+βσ3)z∈R preserves the H1
h norm.

Then we get

‖ψh(z)‖H1
h
≤ ‖ϕh‖H1

h
+

∫ z

0
‖G(ψh)ψh‖H1

h
ds .

Recall that G(ψ) ∼ |ψ|2. Moreover, the following Leibniz rule holds

∂h(fg)(xn) = (∂hf)(xn)g(xn+1) + f(xn)∂hg(xn) ,
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so that

∂h(G(ψh)ψh)(xn) ∼ (∂h|ψh|2)(xn)ψh(xn+1) + |ψh|2(xn)∂hψh(xn) .

The embedding L∞h ↪→ H1
h thus implies that H1

h is an algebra and

‖G(ψh)ψh‖H1
h
≤ C‖ψh‖3H1

h
,

for some constant C > 0. Then we get

‖ψh(z)‖H1
h
≤ ‖ϕh‖H1

h
+ C

∫ z

0
‖ψh(s)‖3H1

h
ds .

We can now apply Lemma 10 with M := ‖ϕh‖H1
h
, f := C and w(u) = u3. In this case

G(x) =
1

2

(
1

x2
0

− 1

x2

)
, G−1(y) =

√
1

1
x20
− 2y

and we choose x0 = ‖ϕh‖H1
h
, so by (10) we get

T < (2C‖ϕh‖2H1
h
)−1

and the a priori bound (11). �

The next result relates the discrete Dirac operator Dh in (1) to the continuous operator
D in (1), in the limit as h→ 0+.

Lemma 12. For every ϕ ∈ C∞c (R,C2) there holds

Dhϕ→ Dϕ ,

in L2(R), as h→ 0+.

Proof. Recall the definition of Dh in (1). Then a simple computation using the Fourier
transform gives

F(∂hϕ)(ξ) =

[
eıhξ − 1

hξ

]
ξϕ̂(ξ) , F(∂∗hϕ)(ξ) =

[
1− e−ıhξ

hξ

]
ξϕ̂(ξ) .

Observe that

eız − 1

z
=
z

2
+ o(z) + ı sin z ,

1− e−ız

z
= −z

2
+ o(z) + ı sin z , as z → 0 ,

and then

F(Dhϕ)(ξ)→ F(Dϕ)(ξ) ,

pointwise for all ξ ∈ R, as h→ 0+. Since ξϕ̂(ξ) ∈ L2(R,C2) as ϕ is smooth and compactly
supported, the desired result

lim
h→0+

∫
R
|Dhϕ−Dϕ|2 dx = 0

follows by dominated convergence. �

We conclude the section with another technical result [15, Chapter VI, Lemma 4.1].

Lemma 13. For any f ∈ L2(R,C2) and g ∈ H1(R,C2), there holds

‖phfh − f‖L2 → 0 and ‖phgh − g‖H1 as h→ 0+.
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4. Well-posedness of the limit model

In this section we prove global well-posedness for the Cauchy problem for (1). To our
knowledge, the basic idea of the proof can be traced back to [13], see also [21].

Proposition 14. Let χ ∈ H1(R,C2). Then (1) admits a unique global solution Ψ ∈
C0([0,∞), H1(R,C2)) ∩ C1([0,∞), L2(R,C2)).

Proof. Consider the Duhamel integral formula

Ψ(z) = e−ızDχ− ı
∫ z

0
e−ı(z−s)D[−βσ3Ψ(s) +G(Ψ(s))]Ψ(s) ds . (17)

The embedding H1(R,C2) ↪→ L∞(R,C2) ensures that the map Ψ 7→ G(Ψ)Ψ is locally Lip-
schitz on H1(R,C2), so that local well-posedness follows by standard contraction mapping
arguments (see the proof of Prop. (9)). Then there exists a maximal lifespan 0 < T ≤ +∞,
T = T (‖χ‖H1), and a unique solution Ψ ∈ L∞([0, T ], H1(R,C2))∩W 1,∞([0, T ], L2(R,C2)).
By standard arguments (see, for instance, [6, Lemma 2.2]) regularity can be improved, so
that Ψ ∈ C0([0, T ], H1(R,C2)) ∩ C1([0, T ], L2(R,C2)), and

Ψ(0) = χ ∈ H1(R,C2) . (18)

As for the proof of Proposition 9, it suffices to show that the H1-norm of the solution
remains bounded as t→ T−, that is

sup
t∈[0,T )

‖Ψ(t)‖H1(R,C2) ≤M < +∞ . (19)

Define

ϕ := Ψ1 + Ψ2 , η := Ψ1 −Ψ2 ,

where Ψ := (Ψ1,Ψ2)T : R× [0, T )→ C2, so that substituting into (1) we find{
−ı∂zϕ = −ı∂xϕ+ βη − γ[1

4(|ϕ|2) + |η|2)ϕ+ 1
2<(ϕη)η]

−ı∂zη = ı∂xη + βϕ− γ[1
4(|ϕ|2) + |η|2)η + 1

2<(ϕη)ϕ]
.

Here <(·) denotes the real part of a complex number. Multiply the first line by ϕ(|ϕ|2+|η|2)p

and the second line by η(|ϕ|2 + |η|2)p, p ≥ 1, adding the two equations and taking the
imaginary part gives

1

p+ 1
∂z(|ϕ|2 + |η|2)p+1 ≤ 1

p+ 1
∂x(|ϕ|2 − |η|2)p+1 + ıβ(ηϕ− ϕη)(|ϕ|2 − |η|2)p+1 .

Then integrating in the x-variable and using that 2|ϕ||η| ≤ |ϕ|2 + |η|2 we find

∂z

∫
R

(|ϕ|2 + |η|2)p+1 dx ≤ 4(p+ 1)β

∫
R

(|ϕ|2 + |η|2)p+1 dx .

Observing that by the following equivalence
∫
R(|ϕ|2 + |η|2)p+1 dx ' ‖(ϕ, η)‖2p+2

L2p+2
x

, the Gron-

wall’s lemma implies that

‖(ϕ, η)(z)‖
L2p+2
x
≤ eCz‖(ϕ, η)(0)‖

L2p+2
x

, ∀z ∈ [0, T ) , (20)

for some constant C > 0. Since (4) holds for all p ≥ 1, we also get the L∞-bound

‖(ϕ, η)(z)‖L∞x ≤ e
Cz‖(ϕ, η)(0)‖L∞x , ∀z ∈ [0, T ) . (21)

Analogous estimates thus hold for Ψ.
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A simple computation shows that, given ξ : R → C2, there holds ‖Dξ‖2L2 = ‖∂xξ‖2L2 .

Recall that eızD is an L2-isometry and that it commutes with D, so that applying D to
both sides of (4) we get

‖∂xΨ(z)‖L2
x
≤ ‖∂xχ‖L2

x
+

∫ z

0
‖∂x[G(Ψ)Ψ](s)‖L2

x
+‖β′Ψ(s)‖L2

x
+‖β∂xΨ(s)‖L2

x
ds , ∀z ∈ [0, T ) .

Since β ∈ C1 with bounded derivative, we get

‖∂xΨ(z)‖L2
x
≤ ‖∂xχ‖L2

x
+ CT +

∫ z

0
‖∂x[G(Ψ)Ψ](s)‖L2

x
+ C‖∂xΨ(s)‖L2

x
ds , ∀z ∈ [0, T ) ,

where we have used the conservation of the L2-norm. Observe that the integral involving
G contains terms of the schematic form |Ψ|2∂xΨ, and then by (4) there exists a constant
B(T ) > 0 such that

‖∂xΨ(z)‖L2
x
≤ ‖∂xχ‖L2

x
+ CT +B(T )

∫ z

0
‖∂xΨ(s)‖L2

x
ds , ∀z ∈ [0, T ) .

Another application of the Gronwall’s lemma, combined with (4), finally gives

‖Ψ(z)‖H1
x
≤ AeCz‖χ‖H1

x
, ∀z ∈ [0, T ) ,

for some finite constants A,C > 0 depending on T . Then (4) follows, as we assumed
0 < T <∞. �

5. Proof of the main results for constant mass

5.1. The discrete-to-continuum limit. Recall the assumptions of Theorem (2). Let
χ ∈ H1(R,C2) and consider its discretization χh : hZ→ C2, defined as in (1). By Lemma
13 phχh → χ in H1 as h→ 0+. Now denote by ψh ∈ C1([0,∞), L2

h) the global solution to
(1) with initial datum χh, provided by Proposition 9.

Fix 0 < T < (2C‖χh‖2H1
h
)−1 as in Theorem 2. We first prove some bounds for phψh and

∂zphψh, uniform for z ∈ [0, T ]. Notice that, since we are interested in the limit h→ 0+ we
will assume 0 < h < h0, for a fixed h0 > 0.

Lemma 15. There holds

sup
z∈[0,T ]

‖phψh(z)‖H1 ≤ C , sup
z∈[0,T ]

‖∂zphψh(z)‖L2 ≤ C , (22)

where the constant C > 0 depends only on h0, T and

M := sup
0<h≤h0

‖phχh‖H1 ≤ C .

Proof. Consider M > 0 as above, and observe that M < +∞ as phχh → χ in H1 as
h→ 0+. Recall that by Lemma 8 we have

‖phψh(z)‖H1 ≤ C‖ψh(z)‖H1
h
,

and the a-priori estimate in Lemma 11 gives

sup
z∈[0,T ]

‖ψh(z)‖H1
h
≤ C(T, ‖χh‖H1

h
) .

Combining those facts with ‖χh‖H1
h
≤ C‖χ‖H1 from Lemma 8 we get the first item in (15).

By (1) we find

‖∂zψh(z)‖L2
h
≤ ‖Dhψh(z)‖L2

h
+ ‖G(ψh(z))ψh(z)‖L2

h
.
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There holds, using the definition of Dh
‖Dhψh(z)‖L2

h
≤ C sup

z∈[0,T ]
‖ψh(z)‖H1

h
≤ C(T, ‖χh‖H1

h
)

by the previous bounds. Moreover, we have

‖G(ψh(z))ψh(z)‖L2
h
≤ ‖G(ψh(z))ψh(z)‖H1

h
,

and by the Leibniz rule in H1
h and the embedding H1

h ↪→ L∞h we then get

‖G(ψh(z))ψh(z)‖L2
h
≤ C(T, ‖χh‖H1

h
) ,

as G(ϕ)ϕ ∼ |ϕ|2ϕ is a cubic nonlinearity. We have thus proved that

sup
z∈[0,T ]

‖∂zψh(z)‖L2
h
≤ C ,

for some constant C > 0, depending on h0, T,M . The second inequality in (15) follows
observing that ∂z and ph commute. �

We are now in a position to prove the first main result of the paper.

Proof of Theorem 2. By Lemma 15 and the Banach-Alaoglu theorem there exists a sequence
hn → 0+, as n→∞, such that

phnψhn ⇀ Ψ weakly-∗ in L∞([0, T ], H1(R,C2)) (23)

and
∂zphnψhn ⇀ Ψ weakly-∗ in L∞([0, T ], L2(R,C2)) , (24)

as n → ∞. We now prove that Ψ solves (1). To this aim, it suffices to prove that the
equation is verified for a.e. z ∈ [0, T ]. By (5.1) we have

lim
n→∞

∫ T

0
〈Φ, ı∂zphnψhn(z)〉L2 dz =

∫ T

0
〈Φ, ı∂zΨ(z)〉L2 dz ,

for every Φ ∈ L1([0, T ], H1(R,C2)).
We now need to prove that

lim
n→∞

∫ T

0
〈Φ, phnDhnψhn(z)〉L2 dz =

∫ T

0
〈Φ,DΨ(z)〉L2 dz ,

for every Φ ∈ L1([0, T ], H1(R,C2)). We prove that claim, by density, for functions Φ(t, x) =
f(t)u(x) with f ∈ C∞c ([0, T ]) and u ∈ C∞c (R,C2). Let uh be the discretization of u, as in
(1). By Lemma 13 ‖phuh − u‖H1 → 0 as h→ 0+, and there holds ‖phDhψh(z)‖L2 ≤ C, so
that

〈phnuhn − u, phnDhnψhn(z)〉L2 ≤ C‖phnuhn − u‖H1 → 0 ,

as n→ +∞, for every t ∈ [0, T ]. Then it suffices to prove that

lim
n→∞

∫ T

0
〈fphnuhn , phnDhnψhn(z)〉L2 dz =

∫ T

0
〈fu,DΨ(z)〉L2 dz . (25)

A straightforward computation using the definition of Dh in (1) gives

〈fphnuhn , phnDhnψhn(z)〉L2 = 〈fphnDhnuhn , phnψhn(z)〉L2

for every z ∈ [0, T ]. We claim that

phnDhnuhn → Du , (26)

in L2(R,C2) as n→∞.
A direct computation shows that

(Dhnuhn)(xn) = (Dhnu)hn(xn)
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that is, the discretization (1) and the action of Dh commute. Moreover, by Lemma 12 there
holds

‖Dhnu−Du‖L2 → 0 , as h→ 0+ (27)

and then we find

‖phnDhnuhn −Du‖L2 = ‖phn(Dhnu)hn −Du‖L2

≤ ‖phn(Dhnu−Du)hn‖L2 + ‖phn(Du)hn −Du‖L2 .

Since ‖phn(Dhnu−Du)hn‖L2 ≤ ‖Dhnu−Du‖L2 , (5.1) follows combining (5.1) and Lemma
13. By (5.1), the dominated convergence theorem gives (5.1).

We now deal with the nonlinear term of the equation. We need to prove that

lim
n→∞

∫ T

0
〈Φ, phn(G(ψhn(z))ψhn)〉L2 dz =

∫ T

0
〈Φ, G(Ψ(z))Ψ(z)〉L2 dz (28)

for every Φ ∈ L1([0, T ], H1(R,C2)). We consider again functions Φ(t, x) = f(t)u(x) with
f ∈ C∞c ([0, T ]) and u ∈ C∞c (R,C2).

Observe that

‖phn(G(ψhn(z))ψhn)‖L2 ≤ C‖|ψhn(z)|2ψhn(z)‖L2
h
≤ C‖ψhn(z)‖2L∞hn‖ψhn(z)‖L2

hn
≤ C ,

where we have used Lemma 11. Then we can assume that phn(G(ψhn(z))ψhn) weakly
converges in L2(R,C2), for a.e. z ∈ [0, T ]. By [15] this is equivalent to the weak convergence
of the piecewise constant interpolation qhn(G(ψhn(z))ψhn), defined in (1).

Then we are lead to show that

lim
n→∞

〈u, qhn(G(ψhn(z))ψhn)〉L2 = 〈u,G(Ψ(z))Ψ(z)〉L2 , (29)

for a.e. z ∈ [0, T ]. By (5.1), phnψhn(z)→ Ψ(z) strongly in L2
loc(R,C2) for a.e. z ∈ [0, T ]. As

a general fact, from [15] we know that this is equivalent to the same result for the piecewise
constant interpolation, namely, qhnψhn(z)→ Ψ(z) strongly in L2

loc(R,C2) for a.e. z ∈ [0, T ].
Then notice that

qhn(G(ψhn)ψhn) = G(qhnψhn)qhnψhn ,

and then since ‖ψhn(z)‖L∞h ≤ C, the claim (5.1) follows by the dominated convergence

theorem. This result, in turn, implies (5.1). A similar argument allows to deal with the
mass term βσ3Ψ in (1).

The above discussion shows that Ψ ∈ L∞([0, T ], H1(R,C2)) ∩W 1,∞([0, T ], L2(R,C2)) in
(5.1),(5.1) satisfies∫ T

0
〈Φ, ı∂zΨ〉L2 dz =

∫ T

0
〈Ψ, (D + βσ3)Ψ〉L2 dz − γ

∫ T

0
〈Φ, G(Ψ)Ψ〉L2 dz ,

for every Φ ∈ L1([0, T ], H1(R,C2)). Moreover, equation (1) is solved for a.e. z ∈ [0, T ] and
by uniqueness Ψ coincides with the solution found in Proposition 14, so that the limit in
(5.1),(5.1) does not depend on the sequence hn → 0. �

5.2. Existence of standing waves.

Proof of Theorem 4. We look for a solution to (1) of the form

Ξ(x) = (u(x), ıv(x)) , x ∈ R ,

with u, v real-valued. Then we get the following Hamiltonian system{
u′ = −ωv − βv − v3 = −∂vH
v′ = ωu− βu+ u3 = ∂uH

(30)
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with Hamiltonian function

H(u, v) =
u4 + v4

4
+
β

2
(v2 − u2) +

ω

2
(u2 + v2) . (31)

Here f ′ = ∂xf . Notice that here the variable x plays the role of time. Notice that local

Figure 1. The level curve {H = 0} for β = 1, ω = 0.5.

existence for (5.2) holds, as the system is smooth. Since we consider solutions that tend to
zero as |x| → ∞, we search for orbits of (5.2) on the zero-energy curve

{(u, v) ∈ R2 : H(v, u) = 0} ,
see Figure 1. Such set is clearly compact, and then orbits on it exist for all times.

A direct computation imposing ∂uH = ∂vH = 0 give that the origin (0, 0) is the only
equilibrium of (5.2). We are thus looking for a homoclinic orbit (u, v)

lim
|x|→∞

(u(x), v(x)) = (0, 0) . (32)

To this aim, fix as initial point on {H = 0}

(u(0), v(0)) = (
√

2(β − ω), 0) . (33)

The corresponding solution to (5.2) is global, and we prove (5.2) using the Poincarè-
Bendixson theorem [23, Theorem 7.16].

Observe that the solution with (5.2) is confined in the region {u2 > v2, u ≥ 0} for all
times. Indeed, it cannot cross the set {u2 = v2}, as if u2 = v2 the condition H(u, v) = 0
gives

u4 + 2ωu2 = 0 =⇒ u = v = 0 ,

by (5.2), and this is absurd as the origin is an equilibrium of (5.2). Thus

u2(x) > v2(x) , ∀x ∈ R . (34)

Let
Ω± = {(x, y) ∈ R2 : for some xn → ±∞ , (u(xn), v(xn))→ (x, y)} .

Since the set {H = 0} is compact, it is not hard to see that the limit sets Ω± are non-empty,
compact and connected [23, Lemma 6.6]. By the Poincaré–Bendixson theorem, one of the
following three alternatives holds: (a) Ω± is an equilibrium, (b) Ω± is a regular periodic
orbit (limit cycle), (c) Ω± consists of fixed points and non-closed orbits connecting these
fixed points. So we need to rule out alternative (b) and (c). Observe that in both cases the
limit sets must be included in {H = 0}.
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Let us define the angle

θ(x) := arctan
v(x)

u(x)
, x ∈ R .

A simple computation gives

θ′(x) =
1

u2 + v2
(v′u− u′v) =

u4 + v4

2(u2 + v2)
, (35)

using the condition H = 0. Then θ′(x) > 0 if (u, v) 6= (0, 0), and this rules out alternative
(b), as

θ− := lim
x→−∞

θ(x) < lim
x→+∞

θ(x) =: θ+ ,

while in presence of a limit cycle such limits do not exist.
Suppose (c) holds. Then

Ω± ⊂ {(r cos θ±, r sin θ±) ∈ R2 , r ≥ 0} , r2 = u2 + v2 ,

but this is again excluded by (5.2), and (5.2) is proved.

We now need to prove the exponential decay estimate (4).
Differentiating the first equation in (5.2) we find

u′′ = (β2 − ω2)u+ F (u, v)u ,

with limx→∞ F (u(x), v(x)) = 0. Then, fixed 0 < ε < β2 − ω2, there exists Mε > 0 such
that

u′′ ≥ (β2 − ω2 − ε)u .
The function

U(x) := u(x)− u(Mε)e
−
√
β2−ω2−ε(x−Mε) , x ≥Mε

verifies U(Mε) = 0, limx→+∞ U(x) = 0 and

U ′′ ≥ (β2 − ω2 − ε)U ,

so that by the comparison principles

U(x) ≤ 0 , ∀x ≥Mε .

Then

u(x) ≤ u(Mε)e
−
√
β2−ω2−ε(x−Mε) , ∀x ≥Mε .

A similar argument holds for x ≤ −Mε, and then by continuity there exists a constant
Cε > 0 such that

u(x) ≤ Cεe−
√
β2−ω2−ε|x| , ∀x ∈ R .

We can rewrite the equation for u as

−u′′ + (β2 − ω2)u = G ,

with G(x) := −F (u(x), v(x))u(x), and applying the Green’s function

u(x) =
1

2
√
β2 − ω2

∫
R
G(y)e−|x−y|

√
β2−ω2

dy

we get the decay estimate (4) for u. The same holds for v by (5.2) and the proof is
concluded. �
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6. Proof of the main results for a domain-wall mass

6.1. The discrete-to-continuum limit. In this case the mass β is no longer a constant,
but it is assumed to be a domain-wall function (see Def. 1). The proof is the same as for
Theorem 2.

Proof of Theorem 5. Let βh be the discretization of the mass function β. We only need to
prove the convergence of the mass term, namely

lim
n→+∞

∫ T

0
〈Φ, phnβhnσ3ψhn〉L2 dz =

∫ T

0
〈Φ, βσ3Ψ〉L2 dz , (36)

for every Φ ∈ L1([0, T ], H1(R,C2)). As before, we prove that claim for functions Φ(t, x) =
f(t)u(x) with f ∈ C∞c ([0, T ]) and u ∈ C∞c (R,C2).

There holds limn→+∞ ‖phnβhn−β‖L2 = 0. Note that β is not in L2(R) as it is asymptotic
to non-zero constants to ±∞. However, the difference phnβhn − β does belong to L2(R)
and the result applies. Furthermore, by (5.1) phnψhn → Ψ in L2

loc as n→∞.
Then we have

phnβhnσ3ψhn − βσ3Ψ = (phnβhn − β)phnσ3ψhn + β(phnσ3ψhn − σ3Ψ)

so that

lim
n→∞

〈u, phnβhnσ3ψhn〉L2 = 〈u, βσ3Ψ〉L2 ,

and (6.1) follows. �

6.2. Existence of standing waves. We now turn to the proof of Theorem 6. Notice
that in this case the mass β is no longer a constant but it is a domain-wall function, as in
Definition 1. For this reason we look for solutions to (1) using variational methods. To this
aim, some preliminaries are in order. We only sketch part of the arguments as they rely on
well-established techniques, referring to some references for more details.

Weak solutions to (1) correspond to critical points of the C2 functional

L(Φ) =
1

2

∫
R
〈(D + βσ3 − ω)Φ,Φ〉 dx− 1

4

∫
R
|Φ1|4 + |Φ2|4 dx ,

defined for Φ ∈ H1/2(R,C2), where Φ = (Φ1,Φ2)T . In order to exploit the geometry of the
functional, it is more convenient to rewrite it as follows.

Since ω /∈ Spec(D + βσ3), we can decompose the Hilbert space X = H1/2(R,C2) as

X = X+ ⊕X− , (37)

where X± = P±X, and P± is the spectral projector onto the positive/negative subspace
of (D + βσ3 − ω). Accordingly, we get

L(Φ) =
1

2

(
‖Φ+‖2ω − ‖Φ−‖2ω

)
− 1

4

∫
R
|Φ1|4 + |Φ2|4 dx . (38)

Here Φ± := P±Φ and the norm ‖ · ‖ω is defined by

‖ψ‖ω := ‖
√
|D + βσ3 − ω|ψ‖L2 .

As it can be readily seen from (6.2), the functional is strongly indefinite so that in order
to prove the existence of a critical point we need to show it has a linking geometry, see e.g.
[?, 9] or [22, Sec. II.8].
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Lemma 16. There exists R > 0 such that if Φ+ ∈ X+ and ‖Φ+‖ω = 1

L(Φ) ≤ 0 , ∀Φ ∈ ∂MR ,

where
∂MR = {Φ ∈MR : ‖Ψ‖ω = R or s = R}

and
MR := {Φ = Ψ + sΦ+ ∈ X− ⊕ R+Φ+ : ‖Ψ‖ω ≤ R , 0 ≤ s ≤ R}

Proof. Take Φ ∈ X− ⊕ R+Φ+ ∈ ∂MR as in the assumptions. Then if ‖Ψ‖ω ≥ s, it is
immediate that L(Φ) ≤ 0. Otherwise, observe that the last integral in (6.2) is equivalent
to ‖Φ‖4L4 , so we have

L(Φ) ≤ 1

2
s2 − C

4
‖Φ‖4L4 ,

for some constant C > 0. Moreover, note that (6.2) induces an analogous decomposition
on L4(R,C2), so that

‖ψ±‖L4 ≤ ‖ψ‖L4 , ∀ψ ∈ X .

Then

L(Φ) ≤ 1

2
s2 − 1

4
‖sΦ+‖4L4 ≤

1

2
s2 − C

4
s4 ,

as all norms are equivalent on the one-dimensional space RΦ+. Since we assume s ≥ ‖Ψ‖ω,
we must have s = R and thus

L(Φ) ≤ R2

2
− CR

4

4
< 0 ,

for R > 0 large enough. �

The following lemma can be easily proved, exploiting the structure of the functional
(6.2).

Lemma 17. There exist r, ρ > 0 such that

inf
Φ∈S+

r

L(Φ) ≥ ρ > 0 ,

where
S+
r := {Φ ∈ X+ : ‖Φ‖ω = r}

Consider the negative gradient flow ηt of the functional L:∂tηt = −∇L ◦ ηt

η0 = IdX .
.

Arguing as in [9, Lemma 2.5, Cor. 2.6], one sees that for any t ≥ 0 there holds

ηt(MR) ∩ S+
r 6= ∅ .

Then, combining Lemma 16 and Lemma 17, a deformation argument allows to prove the
following

Proposition 18. Let the assumptions of Lemma 16 be satisfied and define

c(ω) := inf
t≥0

supL(ηt(MR)).

Then there exists a Palais-Smale sequence (Φn) ⊂ X at level c(ω), i.e.L(Φn) −→ c(ω)

dL(Φn)
X∗−−→ 0,

as n −→∞ , (39)



ON THE CONTINUUM LIMIT FOR A MODEL OF BINARY WAVEGUIDES ARRAYS 17

and there results

0 < ρ ≤ c(ω) ≤ sup
MR

L < +∞, ∀N ∈ N.

Let (Φn) ⊂ X be a Palais-Smale sequence for L. Standard arguments show that such
sequence is bounded, see e.g. [4, Lemma 4.1]. Then, up to subsequences,Φn → Φ , weakly in X

Φn → Φ , strongly in Lploc(R,C
2), ∀p ≥ 2 ,

n→∞ .

Observe that by (18) and (18) we get

lim
n→∞

1

4

∫
R
|Φ1
n|4 + |Φ2

n|4 dx = c(ω) > 0

and then

lim inf
n→∞

∫
R
|Φn|4 dx = α > 0 (40)

for some α > 0. In order to obtain strong X-convergence for (Φn) we use a Concentration
Compactness argument [16, 17]. Suppose, first the sequence is vanishing, that is, for all
R > 0

lim sup
n→∞

sup
y

∫
BR(y)

|Φn|4 dx = 0 .

This implies, in particular, that Φn → 0 in L4 as n → ∞. But this contradicts (6.2), so
vanishing alternative is ruled out.

We are thus in the dichotomy case (we consider concentration as a particular case of
dichotomy with only one non trivial profile). Then there exist a sequence of points yn ∈ R
and radii R1

n, R
2
n →∞ with limn→∞

R2
n

R1
n

=∞, such that

lim
n→∞

∫
B

R1
n

(yn)
|Φn|4 dx = α̃ ∈ (0, α) , lim

n→∞

∫
B

R2
n

(yn)\B
R1
n

(yn)
|Φn|4 dx = 0 .

Moreover, for any ε > 0 there exists Rε > 0 such that∫
BRε (yn)

|Φn|4 dx ≥ α̃− ε , ∀n ∈ N , (41)

that is, almost all the portion α̃ of the L4-norm is concentrated in the ball BRε(yn). Up to
translation, wee can center the bump at the origin and take yn = 0 in the above formulas.

Consider a cutoff θ ∈ C∞c ([0∞)), with θ ≡ 1 on [0, 1], θ ≡ 0 on [2,∞) and |θ′| ≤ 2.
Define the sequence

Ψn := θ(|x|/R1
n)Φn .

It is not hard to see that Ψn is a Palais-Smale sequence for L at level α̃ > 0, and (6.2)
ensures Ψn → Ψ, strongly in L4 as n → ∞, for some Ψ ∈ X.We can now turn this into
strong X-convergence as follows.

Observe that by (18) there holds

(D + βσ3 − ω)Ψn = G(Ψn)Ψn + o(1) , in H−1/2(R,C2) ,

and then

Ψn = (D + βσ3 − ω)−1[G(Ψn)Ψn] + o(1) , in H1/2(R,C2) . (42)

We claim that

|Ψn|2Ψn → |Ψ|2Ψ , strongly in L4/3(R,C2) .
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To this aim, observe that, up to subsequences,

|Ψn|2 → |Ψ|2 , strongly in L2(R,C4). (43)

Indeed, the sequence is bounded in L2 as ‖|Ψn|2‖L2 = ‖Ψn‖2L4 ≤ C, for all n ∈ N. Then

|Ψn|2 ⇀ |Ψ|2, weakly in L2. Moreover, ‖|Ψn|2‖L2 = ‖Ψn‖2L4 → ‖Ψ‖2L4 = ‖|Ψ|2‖L2 , and the

L2 strong convergence follows.
Notice that

‖|Ψn|2Ψn − |Ψ|2Ψ‖L4/3 ≤ ‖|Ψn|2Ψn − |Ψn|2Ψ∞‖L4/3 + ‖|Ψn|2Ψ− |Ψ|2Ψ‖L4/3

The Hölder inequality and strong L4-convergence give

‖|Ψn|2Ψn − |ψn|2Ψ‖4/3
L4/3 =

∫
R2

||Ψn|2Ψn − |Ψn|2Ψ∞|
4
3 dx

≤
(∫

R2

|Ψn|4 dx
) 2

3
(∫

R2

|Ψn −Ψ∞|4 dx
) 1

3

≤ C
(∫

R2

|Ψn −Ψ∞|4 dx
) 1

3

= o(1) .

(44)

Similarly, by Hölder and (6.2) we get

‖|Ψn|2Ψ− |Ψ|2Ψ‖L4/3 =

∫
R2

||Ψ|2Ψ− |Ψ|2Ψ|
4
3 dx

≤
(∫

R2

||Ψn|2 − |Ψ|2|2 dx
) 2

3
(∫

R2

|Ψ|4 dx
) 1

3

= o(1) .

(45)

The claim is proved combining (6.2) and (6.2). Then, observing that |G(Ψn)| ∼ |Ψn|2, the
desired strong X-convergence follows from (6.2).

We are now in a position to give the proof of the last main result of the paper.

Proof of Theorem 6. The existence of a Palais-Smale sequence for L is provided by Proposi-
tion 18, and the subsequent analysis shows how to find a strongly convergence subsequence.
So L admits a critical point, which is a weak solution to (1).

We now prove the decay estimate (6). First, observe that H1/2(R,C2) ↪→ Lp(R,C2), for
all p ∈ [2,∞). Then

DΦ = (ω − βσ3)Φ +G(Φ)Φ ∈ L2(R,C2) , (46)

and since ‖DΦ‖L2 = ‖∂xΦ‖L2 , we conclude that Φ ∈ H1(R,C2). By the Sobolev embedding,
Φ is thus Hölder continuous and tends to zero at infinity, that is

lim
x→±∞

Φ(x) = 0 .

Since D2 = −∂xx, by (6.2) one concludes that

−∂xxΦ = (ω − βσ3)DΦ− ıβ′σ1σ3Φ +D(G(Φ)Φ) ∈ L2(R,C2) ,

as β′ ∈ L∞(R,C2) and D(G(Φ)Φ) is the sum of terms of the schematic form |Φ|2∂xΦ. Then
Φ ∈ H2(R,C2) and ∂xΦ is Hölder continuous and tends to zero at infinity.

Rewrite (1) as

(D + β(∞)σ3 − ω)Φ = (β(∞)− β)σ3Φ + ωΦ +G(Φ)Φ .

Applying the operator (D + β(∞)σ3 + ω) to both sides one gets

(−∂xx + β(∞)2 − ω2)Φ = H(x) ,
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where H is a continuous function tending to zero at infinity. We can thus apply the Green’s
function to obtain

Φ(x) =
1

2
√
β(∞)2 − ω2

∫
R
H(y)e−|x−y|

√
β(∞)2−ω2

dy ,

and the exponential decay follows. Observe, finally, that iterating the above argument one
actually proves that Φ ∈ Hk(R,C2), for all k ∈ N and so it is smooth. �
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