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a b s t r a c t

We describe the behavior of a deformable porous material by means of a poro-
hyperelastic model that has been previously proposed in Chapelle and Moireau (2014)
under general assumptions for mass and momentum balance and isothermal conditions
for a two-component mixture of fluid and solid phases. In particular, we address here
a linearized version of the model, based on the assumption of small displacements. We
consider the mathematical analysis and the numerical approximation of the problem.
More precisely, we carry out firstly the well-posedness analysis of the model. Then,
we propose a numerical discretization scheme based on finite differences in time and
finite elements for the spatial approximation; stability and numerical error estimates
are proved.

Particular attention is dedicated to the study of the saddle-point structure of the
problem, that turns out to be interesting because velocities of the fluid phase and of the
solid phase are combined into a single quasi-incompressibility constraint. Our analysis
provides guidelines to select the componentwise polynomial degree of approximation of
fluid velocity, solid displacement and pressure, to obtain a stable and robust discretiza-
tion based on Taylor–Hood type finite element spaces. Interestingly, we show how this
choice depends on the porosity of the mixture, i.e. the volume fraction of the fluid phase.

© 2020 The Authors. Published by Elsevier Ltd. This is an open access article under the CC
BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

Poromechanics addresses the behavior of saturated porous media and in particular the interaction of mechanical
eformations and flow through porous materials. Since its origin in the context of civil engineering [1–4], it has been used
or countless applications (see the review [5] and the references therein). More recently, these models have captured the

✩ The authors have been partially supported by the ERC Advanced Grant iHEART, Italy, ‘‘An Integrated Heart Model for the simulation of the
ardiac function’’, 2017-2022, P.I. A. Quarteroni (ERC2016AdG, project ID: 740132).

.

∗ Corresponding author.
E-mail addresses: nicolas.barnafi@polimi.it (N. Barnafi), paolo.zunino@polimi.it (P. Zunino), luca.dede@polimi.it (L. Dedè),

lfio.quarteroni@polimi.it (A. Quarteroni).
ttps://doi.org/10.1016/j.camwa.2020.07.025
898-1221/© 2020 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND license (http://creativecommons.
rg/licenses/by-nc-nd/4.0/).

https://doi.org/10.1016/j.camwa.2020.07.025
http://www.elsevier.com/locate/camwa
http://www.elsevier.com/locate/camwa
http://crossmark.crossref.org/dialog/?doi=10.1016/j.camwa.2020.07.025&domain=pdf
http://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:nicolas.barnafi@polimi.it
mailto:paolo.zunino@polimi.it
mailto:luca.dede@polimi.it
mailto:alfio.quarteroni@polimi.it
https://doi.org/10.1016/j.camwa.2020.07.025
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/


N. Barnafi, P. Zunino, L. Dedè et al. / Computers and Mathematics with Applications 91 (2021) 202–228 203
attention of researchers interested in the behavior of highly deformable soft biological tissues [6–8]; a prominent example
of application in this area is the perfusion of the heart [9–11].

Poromechanics formulations were originally developed for civil applications, which held them inadequate for biome-
chanics and especially for soft tissues undergoing large deformations [12–15]. This called for more general formulations,
arising from the fundamental principles of continuum mechanics and thermodynamics. Thanks to their improved
generality, such formulations are more flexible and applicable to a broader range of scenarios [16–18]. These models
inherit desirable physical features, such as energy conservation [19], that are reflected into their mathematical properties.
However, the analysis of well-posedness, stability and approximation of such new generation of poromechanics models
is still largely open. The main objective of this work is to contribute to their analysis and approximation.

We follow in particular the works by Chapelle and co-workers [16,19,20], where a general thermodynamically
consistent poromechanics formulation is introduced. In the original formulation [16], the authors develop their model for
the general case of large deformations, which is characterized as a mixture of fluid and solid phases that simultaneously
coexist at every point in the computational domain. Such model is extremely challenging from the mathematical
analysis standpoint, because of the nonlinearity of the constitutive equations and the geometric nonlinearity due to large
deformations. For these reasons, we focus on the linearization of the previous model, proposed by the same authors
in [19,20] and derived under the assumption of small deformations. In this setting, the porosity (fluid volume fraction) is
a fixed parameter of the model.

When the fluid phase is strictly incompressible and the solid phase is nearly-incompressible, the model exhibits an
interesting saddle-point structure where a linear combination of the velocities of the fluid and solid phases determine
the fulfillment of the quasi-incompressibility constraint. The weights of the linear combination of velocities depend on
the porosity of the material. The main contribution of this work consists of showing how the approximation of the fluid
and solid phases interact with the stability of the scheme. The works [19,20] looked at the problem as it was formed by
coupled equations of parabolic type, which somehow put the role of the incompressibility constraint in the background.
Here, we change this perspective towards a hybrid system of parabolic and hyperbolic partial differential problems. This
new approach allows us to put into evidence the saddle-point nature of the problem and the role of the weighted inf–
sup condition between fluid velocity, solid displacement and pressure to determine the stability of the approximation
scheme. More precisely, after discretizing the problem by means of finite differences in time and finite elements in space,
we address the numerical stability of a numerical scheme based on the family of Taylor–Hood finite elements [21] for the
approximation of fluid velocity, solid displacement and pressure; both fluid velocity and solid displacement are required
to have a degree of approximation higher than that of the pressure. Our analysis confirms that the inf–sup stability of the
scheme depends on the porosity and provides guidelines to choose the polynomial order used for the approximation of
the velocity and displacement in different scenarios obtained by varying this parameter. We notice that such analysis may
be particularly relevant also for the fully nonlinear version of the model, where the porosity is a variable of the system.

Throughout this work, these topics are organized as follows. After presenting the model in Section 2, we address in
Section 3 the semi-discrete problem, which pits into evidence the generalized saddle point structure of the problem.
The well-posedness, proved using the theory of Differential Algebraic Equations [22], and the energy estimates of the
semi-discrete problem are useful in Section 4, which addresses the well-posedness of the continuous problem by means
of the Faedo–Galerkin method. In Section 5 we modify the fully discrete formulation used in [20] to be solved with an
implicit scheme and present its a-priori error analysis validated by numerical tests, independently in space and time. The
inf–sup stability of the numerical scheme is fully addressed in Section 6, where we first extend the classic divergence
discrete inf–sup condition to the case in which the velocity is multiplied by a weight function, and then use this result
for the stability analysis involving both fluid and solid phases. Finally, in Section 7 we present two other numerical tests:
the first one is the swelling test (already addressed in [20]) and the second one is specifically designed to test the inf–sup
stability of the discretization addressed in 6.

2. The mathematical model

Throughout the manuscript we consider a domain Ω ⊂ Rd (d = 2, 3) together with the classical Sobolev spaces
L2(Ω) and H1(Ω) with corresponding norms ∥ · ∥L2(Ω), ∥ · ∥H1(Ω). We also denote (·, ·) the L2-inner product, and given an
arbitrary Hilbert space H we denote the duality pairing with its dual space H ′ as ⟨·, ·⟩H ′,H . For a positive function ψ , we
consider the weighted Sobolev spaces L2(Ω, ψ dx) with norm ∥f ∥2

ψ = (f , f )ψ =
∫
Ω
f 2ψ dx. Also, we use the convention

of denoting scalars, vectors, tensors and matrices as a, a,A and A, respectively. We finally define the Bochner spaces

Lp(0, T ; X), 1 ≤ p < ∞, and L∞(0, T ; X) for any Banach space X with norms
(∫ T

0 ∥x(s)∥q
X ds

)1/q
and sups∈(0,T ) ∥x(s)∥X

respectively. Weak time derivatives are considered in W k,p(0, T ; X) =
{
x ∈ Lp(0, T ; X) : ∂nt x ∈ Lp(0, T ; X)∀n ∈ N, n ≤ k

}
,

1 ≤ p ≤ ∞.
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The strong formulation of the poroelastic model is given by the following system of equations, with the primary
ariables being the fluid velocity vf , pressure p, displacement ys and solid velocity vs:

ρf φ∂tvf − 2µf div(φε(vf )) + φ∇p + φ2κ
−1
f (vf − vs) = ρf φf + θvf , in Ω,

(1 − φ)2

κs
∂tp + div(φvf + (1 − φ)vs) = ρ−1

f θ, in Ω,

ρs(1 − φ)∂tvs − div(CHookeε(ys)) + (1 − φ)∇p − φ2κ
−1
f (vf − vs) = ρs(1 − φ)f , in Ω,

vs = ∂tys, in Ω.

(1)

The first equation is the conservation of momentum for the fluid phase, which turns out to be a generalized Stokes
law which incorporates the Brinkman effect; the second equation represents mass conservation; the third one is the
conservation of momentum of the solid phase and the last one relates solid displacement and velocity. Also, ε(u) =

sym(∇u) and the relevant parameters are given by: φ = φ(x), porosity; ρf , ρs, fluid/solid density; µf , fluid viscosity; κ f ,
permeability tensor; f ∈ L2(Ω), external load; θ ∈ L2(Ω), fluid source/sink; κs, bulk modulus and CHookeτ = 2µτ+λ tr()τ I ,
with λ,µ Lamé parameters.

The boundary conditions for this problem can be very general; for simplicity, we restrict ourselves to Dirichlet boundary
conditions:

vf = vD and ys = yD on ∂Ω,

for given vD, yD in H1/2(∂Ω). We have left aside the natural no-slip condition vf = vs on the boundary. A simple weak
imposition of this condition was analyzed for a monolithic solver in [20], so there is no loss of generality in our choice.
We also consider the problem with homogeneous Dirichlet conditions to avoid using additional lifting terms.

Remark. The main differences between this model and the Biot model [2], the most popular linear poromechanics model,
rely on the presence of the permeability in the fluid and solid momentum equations and the symmetric way in which
fluid and solid velocities behave; the latter means that fluid quantities are multiplied by the fluid fraction φ whereas solid
quantities are multiplied by the solid fraction 1 − φ. These features will be evident during the analysis, as they yield a
positive definite formulation of the semi-discrete, continuous in time problem in the framework of Differential Algebraic
Equations.

2.1. Variational formulation

We consider the classical Sobolev subspaces H1
0(Ω) := {w ∈ H1(Ω) : w = 0 on ∂Ω} and L20(Ω) := {q ∈ L2(Ω) :

(q, 1) = 0}. The weak formulation of problem (1) reads: Find (ys, vs, vf , p) in H1
0(Ω) × L2(Ω) × H1

0(Ω) × L20(Ω):

(ρf φ∂tvf , v
∗

f ) + 2µf (φε(vf ), ε(v∗

f )) − (p, div(φv∗

f )) + (φ2κ
−1
f vf , v

∗

f ) − (θvf , v
∗

f )

−(p, div(φv∗

f )) − (φ2κ−1
f vs, v

∗

f ) = (ρf φf , v∗

f ),(
(1 − φ)2

κs
∂tp, q

)
+ (q, div(φvf )) + (q, div((1 − φ)vs)) = (ρ−1

f θ, q),

(ρs(1 − φ)∂tvs,ws) + (CHookeε(ys), ε(ws)) + (φ2κ
−1
f vs,ws)

−(p, div((1 − φ)ws)) − (φ2κ
−1
f vf ,ws) = (ρs(1 − φ)f ,ws),

(∂tys, v
∗

s ) − (vs, v
∗

s ) = 0,

(2)

or every test function (ws, v
∗
s , v

∗

f , q) in H1
0(Ω) × L2(Ω) × H1

0(Ω) × L20(Ω), with initial conditions vf (0) = ξf , p(0) =

p, ys(0) = ξs, vs(0) = ξv . By defining σvis(vf ) = 2µf ε(vf ), σskel(ys) = CHookeε(ys) and the following Riesz operators:

Af : H1
0(Ω) → (H1

0(Ω))′ ⟨Af (·1), (·2)⟩ = (φσvis(·1), ε(·2))

As : H1
0(Ω) → (H1

0(Ω))′ ⟨Af (·1), (·2)⟩ = (φσvis(·1), ε(·2))

K : L2(Ω) → L2(Ω) ⟨K (·1), (·2)⟩ = (φ2κ
−1
f (·1), (·2))

Bφ : H1
0(Ω) → L20(Ω) ⟨Bφ(·1), (·2)⟩ = −((·2), div(φ(·1)))

B1−φ : H1
0(Ω) → L20(Ω) ⟨B1−φ(·1), (·2)⟩ = −((·2), div((1 − φ)(·2)))

problem (2) can be written in block form as:⎡⎢⎢⎣
ρf φ 0 0 0
0 (1−φ)2

κs
0 0

0 0 0 ρs(1 − φ)

⎤⎥⎥⎦
⎡⎢⎣∂tvf
∂tp
∂tys
∂ v

⎤⎥⎦+

⎡⎢⎢⎣
Af + K − θ BT

φ 0 −K
Bφ 0 0 B1−φ
−K BT

1−φ As K

⎤⎥⎥⎦
⎡⎢⎣vf

p
ys
v

⎤⎥⎦ =

⎡⎢⎣Ff
Fp
Fs
0

⎤⎥⎦ , (3)
0 0 1 0 t s 0 0 0 −1 s
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with the notation being understood. For the sake of analysis, we use ∂tys instead of vs in the Stokes equation, mass and
momentum conservation to obtain the following equivalent formulation:

(ρf φ∂tvf , v
∗

f ) + (φσvis, ε(v∗

f )) − (θvf , v
∗

f ) + (φ2κ
−1
f vf , v

∗

f )

−(p, div(φv∗

f )) − (φ2κ
−1
f ∂tys, v

∗

f ) = (ρf φf , v∗

f ),(
(1 − φ)2

κs
∂tp, q

)
+ (q, div(φvf )) + (q, div((1 − φ)∂tys)) = (ρ−1

f θ, q),

(ρs(1 − φ)∂tvs,ws) + (σskel, ε(ws)) + (φ2κ
−1
f ∂tys,ws)

−(p, div((1 − φ)ws)) − (φ2κ
−1
f vf ,ws) = (ρs(1 − φ)f ,ws),

(ρs(1 − φ)∂tys, v
∗

s ) − (ρs(1 − φ)vs, v
∗

s ) = 0,

(4)

or all test functions (v∗

f , q,ws, v
∗
s ) in H1

0(Ω) × L20(Ω) × H1
0(Ω) × L2(Ω); when written in block form, it reads⎡⎢⎢⎣

ρf φ 0 −K 0
0 (1−φ)2

κs
−B1−φ 0

0 0 K ρs(1 − φ)
0 0 ρs(1 − φ) 0

⎤⎥⎥⎦
⎡⎢⎣∂tvf
∂tp
∂tys
∂tvs

⎤⎥⎦

+

⎡⎢⎢⎣
Af + K − θ BT

φ 0 0
−Bφ 0 0 0
−K BT

1−φ As 0
0 0 0 −ρs(1 − φ)

⎤⎥⎥⎦
⎡⎢⎣vf

p
ys
vs

⎤⎥⎦ =

⎡⎢⎣Ff
Fp
Fs
0

⎤⎥⎦ . (5)

Although at first glance formulation (5) breaks the structure of the problem, it presents the useful property that the
combination of the two matrix blocks yields a generalized saddle point structure. This property would not hold with (3),
and it is fundamental in proving the existence of solutions using Theorem 1. Also, we remark that our formulation differs
from that proposed in [20] in the functional setting. More precisely, we look for the solid velocity in a weaker space,
namely L2(Ω) instead of H1

0(Ω). Our choice is determined by the different approach to the analysis of the problem and
in particular by the fact that an energy estimate for vs in H1

0(Ω) would be hardly derived. Besides this technical difficulty,
there is no reason to conclude that vs and ys shall not belong to the same functional space. As a result, in the numerical
discretization of the problem we approximate both using the same finite element space that is conforming to H1

0(Ω).

Remark. Note that all blocks, except for As, depend on the porosity φ. Also, our formulation differs from that proposed
in [20] in the choice of test functions. Indeed, they are interchanged between the displacement and solid velocity
equations, and moreover we look for the solid velocity in the space L2(Ω) instead of H1

0(Ω). These choices present higher
difficulties during the analysis, but in return they shed light on the well-posedness of an alternative formulation in which
vs would no longer a variable.

3. Analysis of the semi-discrete problem

In this section, we analyze a semi-discrete, continuous in time, version of (2). We follow an approach similar to the
one used in [23]. For this, consider a family of triangulations {Th}h>0 of simplices K of characteristic size h and Pk(K ) the
polynomials of degree k ≥ 1 in K to define Xk

h = {q ∈ C(Ω) : q|K∈ Pk(K ) ∀K ∈ Th}. With them, we define the following
discrete spaces:

Vf ,h = H1
0(Ω) ∩ [Xk+1

h ]
d, Vs,h = H1

0(Ω) ∩ [Xk+1
h ]

d,

Qp,h = L20(Ω) ∩ Xk
h , Qv,h = L2(Ω) ∩ [Xk

h ]
d,

which are conforming and satisfy the discrete inf–sup condition described later in Section 6. Then, the semi-discrete
problem reads: Find (vf ,h, ph, ys,h, vs,h) in Vf ,h × Qp,h × Vs,h × Qv,h such that

(ρf φ∂tvf ,h, v
∗

f ,h) + (φσvis(vf ,h), ε(v∗

f ,h)) − (θvf ,h, v
∗

f ,h) + (φ2κ
−1
f vf ,h, v

∗

f ,h)

−(ph, div(φv∗

f ,h)) − (φ2κ
−1
f ∂tys,h, v

∗

f ,h) = (ρf φf , v∗

f ,h),(
(1 − φ)2

κs
∂tph, qh

)
+ (qh, div(φvf ,h)) + (qh, div((1 − φ)∂tys,h)) = (ρ−1

f θ, qh),

(ρs(1 − φ)∂tvs,h,ws,h) + (σskel(ys,h), ε(ws,h)) + (φ2κ
−1
f ∂tys,h,ws,h)

−(ph, div((1 − φ)ws,h)) − (φ2κ
−1
f vf ,h,ws,h) = (ρs(1 − φ)f ,ws,h),

∗ ∗

(6)
((1 − φ)∂tys,h, vs,h) − ((1 − φ)vs,h, vs,h) = 0,
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or any test functions (v∗

f ,h, qh,ws,h, v
∗

s,h) in Vf ,h×Qp,h×Vs,h×Qv,h, and for given initial conditions vf ,h(0) = Πf ,hξf , ph(0) =

Πp,hξp, ys,h(0) = Πs,hξs, vs,h(0) = Πv,hξv; here, Π(·),h denotes the L2 projection to the corresponding discrete space. From
ow on it makes no contribution to specify the h subindex, and we will thus omit it on the remaining of this section.
For the analysis of problem (6) we make use of the following result from the theory of Differential Algebraic

quations [22].

heorem 1. Let L : [0, T ] → RN and E,H in RN×N be given arrays. Then, the differential algebraic equation given by

E
dX
dt

(t) + HX (t) = L(t), t > 0

has at least one solution X : [0, T ] → RN for any initial condition X(0) = X0 if sE + H is invertible for some s ̸= 0.

Finally, we will make use of Korn’s inequality [24]:

∥ε(v)∥L2(Ω) ≥ αk|v|H1(Ω) ∀v ∈ H1
0(Ω), (7)

or some positive constant αk and the following assumptions.

(H1) The porosity φ is such that φ, 1/φ, (1 − φ) and (1 − φ)−1 belong to W s,r (Ω) with s > d/r and there exist two
positive constants φ and φ such that 0 < φ ≤ φ ≤ φ < 1 almost everywhere in Ω .

(H2) The stress tensors σskel and σvis give rise to continuous elliptic bilinear forms:

∃Cskel > 0 : (σskel(ws), ε(ws)) ≥ Cskel∥ε(ws)∥2
L2(Ω) ∀ws ∈ H1

0(Ω),

∃Cvis > 0 : (φσvis(v∗

f ), ε(v
∗

f )) − (θv∗

f , v
∗

f ) ≥ φ Cvis∥ε(v∗

f )∥
2
L2(Ω) ∀v∗

f ∈ H1
0(Ω).

(H3) The permeability tensor is symmetric and positive:

∃Ck > 0 : (φκ−1
f v∗

f , v
∗

f ) ≥ Ck∥v
∗

f ∥
2
L2(Ω)

∀v∗

f ∈ H1
0(Ω).

rom these hypotheses, we obtain the relevant ellipticity estimates, which we collect in the following lemma to be used
ater in both the well-posedness analysis and the energy estimate. We point out that the hypothesis (H2) poses a hard
estriction on the parameter θ . We set such a strong requirement for the sake of simplicity as it will be used in what
ollows to straightforwardly prove the existence and the stability of solutions. However, it can be relaxed by means of
more refined approach to the analysis that exploits an exponential scaling of the velocity, namely vf ,λ = exp{−λt} vf .
hoosing λ sufficiently large would make such requirement unnecessary, but the analysis of the problem would turn out
o be more involved.

emma 1. Under hypotheses (H1), (H2) and (H3) there exist two positive constants αf , αs such that:

(σskel(ws), ε(ws)) ≥ αs∥ws∥
2
H1(Ω)

∀ws ∈ H1
0(Ω),

(φσvis(v∗

f ), ε(v
∗

f )) + ([φκ−1
f − θ I]v∗

f , v
∗

f ) ≥ αf ∥v
∗

f ∥
2
H1(Ω)

∀v∗

f ∈ H1
0(Ω).

roof. The result is a direct application of Korn’s inequality with hypotheses (H1), (H2) and (H3), with αs = Cskelαk and
f = min{φ Cvisαk, Ck}. □

.1. Existence and uniqueness

Problem (5) can be cast into the framework of Theorem 1 by defining the following operators:

E :=

⎡⎢⎢⎣
ρf φ 0 −K 0
0 (1−φ)2

κs
−B1−φ 0

0 0 K ρs(1 − φ)
0 0 ρs(1 − φ) 0

⎤⎥⎥⎦ and H :=

⎡⎢⎢⎣
Af + K − θ BT

φ 0 0
−Bφ 0 0 0
−K BT

1−φ As 0
0 0 0 −ρs(1 − φ)

⎤⎥⎥⎦ .
hen, identifying each operator with its induced matrix in boldface as Af ,As,K ,Bφ,B1−φ . We also define M (ζ ) the

weighted mass matrix related to the inner product (ζ z, z∗) and the mass matrices Av,Ap associated to vs and p, which give:

E + H =

⎡⎢⎢⎣
Af + M (ρf φ) + K − M (θ ) K 0 BT

φ

K As + K M (ρs(1−φ)) BT
1−φ

0 −M (ρs(1−φ)) Av 0
Bφ B1−φ 0 −Ap

⎤⎥⎥⎦ =

[
A BT

B −C

]
,

A =

⎡⎣Af + M (ρf φ) + K − M (θ ) K 0
K As + K M (ρs(1−φ))
0 −M (ρs(1−φ)) Av

⎤⎦ , B =
[
Bφ B1−φ 0

]
, C = Ap.

We first show the ellipticity of A and the inf–sup condition of B (Section 6) to then use Theorem 11 from Appendix A.



N. Barnafi, P. Zunino, L. Dedè et al. / Computers and Mathematics with Applications 91 (2021) 202–228 207

L

P

R
E
i

L

P

w
n
r

L

Lemma 2. The matrix A is positive definite.

Proof. We proceed directly from the bilinear forms testing against the solution, using the inequality 2(φ2κ
−1
f u, v) ≤

(φ2κ
−1
f u, u) + (φ2κ

−1
f v, v) and hypotheses (H1), (H2). We define A(·, ·) the bilinear form associated to matrix A:

A((vf , ys, vs), (vf , ys, vs)) = (ρf φvf , vf ) + (φσvis, ε(vf )) + ([φ2κ
−1
f − θ I]vf , vf ) − (φ2κ

−1
f ys, vf )

+(ρs(1 − φ)vs, ys) + (σskel, ε(ys)) + (φ2κ
−1
f ys, ys) − (φ2κ

−1
f vf , ys)

−(ρs(1 − φ)ys, vs) + (ρs(1 − φ)vs, vs)
= (ρf φvf , vf ) + (φσvis, ε(vf )) + (φ2κ

−1
f vf , vf ) − (θvf , vf )

+(σskel, ε(ws)) + (φ2κ
−1
f ys, ys) + (ρs(1 − φ)vs, vs) − 2(φ2κ

−1
f ys, vf )

∀(vf , ys, vs) ∈ H1
0(Ω) × H1

0(Ω) × L2(Ω);

then we obtain

A((vf , ys, vs), (vf , ys, vs))
≥ (ρf φvf , vf ) + (φσvis, ε(vf )) − (θvf , vf ) + (σskel, ε(ys)) + Cv∥vs∥

2
L2(Ω)

≥ αf ∥vf ∥
2
H1(Ω)

+ Cs∥ys∥
2
H1(Ω)

+ Cv∥vs∥
2
L2(Ω)

∀(vf , ys, vs) ∈ H1
0(Ω) × H1

0(Ω) × L2(Ω). □

emma 3. The matrices B, C are such that kerBT
∩ ker C = {0}.

roof. From Theorem 9 we have that B is surjective and thus BT is injective, which yields the result. □

emark 3.1. Note that although C is a mass matrix, usually the constant κs is very large, which makes the matrix
+H positive semi-definite in practice and may produce numerical instabilities. This motivates the use of B for the proof

nstead, which gives the same result regardless of the problem parameters.

We can now state the existence result.

emma 4. There exists at least one solution to problem (6).

roof. It follows from Lemmas 2 and 3 which enable Theorem 11 from Appendix A. □

To prove uniqueness, we consider the problem with null initial data X0 and forcing terms L(t); because of the linearity
e only need to prove that this problem has unique (null) solution. We will make use of the identity ∂t (f 2) = 2f ∂t f , the
otation c(x, y) = (φ2κ

−1
f x, y), Young’s inequality 2 ab ≤ a2 + b2 and the following result regarding norm equivalence,

ecalling the definition of the weighted norm ∥v∥2
ζ =

∫
v2 ζdx:

emma 5. The following inequalities hold for t in [0, T ] almost everywhere:√
ρf φ∥vf (t)∥L2(Ω) ≤ ∥vf (t)∥ρf φ ≤

√
ρφ∥vf (t)∥L2(Ω),√

ρs(1 − φ)∥vs(t)∥L2(Ω) ≤ ∥vs(t)∥ρs(1−φ) ≤

√
ρs(1 − φ)∥vs(t)∥L2(Ω),√

κ−1
s (1 − φ)2∥p(t)∥L2(Ω) ≤ ∥p(t)∥(1−φ)2/κs ≤

√
κ−1
s (1 − φ)2∥p(t)∥L2(Ω).

Proof. We use the following: ∥ψ∥
2
L2(Ω)

=
∫
Ω
ψ2(ρ−1

f φ−1)(ρf φ) dx ≤ ρ−1
f φ−1

∥ψ∥
2
ρf φ

. All inequalities are proved
analogously. □

Theorem 2. There exists a unique solution (vf , p, ys, vs) in L2(0, T ; Vf ,h)× L∞(0, T ;Qp,h)× L∞(0, T ; Vs,h)× L∞(0, T ;Qv,h) of
problem (6).

Proof. We test system (4) with the solution as (vf (t), p(t), ∂tys(t), vs(t)) and sum the first three equations to obtain the
following:

1
2
∂t

(
(ρf φvf (t), vf (t)) +

(
(1 − φ)2

κs
p(t), p(t)

)
+ (ρs(1 − φ)vs(t), vs(t))

)
+(φσvis(vf (t)), ε(vf (t))) + c(vf (t), vf (t)) − (θ (t)vf (t), vf (t)) − 2c(∂tys(t), vf (t))

(8)
+(σskel(ys(t)), ε(∂tys(t))) + c(∂tys(t), ∂tys(t)) = 0.
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s in the existence proof, we use Young’s inequality with c(x, y) and hypothesis (H2) to obtain

0 ≥
1
2
∂t

(
(ρf φvf (t), vf (t)) +

(
(1 − φ)2

κs
p(t), p(t)

)
+ (ρs(1 − φ)vs(t), vs(t))

)
+ (σvis(vf (t)), ε(vf (t))) − (θ (t)vf (t), vf (t)) + (σskel(ys(t)), ε(∂tys(t)))

≥
1
2
∂t

(
(ρf φvf (t), vf (t)) +

(
(1 − φ)2

κs
p(t), p(t)

)
+ (ρs(1 − φ)vs(t), vs(t)) + (σskel(ys(t)), ε(ys(t)))

)
+ (σvis(vf (t)), ε(vf (t))) − (θ (t)vf (t), vf (t)).

ntegrating in time in (0, s) and using Lemma 5, we obtain the following inequality for a general positive constant C:

0 ≥ (ρf φvf (s), vf (s)) +

(
(1 − φ)2

κs
p(s), p(s)

)
+ (ρs(1 − φ)vs(s), vs(s))

+(σskel(ys(s)), ε(ys(s))) + αf

∫ s

0
∥vf (s)∥2

H1(Ω)
ds

≥ C
(
∥vf (t)∥2

L2(Ω) + ∥p(t)∥2
L2(Ω) + ∥vs(t)∥2

L2(Ω)
+ ∥ys(t)∥

2
H1(Ω)

+ ∥vf (t)∥2
L(0,s;H1(Ω))

)
≥ 0,

hich holds for every t > 0. We thus conclude that

∥vf ∥L∞(0,T ;L2(Ω)) = ∥vf ∥L2(0,T ;H1(Ω)) = ∥p∥L∞(0,T ;L2(Ω)) = ∥vs∥L∞(0,T ;L2(Ω)) = ∥ys∥L∞(0,T ;H1(Ω)) = 0.

n particular, we get that all functions (vf , p, ys, vs) are zero in the L∞(0, T ; L2(Ω)) topology. □

.2. Stability analysis of the semi-discrete problem

In this section we prove that the solution of the semi-discrete problem (6) is upper bounded with respect to the data,
hich is equivalent to the well-posed in the sense of Hadamard [25]. This result will be used in Section 4 for the proof of
xistence of solutions of the continuous problem. For this, we proceed as in Section 3.1 but using non null data instead:

1
2
∂t

(
(ρf φvf (t), vf (t)) +

(
(1 − φ)2

κs
p(t), p(t)

)
+ (ρs(1 − φ)vs(t), vs(t)) + (σskel(ys(t)), ε(ys(t)))

)
+ (σvis(vf (t)), ε(vf (t))) − (θ (t)vf (t), vf (t))

≤ (ρf φf (t), vf (t)) +
1
ρ f

(θ (t), p(t)) + (ρs(1 − φ)f (t), vs(t)).

(9)

hroughout this section we denote with c = c(ρf , ρs, φ, κs, αs, αf ) a data dependent constant used for lower bounds and
ith C = C(ρf , ρs, φ, κs, λ, µ,µf ) another one for upper bounds. We will make use of Young’s generalized inequality for
very ϵ > 0: (a, b)X ≤

ϵ
2∥a∥

2
X +

1
2ϵ ∥b∥

2
X . Consider ϵ > 0, then from (9) we first expand the right hand side (r.h.s):

r.h.s ≤
1
ϵ

(
∥f (t)∥2

ρf φ
+ ∥θ (s)∥2

L2(Ω) + ∥f (t)∥2
ρs(1−φ)

)
+ ϵ

(
∥vf (t)∥2

ρf φ
+ ∥p(t)∥2

L2(Ω) + ∥vs(t)∥2
ρs(1−φ)

)
≤

C
ϵ

(
∥f (t)∥2

L2(Ω)
+ ∥θ (s)∥2

L2(Ω)

)
+ Cϵ

(
∥vf (t)∥2

L2(Ω)
+ ∥p(t)∥2

L2(Ω) + ∥vs(t)∥2
L2(Ω)

)
. (10)

ntegrating in time in (0, t), the left hand side (l.h.s) of (9) with hypothesis (H2) and Lemma 5 becomes∫ t

0
l.h.s ≥

(
∥vf (s)∥2

ρf φ
+ ∥p(s)∥2

(1−φ)2
κs

+ ∥vs(s)∥2
ρs(1−φ) + (σskel(ys(s)), ε(ys(s)))

) ⏐⏐⏐⏐s=t

s=0

+ αf

∫ t

0
∥vf (s)∥2

H1(Ω)
ds

≥ c
(

∥vf (t)∥2
L2(Ω)

+ ∥p(t)∥2
L2(Ω) + ∥vs(t)∥2

L2(Ω)
+ ∥ys(t)∥

2
H1(Ω)

+

∫ t

0
∥vf (s)∥2

H1(Ω)
ds
)

− C
(
∥v (0)∥2

+ ∥p(0)∥2
+ ∥v (0)∥2

+ ∥y (0)∥2
)
.

(11)
f L2(Ω) L2(Ω) s L2(Ω) s H1(Ω)
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Using the right hand side upper bound (10) and the left hand side lower bound (11) on estimate (9) we obtain:

c
(
∥vf (t)∥2

L2(Ω)
+∥p(t)∥2

L2(Ω) + ∥vs(t)∥2
L2(Ω)

+ ∥ys(t)∥
2
H1(Ω)

+

∫ t

0
∥vf (s)∥2

H1(Ω)
ds
)

≤
C
ϵ

∫ t

0

(
∥f (s)∥2

L2(Ω)
+ ∥θ (s)∥2

L2(Ω)

)
ds

+ C
(
∥vf (0)∥2

L2(Ω)
+ ∥p(0)∥2

L2(Ω) + ∥vs(0)∥2
L2(Ω)

+ ∥ys(0)∥
2
H1(Ω)

)
+ Cϵ

∫ t

0

(
∥vf (t)∥2

L2(Ω)
+ ∥p(t)∥2

L2(Ω) + ∥vs(t)∥2
L2(Ω)

)
ds.

(12)

Taking the supremum of t in (0, T ) and using the upper bound
∫ T
0 ϕ(s) ds ≤ T |ϕ|∞ we obtain the following estimate:

(c − CTϵ)
(
∥vf ∥

2
L∞(0,T ;L2(Ω))

+ ∥p∥2
L∞(0,T ;L2(Ω))

+ ∥vs∥
2
L∞(0,T ;L2(Ω))

)
+c
(
∥ys∥L∞(0,T ;H1(Ω)) + ∥vf ∥

2
L2(0,T ;H1(Ω))

)
≤

C
ϵ

(
∥f ∥2

L2(0,T ;L2(Ω))
+ ∥θ∥2

L2(0,T ;L2(Ω))

)
+C

(
∥vf (0)∥2

L2(Ω)
+ ∥p(0)∥2

L2(Ω) + ∥vs(0)∥2
L2(Ω)

+ ∥ys(0)∥
2
H1(Ω)

)
here we choose ϵ =

c
2CT , thus obtaining the following estimate.

∥vf ∥
2
L∞(0,T ;L2(Ω))

+ ∥vf ∥
2
L2(0,T ;H1(Ω))

+ ∥ys∥L∞(0,T ;H1(Ω)) + ∥p∥2
L2(0,T ;L2(Ω))

+ ∥vs∥
2
L2(0,T ;L2(Ω))

≤ C̃T
(
∥f ∥2

L2(0,T ;L2(Ω))
+ ∥θ∥2

L2(0,T ;L2(Ω))

)
+ C̃

(
∥vf (0)∥2

L2(Ω)
+ ∥p(0)∥2

L2(Ω) + ∥vs(0)∥2
L2(Ω)

+ ∥ys(0)∥
2
H1(Ω)

)
,

(13)

here C̃ = 2max{C, C2
}c−1. Now we extend the previous estimate to include time derivatives, which will be useful later

hen we apply the Faedo–Galerkin method to show the existence of solutions at the continuous level. First from the fluid
quation in (6) we obtain the following bound for every test function v∗

f in H1
0(Ω):

(ρf φ∂tvf (t), v∗

f ) ≤ C
(
∥f (t)∥(H1

0(Ω))′ + ∥p(t)∥L2(Ω) + ∥∂tys(t)∥L2(Ω) + ∥vf (t)∥H1(Ω)

)
∥v∗

f ∥1,Ω .

Thus, since for all S in (H1
0(Ω))′ we have ∥S∥(H1

0(Ω))′ = supv∈H1
0(Ω),v ̸=0

S(v)
∥v∥H1

0(Ω)
, using Lemma 5, ∂tys = vs, taking the

supremum on ∥v∗

f ∥H1(Ω) = 1 and then squares on both sides we get

∥ρf φ∂tvf (t)∥2
(H1

0(Ω))′
≤ C

(
∥f (t)∥2

(H1
0(Ω))′

+ ∥p(t)∥2
L2(Ω) + ∥vs(t)∥2

L2(Ω)
+ ∥vf (t)∥2

H1(Ω)

)
. (14)

Similarly, from the solid momentum we get for every test function ws in H1
0(Ω) that

(ρs(1 − φ)∂tvs(t),ws)

≤ C
(
∥ys(t)∥H1(Ω) + ∥∂tys(t)∥L2(Ω) + ∥vf (t)∥2

L2(Ω)
+ ∥p(t)∥L2(Ω) + ∥f (t)∥(H1

0(Ω))′

)
∥ws∥H1(Ω),

and taking the supremum on ∥ws∥H1(Ω) = 1 we obtain

∥ρs(1 − φ)∂tvs(t)∥2
(H1

0(Ω))′
≤ C(∥ys(t)∥

2
H1(Ω)

+ ∥vs(t)∥2
L2(Ω)

+ ∥vf (t)∥2
L2(Ω)

+ ∥p(t)∥2
L2(Ω) + ∥f (t)∥2

(H1
0(Ω))′

). (15)

From the mass conservation equation, we obtain for every test function q in H1(Ω) that(
(1 − φ)2

κs
∂tp(t), q

)
≤ C

(
∥θ (t)∥L2(Ω) + ∥vs(t)∥L2(Ω) + ∥vf (t)∥L2(Ω)

)
∥q∥H1(Ω),

thus taking supremum on ∥q∥H1(Ω) we obtain

∥(1 − φ)2κ−1
s ∂tp(t)∥2

(H1(Ω))′ ≤ C
(
∥θ (t)∥2

L2(Ω) + ∥vs(t)∥2
L2(Ω)

+ ∥vf (t)∥2
L2(Ω)

)
. (16)

As vs = ∂tys, we analogously get for v∗
s in L2(Ω) that

∥(1 − φ)∂ y (t)∥2
= ∥(1 − φ)v (t)∥2

≤ C∥v (t)∥2 . (17)
t s L2(Ω) s L2(Ω) s L2(Ω)
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inally, using estimates (13), (14), (15), (16) and (17), weighted by positive constants α1, α2, α3 and α4 respectively
ombined with (13) and ∥f (t)∥(H1

0(Ω))′ ≤ ∥f (t)∥L2(Ω) we get the following estimate:

α1∥ρf φ∂tvf ∥L2(0,T ;(H1
0(Ω))′) + α2∥ρs(1 − φ)∂tvs∥L2(0,T ;(H1

0(Ω))′)

+ α3∥(1 − φ)2κ−1
s ∂tp∥L2(0,T ;(H1(Ω))′) + α4∥(1 − φ)∂tys∥

2
L2(0,T ;L2(Ω))

+ (1 − [α1 + α2 + α3]C)∥vf ∥
2
L∞(0,T ;L2(Ω))

+ (1 − α1C)∥vf ∥
2
L2(0,T ;H1(Ω))

+ (1 − α2C)∥ys∥L∞(0,T ;H1(Ω))

+ (1 − [α1 + α2]C)∥p∥2
L2(0,T ;L2(Ω))

+ (1 − [α1 + α2 + α3 + α4]C)∥vs∥
2
L2(0,T ;L2(Ω))

≤ C
(
∥f ∥2

L2(0,T ;L2(Ω))
+ ∥θ∥2

L2(0,T ;L2(Ω))

)
+ C̃

(
∥vf (0)∥2

L2(Ω)
+ ∥p(0)∥2

L2(Ω) + ∥vs(0)∥2
L2(Ω)

+ ∥ys(0)∥
2
H1(Ω)

)
,

(18)

here C = max{C̃T , C}. Choosing (αi)4i=1 such that 1−[α1 +α2 +α3 +α4]C ≥ 1/2, 1−[α1 +α2 +α3]C ≥ 1/2, 1−α1C ≥

/2, 1 − α2C ≥ 1/2 and 1 − [α1 + α2]C ≥ 1/2, i.e αi = 1/8C for all i, we can give a complete energy estimate, which we
tate in the following theorem (we restore the subindex h for readability).

heorem 3. There exists unique solution to problem (6) which satisfies the following a priori estimate:

∥ρf φ∂tvf ,h∥L2(0,T ;(H1
0(Ω))′) + ∥ρs(1 − φ)∂tvs,h∥L2(0,T ;(H1

0(Ω))′)

+ ∥(1 − φ)2κ−1
s ∂tph∥L2(0,T ;(H1(Ω))′) + ∥(1 − φ)∂tys,h∥

2
L2(0,T ;(H1

0(Ω))′)

+ ∥vf ,h∥
2
L∞(0,T ;L2(Ω))

+ ∥vf ,h∥
2
L2(0,T ;H1(Ω))

+ ∥ys,h∥L∞(0,T ;H1(Ω)) + ∥ph∥2
L2(0,T ;L2(Ω)) + ∥vs,h∥

2
L2(0,T ;L2(Ω))

≤ C
(
∥f ∥2

L2(0,T ;L2(Ω))
+ ∥θ∥2

L2(0,T ;L2(Ω))

)
+ C̃

(
∥vf ,h(0)∥2

L2(Ω)
+ ∥ph(0)∥2

L2(Ω) + ∥vs,h(0)∥2
L2(Ω)

+ ∥ys,h(0)∥
2
H1(Ω)

)
.

(19)

4. Analysis of the continuous problem

In this section we prove that there exists a unique solution of problem (2). For this we use a Faedo–Galerkin argument,
which consists in proving that a discrete solution converges to a limit that solves the continuous problem. Typical Faedo–
Galerkin schemes use the finite dimensional spaces generated by the eigenvectors of the problem [26], but other discrete
constructions, such as Galerkin schemes are acceptable [27], the latter being the approach we use. Here we recall that a
sequence fn|∞n=1 in L2(I, X), with I ⊂ R and X Banach space, converges weakly to f in L2(I, X), written fn ⇀ f , if and only
if ∫ T

0
(Θ, fn)X →

∫ T

0
(Θ, f )X ∀Θ ∈ L2(I, X ′).

A sequence f ′
n|

∞

n=1 in L2(I, X ′) converges weakly to f ′ in L2(I, X ′) (or weakly*), written f ′
n

∗

⇀ f ′, if and only if∫ T

0
(f ′

n, x) →

∫ T

0
(f ′, x) ∀x ∈ L2(I, X),

nd further note that weak convergence implies weak convergence in the dual space thanks to the Riesz isometry. We
ill make use of the Banach–Alaoglu–Bourbaki Theorem, which states that the closed ball is weakly compact [28]. The
aedo–Galerkin technique, used in the following Lemma, which consists in (i) obtaining an estimate which gives the
nclusion of the solution in a closed ball, (ii) using such inclusion to apply the Banach–Alaoglu–Bourbaki [28, Theorem
.16] theorem to extract a weakly (or weakly*) convergent subsequence and (iii) proving that the limit function is a
olution of the problem.

emma 6. There exists a solution (vf , p, ys, vs) in H1
0(Ω)× L20(Ω)×H1

0(Ω)× L2(Ω) to problem (2) that satisfies the energy
stimate (19).

roof. Consider a solution (vf ,h, ph, ys,h, vs,h) in Vf ,h × Qp,h × Vs,h × Qv,h of problem (6), then in virtue of estimate (19)
e use the Banach–Alaoglu–Bourbaki theorem to obtain a subsequence (vf ,h′ , ph′ , ys,h′ , vs,h′ )|h′>0, in which we replace h′

ith h for simplicity, such that:

vf ,h ⇀ vf ∈ L2(0, T ;H1
0(Ω)), ∂tvf ,h ⇀ ∂tvf ∈ L2(0, T ; (H1

0(Ω))′),

ys,h ⇀ ys ∈ L2(0, T ;H1
0(Ω)), ∂tys,h ⇀ ∂tys ∈ L2(0, T ; (L2(Ω))′),

vs,h ⇀ vs ∈ L2(0, T ; L2(Ω)), ∂tvs,h ⇀ ∂tvs ∈ L2(0, T ; (H1
0(Ω))′),

2 2

(20)
ph ⇀ p ∈ L (0, T ; L (Ω)).
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We obtain convergence of all linear forms (see Appendix B) and thus the limit functions are a solution of the following
problem:

(φ∂tvf , v
∗

f ,h) + (φσvis, ε(v∗

f )) + ([φ2κ
−1
f − θ I]vf , v

∗

f ,h) − (φ2κ
−1
f ∂tys, v

∗

f ,h) = (φf , v∗

f ,h),(
(1 − φ)2

κs
p, qh

)
+

∫ t

0
(div(φvf (s)), qh) ds + (div((1 − φ)(ys −ΠVs,hys(0))), qh) ds = (ρ−1

f θ, qh)

((1 − φ)∂tvs,ws,h) + (σskel, ε(ws,h)) + (φ2κ
−1
f ∂tys,ws,h) − (φ2κ

−1
f vf ,ws,h) = ((1 − φ)f ,ws,h),

((1 − φ)∂tys, v
∗

s,h) − ((1 − φ)vs, v
∗

s,h) = 0,

(21)

for all test functions (v∗

f ,h, qh,ws,h, v
∗

s,h) in Vf ,h × Qp,h × Vs,h × Qv,h. Finally, as we are using conforming approximations,
and thus for every test function (v∗

f , q,ws, v
∗
s ) in H1

0(Ω) × L20(Ω) × H1
0(Ω) × L2(Ω) there exists a sequence of functions

v∗

f ,h, qh,ws,h, v
∗

s,h) in Vf ,h × Qp,h × Vs,h × Qv,h, such that (v∗

f ,h, qh,ws,h, v
∗

s,h) → (v∗

f ,h, qh,ws,h, v
∗

s,h) strongly in h. We thus
btain that (21) also holds for all test functions (v∗

f , q,ws, v
∗
s ) in H1

0(Ω) × L20(Ω) × H1
0(Ω) × L2(Ω), which proves the

xistence. Finally, the energy estimate (19) uses only the regularity of the continuous functions, which concludes the
roof. □

emark. The conservation of mass is satisfied in integral form

(1 − φ)2

κs
p(t) =

(1 − φ)2

κs
ΠQp,hp(0) + ρ−1

f θ −

∫ t

0
div(φvf (s)) ds + div

(
(1 − φ)(ys(t) −ΠVs,hys(0))

)
s an equality in L2(Ω); however, the corresponding differential form

∂tp + div(φvf + (1 − φ)vs) = ρ−1
f θ,

s only satisfied in (H1(Ω))′. Indeed, the term div vs belongs to (H1(Ω))′, and no extra regularity can be obtained a priori
or the solid velocity. In such cases, p is also referred to as a mild solution. It is also possible to write the problem
or a pressure in L2(0, T ; (H1(Ω))′), and as ∂tp was shown to be in L2(0, T ; (H1(Ω))′) as well, we would have higher
regularity in time by lowering the spatial regularity. In other words, p belongs to C(0, T ; (H1(Ω))′) ∩ L2(0, T ; L2(Ω)) due
o the continuous embedding H1(0, T ; X) ⊂ C([0, T ]; X), where X is an arbitrary Banach space and C(I, X) is the space of
ontinuous functions from I ⊂ R to X .

We now verify that the solutions constructed in Lemma 6 are consistent with the initial conditions of the discrete
roblem (6).

emma 7. The initial condition of the previously constructed solution is the weak limit of the initial condition of the discrete
olution.

roof. From now on we consider a function ϕ in C∞
c ([0, T ]) such that ϕ(T ) = 0 and ϕ(0) = 1. With this, for a general

unction u in L2(0, T ; X) with ∂tu in L2(0, T ; X ′) and a function v in X we get∫ T

0
⟨∂tu, ϕv⟩X ′,X dt = (u(0), v) −

∫ T

0
∂tϕ(u, v) dt. (22)

e now write all equations in (21) and (6) as follows:∫ T

0
(φ∂tvf , ϕv∗

f ,h) dt =

∫ T

0
Ff (vf , ys, vs, v

∗

f ,h) dt,
∫ T

0
(φ∂tvf ,h, ϕv∗

f ,h) dt =

∫ T

0
Ff (vf ,h, ys,h, vs,h, v

∗

f ,h) dt,∫ T

0

(
(1 − φ)2

κs
p, ϕqh

)
dt =

∫ T

0
ϕFp(p, vf , ys, qh) dt,

∫ T

0

(
(1 − φ)2

κs
ph, ϕqh

)
=

∫ T

0
ϕFp(ph, vf , ys, qh) dt,∫ T

0
((1 − φ)∂tvs, ϕws,h) dt =

∫ T

0
Fs(vf , ys, vs,ws,h) dt,

∫ T

0
((1 − φ)∂tvs,h, ϕws,h) dt =

∫ T

0
Fs(vf ,h, ys,h, vs,h,ws,h) dt,∫ T

0
((1 − φ)∂tys, ϕvs,h) dt =

∫ T

0
Fv(vf , ys, vs, v

∗

s,h) dt,
∫ T

0
((1 − φ)∂tys,h, ϕvs,h) dt =

∫ T

0
Fv(vf ,h, ys,h, vs,h, v

∗

s,h) dt,

for all (v∗

f ,h, qh,ws,h, v
∗

s,h) in Vf ,h × Qp,h × Vs,h × Qv,h. From them, using (22) we can take the limit of the discrete solution
for every discrete test function:

(vf (0), vf ,h) =

∫ T

0
∂tϕ(vf , v

∗

f ,h) dt +

∫ T

0
ϕFf (vf , ys, vs, v

∗

f ,h) dt

= lim
∫ T

(vf ,h, ∂tϕv∗

f ,h) dt +

∫ T

ϕFf (vf ,h, ys,h, vs,h, v
∗

f ,h) dt = lim(ΠVf ,hvf (0), v∗

f ,h).

h→0 0 0 h→0
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his ensures consistency for every v∗

f ,h in Vf ,h, and by density we obtain the consistency of the initial condition. Proceeding
analogously for ∂tys and ∂tvs gives the desired result. Note that the pressure does not require such procedure, as the initial
condition appears explicitly in the integral equation. □

Corollary 1. The previously constructed solution is unique.

Proof. Consider two solutions with the same forcing terms and the same initial conditions. The problem that arises by
considering their difference due to linearity has null datum, and using the energy estimate (19) we see that the solution
is null. □

We have thus proved the following theorem, which is the main result of this section.

Theorem 4. There exists a unique solution (vf , p, ys, vs) in L2(0, T ;H1
0(Ω)) × L2(0, T ; L20(Ω)) × L2(0, T ;H1

0(Ω)) × L2(0, T ;
2(Ω)) of problem (6) which satisfies the energy estimate (19) and is consistent with the initial data.

. Error analysis of a fully discrete formulation

In this section, we consider as in Section 3 a family of triangulations {Th}h>0 of symplexes K of characteristic size
and the discrete spaces Vf ,h, Vs,h,Qp,h, with the added regularity of Qv,h = Vs,h. We also define the full spaces
= H1

0(Ω) × L20(Ω) × H1
0(Ω) × H1

0(Ω) and Xh = Vf ,h × Qp,h × Vs,h × Qv,h with norm

∥(vf , p, ys, vs)∥2
X := ∥vf ∥

2
H1(Ω)

+ ∥p∥2
L2(Ω) + ∥ys∥

2
H1(Ω)

+ ∥vs∥
2
H1(Ω)

,

nd set the projections Pk
0,h : L2(Ω) → Xk

h , P
k
1,h : H1(Ω) → Xk

h together with their approximation properties [27]:

• (APH,1): ∥v − Pk
1,hv∥1,Ω ≤ Chℓ|vf |ℓ+1,Ω , 1 ≤ ℓ ≤ k for each vf in Hℓ+1(Ω).

• (APH,0): ∥v − Pk
1,hv∥0,Ω ≤ Chℓ+1

|v|ℓ+1,Ω , 1 ≤ ℓ ≤ k for each v in Hℓ+1(Ω).
• (APL): ∥q − Pk

0,hq∥0,Ω ≤ Chℓ+1
|q|ℓ+1,Ω , 1 ≤ ℓ ≤ k for each q in Hℓ+1(Ω).

e split the time interval [0, T ] uniformly into t0 = 0, t1 = ∆t, . . . , tN = N∆t = T with timestep ∆t and for simplicity
e will use from now on the notation Φn

:= Φ(tn). We use a backward Euler finite difference approximation for the time
erivatives:

∂tu(tn) ≈
un

− un−1

∆t
=: D∆tun,

hich gives the following fully discrete formulation proposed in [20] with a different order of test spaces: Given
vn−1
f ,h , p

n−1
h , yn−1

s,h , v
n−1
s,h ) in Xh, find (vn

f ,h, p
n
h, y

n
s,h, v

n
s,h) in Xh such that

(D∆tv
n
f ,h, v

∗

f ,h)ρf φ + af (vn
f ,h, v

∗

f ,h) − (ph, div(φv∗

f ,h))
+ c(vf ,h − vn

s,h, v
∗

f ,h) = (f , v∗

f ,h)ρf φ ∀v∗

f ,h ∈ Vf ,h,

(D∆tpnh, qh) (1−φ)2
κs

+ (qh, div(φvn
f ,h + (1 − φ)vn

s,h)) = (θ, qh) 1
ρf

∀qh ∈ Qp,h,

(D∆tv
n
s,h,ws,h)ρs(1−φ) + as(yn

s,h,ws,h) − (pnh, div((1 − φ)ws,h))
− c(vn

f ,h − vn
s,h,ws,h) = (f ,ws,h)ρs(1−φ) ∀ws,h ∈ Vs,h,

as(D∆tyn
s,h, v

∗

s,h) − as(vn
s,h, v

∗

s,h) = 0 ∀v∗

s,h ∈ Qv,h,

(23)

here

af (vf ,h, v
∗

f ,h) = (σvis(vf ,h), ε(v∗

f ,h)) − (θvf ,h, v
∗

f ,h),
as(ys,h,ws,h) = (σskel(ys,h), ε(ws,h)),

c(a, b) = (φ2κ
−1
f a, b),

(a, b)ζ = (ζa, b).

A fully implicit (Backward Euler) time discretization is an adequate choice for the parabolic part of the problem, namely
the momentum equation of the fluid phase and the mass balance equation. However, it might not be appropriate for the
momentum equation of the solid phase, as it violates the intrinsic energy conservation property of elastodynamics. In this
respect, other approaches may be adopted for the solid phase, such as the classical Newmark scheme or a mid-point rule
as in [19].

Remark. The equation D∆tys,h = vs,h has been weakly enforced using the bilinear form as. This was also done in [20]
and presents advantages during the error analysis with the cost of requiring a higher order of approximation and higher
regularity assumptions in the solid velocity. The error analysis can also be carried out for the L2 product with the strategy
we use in what follows, but the convergence rates obtained that way are suboptimal.
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We start by showing that problem (23) is well-posed.

emma 8. There exists a unique solution (vn
f ,h, p

n
h, y

n
s,h, v

n
s,h) in Xh of problem (23).

roof. Consider the test function x∗

h = (vn
f ,h, p

n
h, v

n
s,h, y

n
s,h) and denote the right hand side generically as F (v∗

f ,h, qh,ws,h, v
∗

s,h),
which gives

∆t−1(∥vn
f ,h∥

2
ρf φ

+ ∥pnh∥
2
(1−φ)2/κs

+ ∥vn
s,h∥

2
ρs(1−φ) + ∥yn

s,h∥
2
as ) + af (vn

f ,h, v
n
f ,h) ≤ F (vn

f ,h, p
n
h, v

n
s,h, y

n
s,h).

First note that if F = 0, then the only solution is xh = 0. We can then conclude from the discrete Fredholm Alternative
Theorem that the solution is unique. The same inequality gives that (vn

f ,h, p
n
h, y

n
s,h, v

n
s,h) belongs to Vf ,h × Qp,h × Vs,h ×

(L2(Ω) ∩ {vn
s,h|∂Ω= 0} ∩ [Xk+1

h ]
d). Finally the last equation gives√

as(vn
s,h, v

n
s,h) = sup

ws,h∈Vs,h

as(vn
s,h,ws,h)

∥ws,h∥H1(Ω)
= sup

ws,h∈Vs,h

−as(D∆tyn
s,h,ws,h)

∥ws,h∥H1(Ω)
=

√
as(D∆tyn

s,h,D∆tyn
s,h),

hich gives vn
s,h in Qv,h. □

We will use the discrete Gronwall Lemma, which we recall for reference [27].

emma 9 (Discrete Gronwall Lemma). Consider g0 ≥ 0 and a sequence (pn)∞n=0 such that pn ≥ 0. If (fn)∞n=0 is such that

f0 ≤ g0 and fn ≤ g0 +

n−1∑
s=0

ps +

n−1∑
s=0

ks fs,

then

fn ≤

(
g0 +

n−1∑
s=0

ps

)
exp

(
n−1∑
s=0

ks

)
.

We also make use of the following tools for the analysis of the approximation properties in time.

Lemma 10. For any symmetric bilinear form b:

b(ϕn,D∆tϕ
n) =

1
2
D∆tb(ϕn, ϕn) +

1
2
∆t b(D∆tϕ

n,D∆tϕ
n). (24)

emma 11. The following inequality holds for a backwards difference approximation in a Hilbert space H:

∥D∆tϕ − ∂tϕ∥ℓ∞(0,T ;H) ≤ ∆t∥∂ttϕ∥L∞(0,T ;H) ∀ϕ ∈ W 2,∞(0, T ;H).

roof. The Fundamental Theorem of Calculus gives D∆tϕ
n

=
1
∆t

∫ tn
tn−1

∂tϕ(s) ds, and so using the monotonicity of the
ntegral ∥

∫
I · dr∥H ≤

∫
I ∥ · ∥H dr we obtain:

∥D∆tϕ
n
− ∂tϕ

n
∥
2
H = ∥

1
∆t

∫ tn

tn−1

(∂tϕ(s) − ∂tϕ
n) ds∥2

H

≤

(∫ tn

tn−1

1
∆t

∂tϕ(s) − ∂tϕ
n

H ds

)2

=

(
1
∆t

∫ tn

tn−1

∫ tn

s
∂ttϕ(r) dr


H
ds

)2

≤

(
1
∆t

∫ tn

tn−1

∫ tn

s
∥∂ttϕ(r)∥H drds

)2

≤

(
∥∂ttϕ∥L∞(tn−1,tn;H)

∆t
∆t2

)2

≤ ∆t2∥∂ttϕ∥
2
L∞(0,T ;H).

aking the supremum on n and square root gives the conclusion. □

orollary 2. Consider two Hilbert spaces Z ⊂ H and an interpolation operator Ih : H → Hh into a conforming discretization
h such that

∥ϕ − Ihϕ∥H ≤ Chk
∥ϕ∥Z ,

hen it holds that

∥D∆t Ihϕ − ∂tϕ∥ℓ∞(0,T ;H) ≤ max{C∥ϕ∥L∞(0,T ;Z), ∥∂ttϕ∥L∞(0,T ;H)}(hk
+∆t) ∀ϕ ∈ W 2,∞(0, T ;H).
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roof. It follows directly from Lemma 11 and the decomposition ∂tϕ − D∆t Ihϕ = ∂tϕ − D∆tϕ + D∆tϕ − D∆t Ihϕ. □

We then write problem (1) as finding x = (vf , p, ys, vs) in X such that

E(∂tx, x∗) + H(x, x∗) = F (x∗) ∀x∗
:= (v∗

f , q,ws, v
∗

s ) ∈ X, (25)

where in analogy with the notation used in Section 3.1 we define the bilinear forms

E(∂tx, x∗) := (∂tvf , v
∗

f )ρf φ + (∂tp, q)(1−φ)2/κs + (∂tvs,ws)ρs(1−φ) + as(∂tys, v
∗

s ),

H(x, x∗) := af (vf , v
∗

f ) + as(ys,ws) − as(vs, v
∗

s )ρs(1−φ) + c(vf − vs, v
∗

f − ws)
− (p, div(φv∗

f + (1 − φ)ws)) + (q, div(φvf + (1 − φ)vs)),

nd set its discrete counterpart as: Given xn−1
h in Xh, find xnh = (vn

f ,h, p
n
h, y

n
s,h, v

n
s,h) in Xh such that

E(D∆txnh, x
∗

h) + H(xnh, x
∗

h) = F (x∗

h) ∀x∗

h := (v∗

f ,h, qh,ws,h, v
∗

s,h) ∈ Xh. (26)

We proceed by showing the invertibility of H, for which we add the following hypothesis, recalling that the bilinear form
c(·, ·) = (φ2κ

−1
f ·, ·):

(H4) The permeability tensor κ f is large enough:

∃Csk : as(ws,ws) − c(ws,ws) ≥ Csk∥ws∥
2
H1(Ω)

∀ws ∈ H1
0(Ω).

Theorem 5. Under assumptions (H1), (H2), (H3) and (H4) it holds that the problem of finding xh in Xh such that

H(xh, x∗

h) = F(x∗

h) ∀x∗

h ∈ Xh

is well-posed for every F in X ′

h. Moreover, if x̃ is the function such that

H(x̃, x∗) = F(x∗) ∀x∗
∈ X,

then, defining Z = Hk+2(Ω)×Hk+1(Ω)×Hk+2(Ω)×Hk+2(Ω), the following holds for a positive problem dependent constant
C:

∥x̃ − xh∥X ≤ Chk+1
∥x̃∥Z .

Proof. Let Vh = Vf ,h × Vs,h × Qv,h and Qh = Qp,h with bilinear forms

A((vf ,h, ys,h, vs,h), (v∗

f ,h,ws,h, v
∗

s,h)) = as(vf ,h, v
∗

f ,h) + as(ys,h,ws,h)
+ as(vs,h, v

∗

s,h) + c(vf ,h − vs,h, v
∗

f ,h − ws,h)
B1((v∗

f ,h,ws,h, v
∗

s,h), qh) = (qh, div(φv∗

f ,h + (1 − φ)ws,h)),
B2((v∗

f ,h,ws,h, v
∗

s,h), qh) = (qh, div(φv∗

f ,h + (1 − φ)vs,h)).

Note that, using Young’s inequality we obtain the following:

c(vf ,h − vs,h, vf ,h − ws,h) = c(vf ,h, vf ,h) − c(vf ,h,ws,h) − c(vs,h, vf ,h) + c(vs,h,ws,h)

≥ c(vf ,h, vf ,h) −
1
2

(
c(vf ,h, vf ,h) + c(ws,h,ws,h) + c(vf ,h, vf ,h) + c(vs,h, vs,h) + c(vs,h, vs,h) + c(ws,h,ws,h)

)
≥ −c(vs,h, vs,h) − c(ws,h,ws,h),

which combined with hypothesis (H4) shows that A is elliptic, and forms B1 and B2 satisfy the hypothesis of The-
orem 12 in virtue of Theorem 8. The conclusion comes then from Theorem 12 and the approximation properties
(APH,1), (APH,0), (APL). □

We are now ready to address the error estimate for the fully discrete model (23). To this purpose we use the
ecomposition of the numerical error into the approximation error, denoted with χ , and the remaining truncation error,
enoted with ϕ, as follows:

enf = vf (tn) − vn
f ,h = vf (tn) − If ,hvf (tn) + If ,hvf (tn) − vn

f ,h = χn
f + ϕn

f ,h,

enp = p(tn) − pnh = p(tn) − Ip,hp(tn) + Ip,hp(tn) − pnh = χn
p + ϕn

p,h,

ens = ys(tn) − yn
s,h = ys(tn) − If ,hys(tn) + If ,hys(tn) − yn

s,h = χn
s + ϕn

s,h,

env = vs(tn) − vn
s,h = vs(tn) − If ,hvs(tn) + If ,hvs(tn) − vn

s,h = χn
v + ϕn

v,h,

δ∆tξ
n

= D∆t Iξ,hξ (tn) −
∂ξ (tn)

, for ξ ∈ {vf , p, y , vs},

∂t s
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where all quantities are analogously defined as in the fluid case, with interpolators If ,h, Ip,h, Is,h, Iv,h defined as follows.
Set the Ritz projection ΠH

h : X → Xh as:

H(ΠH
h x, x∗

h) = H(x, x∗

h) ∀x∗

h ∈ Xh,

which is well defined in virtue of Theorem 5, then the interpolation operators are defined as

(If ,hvf (tn), Ip,hp(tn), Is,hys(tn), Iv,hvs(tn)) := ΠH
h (vf (tn), p(tn), ys(tn), vs(tn)).

With these definitions we have the following corollary of Theorem 5, for which we recall that X = H1
0(Ω) × L20(Ω) ×

H1
0(Ω) × H1

0(Ω) and Z = Hk+2(Ω) × Hk+1(Ω) × Hk+2(Ω) × Hk+2(Ω).

Corollary 3. If x ∈ W 2,∞(0, T ; X) ∩ L∞(0, T ; Z), then the following estimate holds for a problem dependent constant C:

∥D∆tΠ
H
h xn − ∂tx∥ℓ∞(0,T ;X) ≤ C max{∥∂ttx∥L∞(0,T ;X), ∥x∥L∞(0,T ;Z)}

(
hk+1

+∆t
)
.

Proof. This is a direct application of Corollary 2 to the Ritz projector ΠH
h . □

Then our strategy to perform the error analysis can be split into the following steps: (i) Derive equations for
the numerical error by subtracting the fully discrete model from the continuous model, (ii) split the error into the
approximation and truncation errors, (iii) use the orthogonality properties of the projector ΠH

h in order to eliminate
the approximation error from the equations and (iv) recover an upper bound for the total error by triangle inequality and
approximation properties. We proceed according to the described roadmap.
(i) Consider in (25) the test function x∗

= x∗

h and then take the difference with (26) to obtain the error equation. With
ex = (enf , e

n
p, ens , env) we obtain:

E(∂tx − D∆txnh, x
∗

h) + H(ex, x∗

h) = 0 ∀x∗

h ∈ Xh. (27)

(ii) In accordance with our definitions we consider χn
x = (χn

f , χ
n
p , χ

n
s , χ

n
v ) and ϕx,h = (ϕn

f ,h, ϕ
n
p,h, ϕ

n
s,h, ϕ

n
v,h). Note that the

time error can be written as

∂tx − D∆txnh = ∂tx − D∆tΠ
H
h x + D∆tΠ

H
h x − D∆txnh = D∆tϕx,h − δ∆tx,

and so we can rewrite the error Eq. (27) as

E(D∆tϕx,h, x∗

h) + H(χn
x , x

∗

h) + H(ϕx,h, x∗

h) = E(δ∆txn, x∗

h) ∀x∗

h ∈ Xh. (28)

(iii) By definition we have that H(χx, x∗

h) = 0, which gives an expression more suitable for the analysis:

E(D∆tϕx,h, x∗

h) + H(ϕx,h, x∗

h) = E(δ∆txn, x∗

h). (29)

From here we can obtain an error estimate for the truncation error, which we give in the following lemma.

Lemma 12. Assume that vf , ys, vs in W 2,∞(0, T ;Hk+2(Ω)) and p in W 2,∞(0, T ;Hk+1(Ω)) as well hypotheses (H1), (H2),
(H3) and (H4). Then, there exists a constant C > 0, possibly dependent on the problem parameters, such that:

∥ϕf ,h∥ℓ∞(L2(Ω)) + ∥ϕp,h∥ℓ∞(L2(Ω)) + ∥ϕv,h∥ℓ∞(L2(Ω)) + ∥ϕs,h∥ℓ∞(H1(Ω))

+∆t(∥ϕf ,h∥ℓ2(H1(Ω)) + cc∥ϕf ,h − ϕv,h∥ℓ2(L2(Ω))) ≤ CTeT max{∥∂ttx∥L∞(0,T ;X), ∥x∥L∞(0,T ;Z)}(hk+1
+∆t).

Proof. The test function x∗

h = ϕx,h in (29) yields

(D∆tϕ
n
f ,h, ϕ

n
f ,h)ρf φ + (D∆tϕ

n
p,h, ϕ

n
p,h)(1−φ)2/κs + (D∆tϕ

n
v,h, ϕ

n
v,h)ρs(1−φ) + as(D∆tϕ

n
s,h, ϕ

n
s,h)

+ af (ϕn
f ,h, ϕ

n
f ,h) + as(ϕn

s,h, ϕ
n
v,h) + c(ϕn

f ,h − ϕn
v,h, ϕ

n
f ,h − ϕn

v,h) − as(ϕn
v,h, ϕ

n
s,h)

≤ (δ∆tv
n
f ,h, ϕ

n
f ,h)ρf φ + (δ∆tpn, ϕn

p,h)(1−φ)2/κs + (δ∆tv
n
s,h, ϕ

n
v,h)ρs(1−φ) + (δ∆tyn

s,h, ϕ
n
s,h)ρs(1−φ).

(30)

We define

En
h = ∥ϕn

f ,h∥
2
ρf φ

+ ∥ϕn
p,h∥

2
(1−φ)n/κs + ∥ϕn

v,h∥
2
(1−φ)ρs + ∥ϕn

s,h∥
2
as ,

∥v∥2
af = af (v, v), ∥v∥2

as = as(v, v),

and proceed by using the positivity of c as c(x, x) ≥ αc∥x∥2
0,Ω , (24) and Corollary 3 to obtain that

D∆tEn
h + ∥ϕn

f ,h∥
2
af + αc∥ϕ

n
f ,h − ϕn

v,h∥
2
L2(Ω)

+∆t(∥D∆tϕ
n
f ,h∥

2
ρf φ

+ ∥D∆tϕ
n
p,h∥

2
(1−φ)2/κs

+ ∥D∆tϕ
n
v,h∥

2
ρs(1−φ) + ∥D∆tϕ

n
s,h∥

2
as )

≤ C max{∥∂ttx∥L∞(0,T ;X), ∥x∥L∞(0,T ;Z)}(hk+1
+∆t)(∥ϕn

f ,h∥
2
ρf φ

+ ∥ϕn
p,h∥(1−φ)n/κs + ∥ϕn

v,h∥(1−φ)ρs + ∥ϕn
s,h∥as )

≤
C2 max{∥∂ttx∥L∞(0,T ;X), ∥x∥L∞(0,T ;Z)}

2
(hk+1

+∆t)2 +
1
En (31)
2 2 h
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here C denotes a general constant depending on the data. Now, we bound all the norms with discrete time derivatives
on (31) by 0 from below and sum on n = 1, . . . ,m to get

Em
h +∆t

m∑
n=1

(∥ϕn
f ,h∥

2
af + cc∥ϕn

f ,h − ϕn
v,h∥

2
L2(Ω)) ≤

CT max{∥∂ttx∥L∞(0,T ;X), ∥x∥L∞(0,T ;Z)}
2

2
(hk+1

+∆t)2 +∆t
m∑

n=1

En
h ,

nd thus Lemma 9 (the discrete Gronwall Lemma), gives, for ∆t < 0.5:

1
2
Em
h +∆t

m∑
n=1

(∥ϕn
f ,h∥

2
af + cc∥ϕn

f ,h − ϕn
v,h∥

2
L2(Ω)) ≤

C max{∥∂ttx∥L∞(0,T ;X), ∥x∥L∞(0,T ;Z)}
2T

2
(hk+1

+∆t)2eT .

earranging terms and using norm equivalences as in Lemma 5 gives the desired result:

∥ϕf ,h∥ℓ∞(L2(Ω)) + ∥ϕp,h∥ℓ∞(L2(Ω)) + ∥ϕv,h∥ℓ∞(L2(Ω)) + ∥ϕs,h∥ℓ∞(H1(Ω))

+∆t(∥ϕf ,h∥ℓ2(H1(Ω)) + ∥ϕf ,h − ϕv,h∥ℓ2(L2(Ω))) ≤ CTeT max{∥∂ttx∥L∞(0,T ;X), ∥x∥L∞(0,T ;Z)}(hk+1
+∆t).

□

(iv) We conclude this section with the full error estimate.

heorem 6. Assume that x ∈ W 2,∞(0, T ; X)∩L∞(0, T ; Z) as well as hypotheses (H1), (H2), (H3) and (H4). Then, there exists
constant C(T ) > 0, possibly dependent on the problem parameters, such that:

∥ef ∥ℓ∞(L2(Ω)) + ∥ep∥ℓ∞(L2(Ω)) + ∥ev∥ℓ∞(L2(Ω)) + ∥es∥ℓ∞(H1(Ω))

+∆t(∥ef ∥ℓ2(H1(Ω)) + cc∥ef − ev∥ℓ2(L2(Ω))) ≤ C(T )max{∥∂ttx∥L∞(0,T ;X), ∥x∥L∞(0,T ;Z)}(hk+1
+∆t).

roof. By definition from Corollary 3 we get the error estimate of the projector ΠH
h , and thus setting again a generic

arameter dependent constant C we can write

∥χx∥L2 = ∥χf ∥L2(Ω) + ∥χp∥L2(Ω) + ∥χs∥L2(Ω) + ∥χv∥L2(Ω)

≤ ∥χf ∥H1(Ω) + ∥χp∥L2(Ω) + ∥χs∥H1(Ω) + ∥χv∥L2(Ω) ≤ C hk+1
∥x∥Z (32)

almost everywhere in t . The triangle inequality together with (32) give the conclusion as follows:

∥ef ∥ℓ∞(L2(Ω)) + ∥ep∥ℓ∞(L2(Ω)) + ∥ev∥ℓ∞(L2(Ω)) + ∥es∥ℓ∞(H1(Ω)) +∆t(∥ef ∥ℓ2(H1(Ω)) + ∥ef − ev∥ℓ2(L2(Ω)))
≤ ∥ϕf ,h∥ℓ∞(L2(Ω)) + ∥ϕp,h∥ℓ∞(L2(Ω)) + ∥ϕv,h∥ℓ∞(L2(Ω)) + ∥ϕs,h∥ℓ∞(H1(Ω))

+∆t(∥ϕf ,h∥ℓ2(H1(Ω)) + ∥ϕf ,h − ϕv,h∥ℓ2(L2(Ω)))
+C(∥χf ∥H1(Ω) + ∥χp∥L2(Ω) + ∥χs∥H1(Ω) + ∥χv∥L2(Ω))

≤ C(T )max{∥∂ttx∥L∞(0,T ;X), ∥x∥L∞(0,T ;Z)}(hk+1
+∆t) + Chk+1

∥x∥L∞(0,T ;Z)

≤ C(T )max{∥∂ttx∥L∞(0,T ;X), ∥x∥L∞(0,T ;Z)}(hk+1
+∆t). □ (33)

.1. Numerical tests

We now set up numerical tests for estimating the rates of convergence. For this, we consider the time domain I = (0, 1),
he spatial domain Ω = (0, 1)2 and the following idealized parameters:

ρf = 1, κ
−1
f = I, µf = 10, ρs = 1, µs = 10, λs = 10, κs = 1, φ = 0.1.

or simplicity, we assume that the forcing terms on the fluid and solid equations are different, respectively f f and f s, so
hat fixing a displacement, fluid velocity and pressure we recover a source θ and the load terms f f , f s. We thus set the
irichlet boundary conditions according to the following manufactured analytical solution:

ys(t, x, y) = t2(0.5x3 cos(4πy),−x3 sin(4πy)), vs(t, x, y) = 2 t(0.5x3 cos(4πy),−x3 sin(4πy)),

vf (t, x, y) = t2(sin2(4πy), sin2(4πy)), p(t, x, y) = t2 (1 − sin(4πx) sin(4πy)) ,

sing such solution, which satisfies all the regularity requirements of the convergence theorem, we perform numerical
ests in support of the theory using a polynomial order of k = 1. As a result, vf , ys and vs belong to [X2

h ]
2, whereas the

ressure belongs to X1
h . These tests are designed to test the convergence with respect to ∆t and h, independently. First,

hoosing a very small ∆t , we progressively decrease the mesh characteristic size such that the space approximation error
ominates over the one on time as shown in Table 1. Then, for a fixed small value of h, namely using a very refined mesh,

e test the convergence in time as shown in Table 2.
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Table 1
Errors and convergence rates for problem (23) with T = 1 and ∆t = 10−4; dofs stands for degrees of freedom.
dofs h ∥es∥ℓ∞(H1) rates ∥ev∥ℓ∞(H1) ratev ∥ef ∥ℓ∞(H1) ratef ∥ep∥ℓ∞(L2) ratep

1063 2.357e−01 6.742e−03 – 1.363e−01 – 6.614e−02 – 2.536e−03 –
2266 1.571e−01 3.089e−03 1.92 6.210e−02 1.94 3.296e−02 1.72 1.128e−03 2
4570 1.088e−01 1.500e−03 1.96 3.005e−02 1.97 1.662e−02 1.86 4.707e−04 2.38
10527 7.071e−02 6.428e−04 1.97 1.286e−02 1.97 7.231e−03 1.93 1.819e−04 2.21
23287 4.714e−02 2.965e−04 1.91 5.939e−03 1.91 3.262e−03 1.96 8.291e−05 1.94

Table 2
Errors convergence rates for problem (23) for a fixed structured mesh with 70 elements per side yielding 124 327 dofs.
∆t ∥es∥ℓ∞(H1) rates ∥ev∥ℓ∞(H1) ratev ∥ef ∥ℓ∞(H1) ratef ∥ep∥ℓ∞(L2) ratep

1.000e−03 3.614e−05 – 6.510e−03 – 2.363e−04 – 4.751e−05 –
5.000e−04 1.862e−05 0.957 3.376e−03 0.947 1.214e−04 0.961 2.427e−05 0.969
2.500e−04 9.468e−06 0.976 1.729e−03 0.965 6.171e−05 0.976 1.227e−05 0.984
1.250e−04 4.793e−06 0.982 8.822e−04 0.971 3.148e−05 0.971 6.172e−06 0.991

6. The inf–sup condition

Lemma 3 shows that the existence, uniqueness and stability of the discrete solution depend on the fulfillment of
condition kerBT

∩ ker C = {0}, where matrix C is related to the term(
(1 − φ)2

κs
∂tph, qh

)
and matrix B is related to

b((v∗

f ,ws), q) = −(q, div(φv∗

f ) + div((1 − φ)ws)).

As already mentioned in Remark 3.1, the coefficient κs is often very large. For this reason, the stability of the numerical
scheme hinges, in practice, around the term b((v∗

f ,ws), q). This implies that an inf–sup condition involving the discrete
spaces Vf ,h, Vs,h, Qp,h must be satisfied. The scope of this section is to analyze the inf–sup stability of the bilinear form b.
Such form corresponds to a weak divergence operator with weights that depend on the function φ, that is the porosity of
the material. The main question that we address here is what conditions must be satisfied by the discrete spaces Vf ,h, Vs,h,
given Qp,h, in different regimes of porosity, namely when φ is approaching the limit cases φ ≈ 1 and φ ≈ 0 respectively.
The practical relevance of this question is confirmed by Fig. 1, where we see that locking appears nearly in absence of
the solid or fluid phase (φ ≈ 1 and φ ≈ 0 respectively).

We divide the work in two parts, first operating at the continuous level we generalize the classical div-stability to
weighted Sobolev spaces (with an H1 weight function) and then use this intermediate result to conclude with the inf–sup
stability of the form b reported above. Second, we move at the discrete level where we prove the inf–sup condition for
the specific case of the generalized Taylor–Hood-type elements.

6.1. The weighted inf–sup condition

In this section, we study the weighted inf–sup condition for b(vf , q) = (q, div(ωvf )), which is a generalized form of
the classical inf–sup condition for the divergence operator. Also, from now on we will consider a general function ω such
that ω ≥ ω > 0 and both ω, 1/ω belong to W s,r (Ω) with s > d/r . The result at the continuous level requires first a
reliminary lemma regarding weighted Sobolev spaces.

emma 13. If ω and 1/ω belong to W s,r (Ω) with s > d/r, then the application v → ωv is a bijection in H1(Ω) and the
ollowing bounds hold:

1
Cbij∥ω−1∥W s,r (Ω)

∥v∥H1(Ω) ≤ ∥ωv∥H1(Ω) ≤ Cbij∥ω∥W s,r (Ω)∥v∥H1(Ω) (34)

for a positive constant Cbij.

Proof. A direct application of the Sobolev product Theorem [29, Theorem 1.4.4.2] gives that both ωv and ω−1v belong to
H1(Ω) and satisfy the inequalities

∥ωv∥H1(Ω) ≤ Cbij∥ω∥W s,r (Ω)∥v∥H1(Ω), ∥v∥H1(Ω) ≤ Cbij∥ω−1
∥W s,r (Ω)∥ωv∥H1(Ω),

for a positive constant Cbij, which states the result. □
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(

Fig. 1. Comparison of the pressure in a swelling test at T = 1.5. First row on a solid dominant regime (φ = 10−8), second row on a mixed regime
φ = 0.5) and third row on a fluid dominant regime (φ = 1 − 10−4). All tests are performed with P1 elements for the pressure. See Section 7.1 for
a detailed description of the test case.

Remark. The hypothesis ω, 1/ω in W s,r (Ω) implies that ω is strictly positive.

The weighted inf–sup condition at the continuous level is then a direct consequence of the isomorphism ωv → v in
H1(Ω).

Lemma 14. There exists a positive constant β which satisfies the following:

sup
v∈H1

0(Ω)
v̸=0

∫
Ω
q div(ωv)
∥v∥1,Ω

≥ β∥q∥0,Ω ∀q ∈ L20(Ω). (35)
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Proof. Using Lemma 13, we proceed as follows:

sup
v∈H1

0(Ω),
v ̸=0

−
∫
Ω
q div(ωv)

∥v∥H1(Ω)
= sup

v∈H1
0(Ω),
v ̸=0

−
∫
Ω
q div(v)

∥ω−1v∥H1(Ω)
≥

1
Cbij∥ω−1∥W s,r (Ω)

sup
v∈H1

0(Ω),
v̸=0

−
∫
Ω
q div(v)

∥v∥H1(Ω)
,

hich proves the statement. □

Now we address the discrete version of the inf–sup condition, recalling that it is not a consequence of the continuous
ne even though we are using conforming finite dimensional spaces. Let us define the following spaces:

V k = H1
0(Ω) ∩ [Xk

h ]
d, Qk = L20(Ω) ∩ Xk

h .

Our aim is to extend the proof in [30] and [31], see also [32] for an overview, for the 2D and 3D cases respectively
developed for ω = 1 by means of the macroelements technique, where a modified inf–sup condition at the element level
will be used together with Verfürth’s trick [33] and an inverse estimate to conclude the global statement. We highlight
that although we do not address the approximation of ω by means of finite elements, all the forecoming analysis holds
as long as its approximation is still in W s,r (Ω) and strictly positive.

We start with a brief review of the relevant results from the macroelements technique [34]. A macroelement M is
defined as a union of continuous elements on the mesh, and for each one of its elements there is an affine map which maps
it into an element of a reference macroelement. All macroelements which can be mapped into one particular reference
macroelement form an equivalence class. Let Mh be a macroelement partition of the mesh Th, which is assumed to be
shape regular [27, Chapter 3.1]. For M in Mh we denote

VM
k+1,0 = V k+1 ∩ H1

0(M), QM
k = {q|M : q ∈ Qk}, QM

k,⊥ =

{
q ∈ QM

k :

∫
M
q div(ωv) = 0 ∀v ∈ VM

k+1,0

}
.

We now focus on proving the following result.

Theorem 7. Let Mh be a macroelement partition of the (shape regular) mesh Th such that

(HM ) for each M in Mh, the space QM
k,⊥ is one dimensional given by constant functions.

hen, there exists a positive constant β = β(ω) such that:

sup
vh∈Vk+1

vh ̸=0

∫
Ω
qh div(ωvh)
∥vh∥1,Ω

≥ β∥qh∥0,Ω ∀qh ∈ Qk. (36)

Remark. We have simplified the original theorem by removing some hypotheses regarding the macroelements partition.
These hold under the standard assumption of shape regularity of the mesh, so we removed them for the sake of clarity
(see [34] for details).

In order to prove this theorem, we need the following lemmas. This first one allows us to extend an inf–sup condition
from the macroelement level to the global level.

Lemma 15. Let Ω = Ω1 ∪Ω2 and for i = 1, 2 set V k(Ωi) = {vh ∈ V k : vh = 0 in Ω \Ωi}. Suppose also that the following
conditions hold:

sup
vi∈Vk+1(Ωi)

vi ̸=0

∫
Ωi

div(ωvi)qh dx

∥vi∥H1(Ωi)
≥ βi∥qh∥L2(Ωi), ∀qh ∈ Qk, i ∈ {1, 2}.

Then, the following global condition also holds:

sup
vh∈Vk+1(Ω)

vh ̸=0

∫
Ω
div(ωvh)qh dx
∥vh∥1,Ω

≥ β∥qh∥0,Ω , ∀qh ∈ Qk,

where β = 1/
√
2min(β1, β2). If Ω1 ∩Ω2 = ∅, then β = min(β1, β2).

Proof. The proof relies only on the bilinearity of the form (div(ωvh), qh), thus it suffices to proceed verbatim as in
[30, Proposition 3.1]. □

We then show that at the macroelement level, the inf–sup condition is satisfied for the space of constants.
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emma 16. Let EM̂ be a class of equivalent macroelements and assume that for every M the space QM
k,⊥ satisfies (HM ) of

Theorem 7. Then there exists a positive constant βM̂ which depends only on the reference macroelement and the mesh regularity
such that the following inequality holds:

sup
vh∈VM

k+1,0
vh ̸=0

∫
M qh div(ωvh)

∥vh∥1,M
≥ βM̂∥qh∥0,M ∀qh ∈ QM

k ∩ L20(M).

roof. See [34, Lemma 3.1]. □

We finally show that if functions which are constant at the macroelement are removed from the pressure space, the
nf–sup condition holds. Defining Π0 : L2(Ω) → {q ∈ L2(Ω) : q|M is constant ∀M ∈ Mh} the orthogonal projector with
espect to the scalar product of L2(Ω) we get the following result.

emma 17. Under hypothesis (HM ) of Theorem 7, there exists a positive constant c such that

inf
qh∈Qk

sup
vh∈V k+1

b(qh, vh)
∥vh∥H1(Ω)

≥ c∥(I −Π0)qh∥L2(Ω). (37)

roof. This is a direct consequence of Lemma 16. See [34, Lemma 3.2]. □

Now we proceed with Verfürth’s trick [33]. We generalize it in the following lemma, which requires the definition of
he L2 projector Π0 : Qk → Q0,h, the last space given by the space of macroelement-wise constants:

Q0,h = {q ∈ L20(Ω) : q|M is constant ∀M ∈ Mh}.

emma 18. Assume that there exists a linear operator Πh : H1
0(Ω) → V k such that for every v in H1

0(Ω) there is a positive
onstant c which satisfies

∥v −Πhv∥H r (Ω) ≤ c
∑
K∈Th

(
h2(1−r)
K ∥v∥2

H1(K )

)1/2
, r ∈ {0, 1}. (38)

Then, there exist two positive constants c1, c2 such that for every qh in Qh the following holds:

sup
vh∈Vk+1
vh ̸=0

(div(ωvh), qh)
∥vh∥H1(Ω)

≥
c1

∥ω−1∥W s,r (Ω)
∥qh∥L2(Ω) − c2

∥ω∥W s,r (Ω)

∥ω−1∥W s,r (Ω)
∥(I −Π0)qh∥L2(Ω). (39)

roof. We use ∥Πhv∥ ≤ ∥v∥ + ∥v −Πhv∥ with (38) to bound the inf–sup condition from below:

sup
vh∈Vk+1

vh ̸=0

(div(ωvh), qh)
∥vh∥H1(Ω)

≥ sup
v∈H1

0(Ω)
Πhv̸=0

(div(ωΠhv), qh)
∥Πhv∥H1(Ω)

≥ sup
v∈H1

0(Ω)
Πhv̸=0

(div(ωΠhv), qh)
(1 + c)∥v∥H1(Ω)

.

Then, we define v such that div(ωv) = qh, ∥v∥H1(Ω) ≤ C∥ω−1
∥W s,r (Ω)∥qh∥L2(Ω) and proceed with integration by parts,

hypothesis (38) and Cauchy–Schwarz inequality:

sup
v∈H1

0(Ω)
Πhv̸=0

(div(ωΠhv), qh)
(1 + c)∥v∥1,Ω

≥
∥qh∥0,Ω

(1 + c)∥ω−1∥W s,r (Ω)
+

(div(ω[Πhv − v]), qh)
C∥ω−1∥W s,r (Ω)∥qh∥0,Ω

≥
∥qh∥0,Ω

(1 + c)∥ω−1∥W s,r (Ω)
−

(ω[Πhv − v],∇qh)
C∥ω−1∥W s,r (Ω)∥qh∥0,Ω

,

≥
∥qh∥0,Ω

(1 + c)∥ω−1∥W s,r (Ω)
−

c∥ω∥W s,r (Ω)∥v∥1,Ω
∑

K∈Th
hK∥∇qh∥0,K

C∥ω−1∥W s,r (Ω)∥qh∥0,Ω

≥
∥qh∥0,Ω

(1 + c)∥ω−1∥0,Ω
−

c∥ω∥W s,r (Ω)
∑

K∈Th
hK∥∇qh∥0,K

C∥ω−1∥W s,r (Ω)
.

e now use the inverse inequality [27, Proposition 6.3.2]:

hK∥∇wh∥0,K ≤ C∥wh∥0,K ∀wh ∈ Pk(K ),

hich, considering wh = qh −Π0qh and setting h = maxK hK gives the desired result. □

Then, we are ready to prove Theorem 7.
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Proof of macroelement condition (Theorem 7). We first note that hypothesis (38) holds by considering the interpolation
operator in V k+1, so we set Πh = ΠV k+1 . Then, consider the weak inf–sup from Lemmas 17 and 18. Adding (37) and (39)
we obtain

sup
vh∈Vk+1

vh ̸=0

b(vh, q)
∥vh∥1,Ω

≥ β∥qh∥0,Ω , with β ≥
c1C

C∥ω−1∥W s,r (Ω) + c2∥ω∥W s,r (Ω)
. □ (40)

We now extend [30, Theorem 4.1], by proving that the space QM
k,⊥ is one dimensional, as required by condition (HM )

of Theorem 7.

Theorem 8. Let {Th}h be a regular family of triangulations of Ω (as in [27, Section 3.1]), and assume that each one of them
contains at least three triangles if Ω ⊂ R2 or that every element has at least one inner vertex if Ω ⊂ R3. Then, for k ≥ 1 the
finite element space V k+1 × Qk satisfies condition (HM ) of Theorem 7.

Proof. We treat the two-dimensional and three-dimensional cases independently.

Ω ⊂ R2: In this case the proof is performed as in [30] with minor modifications. We first modify the weight for
the Legendre polynomials, which needs to incorporate ω, thus following the notation in the mentioned work we
rewrite [30, Equation (4.2)] as∫ 0

xA

f (x) dµa,x =

∫
a
ωλaABλ

a
AE f (x) dxdy ∀f : [xA, 0] → R.

The proof then follows verbatim as the original one, in which we require the strict positivity of ω in [30, Equation
(4.7)] to conclude.
Ω ⊂ R3: In this case we see again that the proof requires only the strict positivity of ω in [31, Equation (2.6)]. □

Remark. The 3D proof is simpler but not sharp. In fact, the condition of the inner vertex can be weakened, but a minimal
mesh has not been characterized yet as far as we know. The 2D case is instead more technical but it allows for the
characterization of a minimal mesh for inf–sup stability.

6.2. The inf–sup condition for the poromechanics problem

In this section we show that the discretization based on Taylor–Hood type finite elements is robust and stable. For
this, we write approximation spaces as

V k
f ,h = H1

0(Ω) ∩ [Xk
h ]

d, V k
s,h = H1

0(Ω) ∩ [Xk
h ]

d,

Q k
v,h = L2(Ω) ∩ [Xk

h ]
d, Q k

p,h = L20(Ω) ∩ Xk
h .

Theorem 9. Consider φ such that (H1) holds, then the bilinear form b : (V kf
f ,h × V ks

s,h × Q kv
v,h) × Q kp

p,h → R given by

b((vf ,h,ws,h, vs,h), qh) = (qh, div(φvf ,h) + div((1 − φ)ws,h))

satisfies the discrete inf–sup condition for a constant β = β(φ) given by

sup
(vf ,h,ys,h)∈V kf ×V ks

b((vf ,h, ys,h), qh)
∥(vf ,h, ys,h)∥V kf ×V ks

≥ β ∥qh∥0,Ω ∀qh ∈ Q p
kp , (41)

whenever the fluid velocity space or the displacement space are approximated with a degree higher than that of the pressure,
i.e max{kf , ks} > kp ≥ 1, for every kv ≥ 1. If both spaces present a higher degree of approximation, i.e min{kf , ks} > kp, then
he inf–sup condition is uniformly independent of φ.

roof. We consider three cases: div-stability in fluid/pressure, in displacement/pressure and in both fluid and displace-
ent.

• Case kf > kp = ks.
In this case we consider ys,h = vs,h = 0 and conclude from Theorem 7 with ω = φ and β = β(φ) as in (40). Note
that β → 0 as φ → 0, and remains otherwise constant.

• Case ks > kp = kf .
In this case we consider vf ,h = vs,h = 0 and conclude from Theorem 7 with ω = 1− φ and β = β(1− φ) as in (40).
Note that β → 0 as φ → 1, and remains otherwise constant.

• Case min{kf , ks} > kp.
In this case we consider a function zh in V

kf
f ,h∩V ks

s,h and impose vf ,h = ws,h = zh to arrive at the well-known divergence
form which is inf–sup stable, thus giving β ≥ C , with C independent of φ. □
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.3. Computation of the inf–sup constant

In this section we study the dependence of the inf–sup constant with respect to the porosity φ. The computation
of the inf–sup constant of the divergence operator is a difficult task that has been widely studied by the Spectral
Theory community. The point of departure is its connection with an eigenvalue problem, initially studied by E. and F.
Cosserat [35,36], known as the Cosserat eigenvalue problem. It has been studied for many simple geometries (see [37]
and references therein), but an efficient algorithm for computing the inf–sup was only recently developed [38]. We extend
this approach to our problem by recasting the computation of the inf–sup constant as a generalized eigenvalue problem
and performing numerical experiments. This eigenvalue problem depends on the isomorphism used to map H1

0(Ω) into
(H1

0(Ω))′, and as we show, using the isomorphisms induced by the problem better reflects instabilities seen in numerical
tests (for example, Fig. 1). We will make use of the following lemma.

Lemma 19. Let H be a Hilbert space. Then, the spaces (H × H)′ and H ′
× H ′ are isometric (we consider only norms of ℓ2

ype). More explicitly, if τ in (H × H)′ and ϕ,ψ in H ′ are such that τ = τ (ϕ,ψ), then

1
√
2
∥(ϕ,ψ)∥H ′×H ′ ≤ ∥τ∥(H×H)′ ≤ ∥(ϕ,ψ)∥H ′×H ′ .

Proof. Given ϕ,ψ in H ′, we consider the linear application τ : H ′
× H ′

→ (H × H)′ given by [τ (ϕ,ψ)](x, y) =

ϕ(x) + ψ(y) ∀x, y ∈ H . It suffices to show that τ is an isomorphism. First note that

|[τ (ϕ,ψ)](x, y)| ≤ ∥(ϕ,ψ)∥H ′×H ′∥(x, y)∥H×H ,

hus ∥τ (ϕ,ψ)∥(H×H)′ ≤ ∥(ϕ,ψ)∥H ′×H ′ . For the inverse inequality we proceed as follows:

∥τ (ϕ,ψ)∥(H×H)′ = sup
x,y∈H
x,y̸=0

|[τ (ϕ,ψ)](x, y)|
∥(x, y)∥H×H

≥

{
∥ϕ∥H ′ if x attains the norm of ϕ,
∥ψ∥H ′ if y attains the norm of ψ .

The last part gives ∥τ (ϕ,ψ)∥2
(H×H)′ ≥

1
√
2
∥(ϕ,ψ)∥2

H ′×H ′ , which concludes the proof. □

We now proceed to construct the eigenvalue problem, for which we consider the spaces H = H1
0(Ω) and Q = L20(Ω),

nd two bilinear forms ni : H ×H → R, i ∈ {1, 2} with induced operators Ni such that H i := (H, ni(·, ·)) is a Hilbert space
nd the norms induced by ni are equivalent to the norm in H1

0(Ω). These operators give the following characterization of
he dual norm.

emma 20. In the previous context, for any function ϕ in W s,r (Ω) the following equality holds:

∥ϕ∇q∥2
(H1(Ω))′

= −(q, divϕN−1
i ϕ∇q)0,Ω , i ∈ {1, 2}.

roof. We use the Riesz Representation Theorem [28, Theorem 4.11] with the explicit operators Ni, thus obtaining:

∥ϕ∇q∥2
(H1(Ω))′

= ∥N−1
i ϕ∇q∥2

(H,ni) = ni(N−1
i ϕ∇q,N−1

i ϕ∇q)

= ⟨ϕ ∇ q,N−1
i ϕ ∇ q⟩H−1×H1

0
= −(q, divϕN−1

i ϕ ∇ q)0,Ω . □

Now we are in position to find the eigenvalue problem associated to the inf–sup constant.

heorem 10. The problem of finding the inf–sup constant of the bilinear form (36) is equivalent to finding the smallest λ in
, v, y in H1

0(Ω) and p in L20(Ω) such that

−N1v + φ ∇ p = 0,

div(φv + (1 − φ)y) = λp,

−N2v + (1 − φ)∇ p = 0.

(42)

roof. We first define the operator T : Q → (H × H)′ given by

T [q](v, y) = ⟨φ ∇ q, v⟩H ′×H + ⟨(1 − φ)∇ q, y⟩H ′×H ,

hich thanks to Lemma 19 is defined with the norm

∥T [q]∥2
:= ∥(φ ∇ q, (1 − φ)∇ q)∥2

= ∥φ ∇ q∥2
+ ∥(1 − φ)∇ q∥2 .
H ′×H ′ H ′ H ′
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D

We then rewrite the inf–sup condition as follows by using Lemma 20:

β2
= inf

q∈Q
q̸=0

sup
v,y∈H
(v,y)̸=0

(
(div(φv + (1 − φ)y), q)

∥(v, y)∥H1×H2∥q∥Q

)2

= inf
q∈Q
q̸=0

sup
v,y∈H
(v,y)̸=0

(
−T [q](v, y)

∥(v, y)∥H1×H2∥q∥Q

)2

= inf
q∈Q
q̸=0

∥T [q]∥2

∥q∥2
Q

= inf
q∈Q
q̸=0

∥φ ∇ q∥2
H ′ + ∥(1 − φ)∇ q∥2

H ′

∥q∥2
Q

= inf
q∈Q
q̸=0

−(q, div(φN−1
1 φ ∇ q + (1 − φ)N−1

2 (1 − φ)∇ q))
∥q∥2

Q
.

efining the operator S(q) := div(φN−1
1 φ ∇ q + (1 − φ)N−1

2 (1 − φ)∇ q) and λ := β2 we prove our claim. □

We present some numerical tests to investigate the dependence of the inf–sup constant on the parameter φ in Fig. 2.
The experiments were performed with the SciPy library [39], which contains a wrapper for the implicitly restarted Arnoldi
method in ARPACK [40]. To avoid rescaling the pressure, on the unit square Ω = (0, 1)2 the experiments were performed
with v = 0 on x1 = 0 and y = 0 on x0 = 0. The dependence on φ was then tested for N1 = N2 = ∆−1 for an
extension of the results regarding the divergence operator, and then to better understand the results on Fig. 1 with
N1 = (2 divµf ε(·))−1 and N2 = (divCHookeε(·))−1, the diffusive operators associated to the fluid and solid momenta,
respectively, with two different sets of parameters. The numerical tests confirm that when the operators N1 and N2 are
the same and equal to the Laplace operator, the stability behavior of the problem with respect to the fluid phase and the
solid phase is symmetric. Instead, if the operators N1 and N2 are chosen as in the poromechanics problem, then we observe
that the stability properties are dominated by the fluid phase. This behavior becomes even more evident when realistic
parameters are used, in which case we observe that the stability properties of the chosen spaces V k+1

f ,h ×V k
s,h×Q k

v,h×Q k
p,h are

equivalent in practice to those of V k+1
f ,h ×V k+1

s,h ×Q k
v,h×Q k

p,h. Still, this scenario shows that considering both the fluid velocity
and the solid displacement belonging to a finite element space of higher order than the one for the pressure provides a
stable approximation. This can be seen in subfigure (f), where the minimum of the P2 − P2 curve (green, V 2

f ,h × V 2
s,h) is

more than an order of magnitude bigger than that of the fluid-stable regime (P2 − P1 blue curve, V 2
f ,h × V 1

s,h). Moreover,
we notice that the minimum of the P2 − P2 curve roughly equals the maximum of the solid-stable regime (P1 − P2 orange
curve, V 1

f ,h × V 2
s,h).

7. Numerical tests

In this section, we present some numerical tests related to problem (2). The first one is a classical benchmark known as
the swelling test. The second one shows a spatially dependent porosity which explores the inf–sup stability with respect
to the dominant phase (solid or fluid), and the last one is a preliminary result regarding the modeling of blood perfusion
in the human left ventricle with an idealized geometry.

7.1. Swelling test

This test studies the behavior of a 2D slab in absence of volume forces. The slab is subject to an external pressure
σf n = −pextn, pext(t) = 103(1 − exp(4t2)) on the left and null stress on the right. Above and below it uses a no-slip
boundary condition vf = vs, which we impose weakly with a constant γ = 2 105 (more details in [19]). The boundary
conditions for the solid are: sliding on the bottom and left sides, the external pressure also acts on the solid phase through
σsn = −pextn on the left and the rest of the boundary is of null traction type (see Fig. 3). The results are obtained with
the following parameters: ρf = ρs = 1000, µf = 0.035, λs = 711, µs = 4066, κs = 2 · 108, ∂Ω = 2 · 105, κ−1

f = 107I , all
in SI units with |Ω| = 10−4 discretized with 12 elements per side. The finite element spaces used are V 2

f ,h,Q
1
p,h, V

2
s,h,Q

1
v,h

for the fluid velocity, pressure, displacement and solid velocity respectively.

7.2. Inf–sup stability test

This test shows how the poromechanics problem can exhibit different stability behaviors in the same domain. We use
a setting similar to the swelling test, the differences being (i) in the fluid, in which we impose a quadratic flow with a peak
value of 0.01 on the left instead of a Neumann condition; (ii) in the parameters: λ = µ = 0.035, κ−1

f = 104I; and (iii) in
the porosity function, given by φ ≈ I{y≤0.5} (not exactly as it must be strictly contained in [0, 1]). In Fig. 4 we show the
pressure field, which is unstable only when the corresponding phase is not discretized appropriately. In Fig. 4(a) fluid and
displacement are discretized with P1 elements (same as pressure), thus both regions show unstable behavior. In Fig. 4(b),
only the fluid is unstable and thus we see instabilities where the fluid is dominant (below). Fig. 4(c) is the opposite of
4(b), and as expected when both physics are approximated with P elements we see stable pressure (Fig. 4(d)).
2
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Fig. 2. Inf–sup constant β with respect to the porosity. Images (a), (b), (c) and (d) have all parameters set to 1, instead (e) and (f) use a realistic
parameters. The code Pa − Pb on the plots stands for a fluid–solid-pressure discretization with elements Pa − Pb − P1 .

8. Conclusions

In this work we presented a complete mathematical and numerical analysis of the linearized poromechanics problem
first addressed in [20]. For the well-posedness analysis we have combined the theory of Differential Algebraic Equations
with the Faedo–Galerkin technique. We remark that the analysis presented here features a relaxation of the constant
porosity condition used in [20].
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Fig. 3. (a) Boundary conditions for the swelling test, (b) results at time t = 1.

Fig. 4. Pressure of inf–sup test for all combinations of fluid/displacement finite element spaces.

We have discretized the problem with the backward Euler scheme in time and Taylor–Hood-type finite elements in
space which require fluid velocity, displacement and pressure to be approximated by Pk+1 − Pk+1 − Pk, thus leaving
solid velocity unconstrained. The pressure and the velocities of the fluid and solid phases are coupled by a quasi-
incompressibility constraint that has been thoroughly analyzed, shedding light on properties of the model that were not
completely understood yet. In particular, we show that equal order approximation of the previous variables is not stable.
Only the k+1/k-th order approximation of velocities and pressure is always stable in practice. Interestingly, our analysis
shows that, depending on the porosity, the approximation of the fluid or solid velocities can be selectively degraded to
the polynomial order used for the pressure. These findings are confirmed by the numerical tests which complement the
ones previously performed in [20] with this model.

Appendix A. Saddle point problems

In this appendix we present some well-known results regarding saddle point problems which we use throughout the
analysis. The first one is a discrete invertibility result, for reference see [41].

Theorem 11. Let A,B, C be matrices such that A is positive definite, C is positive semidefinite and ker C ∩ kerBT
= {0}.

Then, the matrix M defined as

M =

[
A BT

B −C

]
is invertible.

The next one is a generalization of the Ladyzhenskaya–Babuška–Brezzi condition, which we adapt from [42].
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heorem 12. Consider bilinear continuous forms A : V × V → R,B1 : V × Q → R and B2 : V × Q → R for Hilbert spaces
,Q . Under the following hypotheses:

sup
v∈V

A(v, v∗)
∥v∥V

≥ α∥v∗
∥V ∀v ∈ V , sup

v∈V
A(v, v∗) > 0 ∀v∗

∈ V ,

sup
v∈V

B1(v, q)
∥v∥V

≥ β1∥q∥Q ∀q ∈ Q , sup
v∈V

B2(v, q)
∥v∥V

≥ β2∥q∥Q forallq ∈ Q ,

the following problem has a unique solution: Find (u, p) in V × Q such that

A(u, v) + B1(v, p) = F(v) ∀v ∈ V ,
B2(u, q) = G(q) ∀q ∈ Q .

(A.1)

Assuming that (uh, ph) is the solution to a conforming Galerkin scheme in spaces Vh × Qh, then the following convergence
estimate holds for constants C1, C2, C3, C4 depending on the ellipticity constant of A, the inf–sup constants of B1,B2 and the
continuity constants of all bilinear forms:

∥u − uh∥V ≤ C1 inf
vh∈Vh

∥u − vh∥V + C2 inf
qh∈Qh

∥p − qh∥Q ,

∥p − ph∥Q ≤ C3 inf
vh∈Vh

∥u − vh∥V + C4 inf
qh∈Qh

∥p − qh∥Q .

ppendix B. Limit of bilinear forms

In this appendix we present the limits of all bilinear forms used for the Faedo–Galerkin technique. Consider the test
unctions ϕ in C∞

c (0, T ) (compactly supported functions in (0, T )), v∗

f ,h in Vf ,h, qh in Qp,h, ws,h in Vs,h and v∗

s,h in Qv,h. With
them, we use the weak convergence results from Theorem 3 and extract convergent subsequences as in (20) to proceed
as follows:

(i) Limit of the fluid equation terms:∫ T

0
(φ∂tvf ,h, ϕ(t)v∗

f ,h) dt →

∫ T

0
(φ∂tvf (t), ϕ(t)v∗

f ,h) dt as ∂tvf ,h converges in L2(0, T ; (H1
0(Ω))′),∫ T

0
(σvis(vf ,h(t)), ϕ(t)ε(v

∗

f ,h)) dt →

∫ T

0
(σvis(vf (t)), ϕ(t)ε(v

∗

f ,h)) dt as vf ,h converges in L2(0, T ;H1
0(Ω)),∫ T

0
(φ2

[κ
−1
f − θ I]vf ,h(t), ϕ(t)v∗

f ,h) dt →

∫ T

0
(φ2

[κ
−1
f − θ I]vf (t), ϕ(t)v∗

f ,h) dt as vf ,h converges in L2(0, T ; L2(Ω)),∫ T

0
(φ2κ

−1
f vs,h(t), ϕ(t)v∗

f ,h) →

∫ T

0
(φ2κ

−1
f vs(t), ϕ(t)v∗

f ,h) dt as vs,h converges in L2(0, T ; L2(Ω)),

(ii) Limit of the mass conservation terms, understood in integral form (1−φ)2
κs

p(t) =
(1−φ)2
κs

ΠQp,hp(0) + ρ−1
f θ −∫ t

0 div(φvf (s)) ds + div((1 − φ)[ys(t) −ΠVs,hys(0)]):∫ T

0

(
(1 − φ)2

κs
ph, ϕ(t)qh

)
dt →

∫ T

0

(
(1 − φ)2

κs
p, ϕ(t)qh

)
dt as ph converges in L2(0, T ; L2(Ω)),∫ T

0

∫ t

0
(div(φvf ,h(s)), ϕ(t)qh) ds dt →

∫ T

0

∫ t

0
(div(φvf (s)), ϕ(t)qh) ds dt as vf ,h converges in L2(0, T ;H1

0(Ω)),∫ T

0
(div((1 − φ)ys,h(t)), ϕ(t)qh) dt →

∫ T

0
(div((1 − φ)ys(t)), ϕ(t)qh) dt as ys,h converges in L2(0, T ;H1

0(Ω)),

here for the second term there is an extra intermediate step. We define the functional

Fqh(t)(vf ,h) =

∫ t

0
(div(φvf ,h(s)), qh(t)) ds,

hich is bounded by using hypothesis (H1) and Cauchy–Schwartz:

Fqh(t)(vf ,h) ≤ Cφ

∫ T

0
∥vf ,h∥H1(Ω)∥qh(t)∥L2(Ω) ds

≤ Cφ∥vf ,h∥L2(0,T ;H1(Ω))∥qh(t)∥L2(0,T ;L2(Ω)).

he result is an application of weak convergence to the functional F .
qh(t)
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d

R

(iii) Limit of the solid equation terms:∫ T

0
((1 − φ)∂tvs,h(t), ϕ(t)ws,h) dt →

∫ T

0
((1 − φ)∂tvs(t), ϕ(t)ws,h) dt as ∂tvs,h converges in L2(0, T ; (H1

0(Ω))′),∫ T

0
(CHookeε(ys,h(t)), ϕ(t)ws,h) dt →

∫ T

0
(CHookeε(ys(t)), ϕ(t)ws,h) dt as ys,h converges in L2(0, T ;H1

0(Ω)),∫ T

0
(φ2κ

−1
f vs,h(t), ϕ(t)ws,h) →

∫ T

0
(φ2κ

−1
f vs(t), ϕ(t)ws,h) dt as vs,h converges in L2(0, T ; L2(Ω)),∫ T

0
(φ2κ

−1
f vf ,h(t), ϕ(t)ws,h) →

∫ T

0
(φ2κ

−1
f vf (t), ϕ(t)ws,h) dt as vf ,h converges in L2(0, T ;H1

0(Ω)).

(iv) Limit of the solid velocity terms:∫ T

0
((1 − φ)∂tys,h(t), ϕ(t)vs,h) dt →

∫ T

0
((1 − φ)∂tys(t), ϕ(t)vs,h) dt as ∂tys,h converges in L2(0, T ; L2(Ω)),∫ T

0
((1 − φ)vs,h(t), ϕ(t)vs,h) dt →

∫ T

0
((1 − φ)vs(t), ϕ(t)vs,h) dt as vs,h converges in L2(0, T ; L2(Ω)).

Finally, all time integrals in (0, T ) can be removed due to the fact that ϕ belongs to C∞
c (0, T ) and that C∞

c (0, T )⊗ X is
ense in L2(0, T ; X) [27].
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