
SeTHet - Sending Tuned numbers over DMA onto Heterogeneous clusters: an
automated precision tuning story

Citation

Gabriele Magnani, Daniele Cattaneo, Lev Denisov, Giuseppe Tagliavini, Giovanni Agosta, and Stefano
Cherubin. 2024. SeTHet - Sending Tuned numbers over DMA onto Heterogeneous clusters: an
automated precision tuning story. In Proceedings of the 21st ACM International Conference on
Computing Frontiers (CF '24). Association for Computing Machinery, New York, NY, USA, 258–266.
https://doi.org/10.1145/3649153.3649203

Year

2024

Version

Authors’ camera-ready version

Link to publication

https://dl.acm.org/doi/10.1145/3649153.3649203

Published in

Proceedings of the 21st ACM International Conference on Computing Frontiers (CF '24)

DOI

https://doi.org/10.1145/3649153.3649203

License

CC BY 4.0

Take down policy

If you believe that this document breaches copyright, please contact the authors, and we will investigate
your claim.

BibTex entry

@inproceedings{10.1145/3649153.3649203, author = {Magnani, Gabriele and Cattaneo, Daniele and
Denisov, Lev and Tagliavini, Giuseppe and Agosta, Giovanni and Cherubin, Stefano}, title = {SeTHet
- Sending Tuned numbers over DMA onto Heterogeneous clusters: an automated precision tuning
story}, year = {2024}, isbn = {9798400705977}, publisher = {Association for Computing Machinery},
address = {New York, NY, USA}, url = {https://doi.org/10.1145/3649153.3649203}, doi =
{10.1145/3649153.3649203}, booktitle = {Proceedings of the 21st ACM International Conference on
Computing Frontiers}, pages = {258–266}, numpages = {9}, keywords = {RISC-V, approximate
computing, computer architecture, precision tuning}, location = {Ischia, Italy}, series = {CF '24}}

https://dl.acm.org/doi/10.1145/3649153.3649203
https://doi.org/10.1145/3649153.3649203

SETHET – Sending Tuned numbers
over DMA onto Heterogeneous clusters:

an automated precision tuning story
Gabriele Magnani

gabriele.magnani@polimi.it
Politecnico di Milano

Milan, Italy

Daniele Cattaneo
daniele.cattaneo@polimi.it

Politecnico di Milano
Milan, Italy

Lev Denisov
lev.denisov@polimi.it
Politecnico di Milano

Milan, Italy

Giuseppe Tagliavini
giuseppe.tagliavini@unibo.it

University of Bologna
Bologna, Italy

Giovanni Agosta
giovanni.agosta@polimi.it

Politecnico di Milano
Milan, Italy

Stefano Cherubin
stefano.cherubin@ntnu.no

NTNU
Trondheim, Norway

ABSTRACT
Energy and performance optimization of embedded hardware and
software is of critical importance to achieve the overall system goals.
In this work, we study the optimization of memory access through
a combination of hardware (Direct Memory Access, DMA) and
software (Precision Tuning) techniques, and we propose a compiler
toolchain for managing both in the context of heterogeneous RISC-V-
based platforms. Our proposed toolchain, SETHET, enables 3−48×
speedup over the baseline system when employing both DMA and
precision tuning, regardless of the availability of floating point units
in hardware. SETHET also achieves up to 16× speedup compared to
DMA alone, thus proving that the combination of the two techniques
provides a major improvement over either technique employed in
isolation.

CCS CONCEPTS
• Software and its engineering → Compilers; Software perfor-
mance; • Computer systems organization → Heterogeneous (hy-
brid) systems.

KEYWORDS
computer architecture, RISC-V, approximate computing, precision
tuning

1 INTRODUCTION
The increasing compute power requirements of modern applications,
coupled with the end of traditional technology scaling, i.e., Moore’s
Law and Dennard scaling, are pushing both high-performance and
embedded systems towards higher degrees of heterogeneity [20].
Parallel heterogeneous systems have challenges of their own. In par-
ticular, as the number of processing elements increases in a shared
memory system, the contention for memory access can lead to severe
performance bottlenecks. When shared memory becomes unsustain-
able, an efficient data movement mechanism between different mem-
ory partitions becomes a critical factor in obtaining performance.

It is widely acknowledged that in the last decades the performance
of memory systems did not scale as much as in computing systems,
and memory systems became bottlenecks in more and more applica-
tion domains [25]. To overcome this problem, countless approaches

have been proposed. In this paper, we address the interaction be-
tween two of these approaches: bypassing the control unit for some
data movements via Direct Memory Access (DMA) and changing
the binary representation of real numbers via Precision Tuning. The
first one aims at reducing the control flow overhead for data move-
ment, while the second one aims at optimising data size to decrease
data processing and data movement costs.

A DMA engine that manages autonomous data transfers without
involving the CPU is fundamental in heterogeneous architectures,
where memories are physically distributed into partitioned areas [30].
Moreover, using software-managed memories instead of data caches
as last-level memories is a common design technique for embedded
heterogeneous systems to improve energy efficiency and prevent the
scalability limitations of coherency protocols. DMA engines enable
high-bandwidth data transfers and reduce access latency (i.e., CPU
cores simultaneously operate on local data).

Precision tuning is the process of maximising the efficiency of
the computation while ensuring the quality of the output does not
degrade below an application-dependent acceptance threshold. It is
one of the main branches of Approximate Computing [31], and it
mitigates the cost of data movement by reducing the number of bytes
to be moved. However, this trade-off requires the coordination of
precision tuning across different heterogeneous subsystems, which
is non-trivial and mostly unexplored in literature.

In this work, we show how DMA orchestration and Precision
Tuning can synergize to achieve consistent speedups across various
micro-architectural solutions – i.e., when dealing with platforms
that have (or lack) single or double precision floating-point arith-
metic hardware support. While still beneficial on their own, the two
techniques achieve less consistent results when used in isolation, re-
quiring the designer to be more careful and reducing the performance
portability.

To achieve this result, we introduce as a main contribution the
design of SETHET, a compiler toolchain for orchestrating both
DMA and precision tuning at the host and at the accelerator side
in heterogeneous parallel applications, thus bridging a gap in the
state-of-the-art. We assessed our findings on a RISC-V-based open
hardware platform, HERO [21], achieving 3.5-48.4× speedup over
the baseline HERO system when employing both DMA and precision

https://orcid.org/0000-0001-9729-5826
https://orcid.org/0000-0003-1453-3257
https://orcid.org/0000-0003-3540-4235
https://orcid.org/0000-0002-9221-4633
https://orcid.org/0000-0002-0255-4475
https://orcid.org/0000-0002-5579-5942

G. Magnani et al.

tuning, regardless of availability of hardware floating point units,
against a range of 1.2-42.7× achieved with DMA alone.

The rest of this paper is organized as follows. Section 2 ana-
lyzes the state-of-the-art and highlights the current gap. Section 3
describes the background of our work. Section 4 introduces our solu-
tion. Section 5 describes the experimental campaign and its results.
Finally, in Section 6, we draw some conclusions and highlight future
research directions.

2 RELATED WORK
Notable related works oriented to memory systems include the ex-
ploration of different floating point data types for storage efficiency
in GPU accelerators. In particular, [2] proposes a solution leading
towards an improved memory layout at the cost of a slowdown in
memory access, which is expected in the case of software-defined
data extraction. In our work, we share the same approach by includ-
ing the conversion within the compiler, yet we extend this approach
to heterogeneous clusters where the architecture supports the re-
duced precision data type, and no slowdown is expected.

A higher-level approach to precision tuning on GPU code has
been proposed before in the form of replacing the keywords repre-
senting data types in the accelerator code [15, 19, 22, 27]. These
approaches, however, are limited by the toolchain support of such
data types. Another limitation relates to the coherence between the
host and kernel code, as they only operate on the accelerator side
of the application. Other approximate computing techniques have
been applied in HPC and embedded systems environments, yet their
study has always been limited to the individual contribution pro-
vided by a single technique. In contrast, combining them with other
memory-saving approaches such as DMA has not been implemented
before [26, 28]. It is important to highlight that the DMA engine is a
key component available in all modern heterogeneous architectures.
In particular, it is widely used in systems that comprise memory
hierarchies requiring explicit transfer management [32]. These sys-
tems expose a low-level software interface that SETHET can use to
perform DMA transfers.

Precision tuning techniques have been extensively applied to high-
performance scientific computation at the source code level [9, 11,
19], and at the compiler level [8, 16, 23], and to embedded and low-
power systems workloads [6]. Most of these works aim to minimise
the number of bits used in each software-defined variable without
going forward to investigate the actual impact on memory access
performances. A more in-depth analysis of recent works in precision
tuning can be found in [7]. Our work aims to optimize memory
management to be as close as possible to the hardware.

We take inspiration from compiler-level and embedded systems
frameworks, the most relevant of which is the TAFFO framework [4,
5]. In particular, TAFFO is a precision tuning tool that manipulates
the intermediate representation provided by the LLVM compiler
framework (LLVM-IR). Conveniently, it is designed as a sequence
of modular compiler plug-ins that only loosely depend on the sur-
rounding compiler optimisations. In this framework, the programmer
annotates the source code with hints about the input values, and the
compiler passes propagate them accordingly. This structure enables
us to adapt this framework for different and diverse LLVM-based
compilation toolchains. An additional advantage of TAFFO is its

preexisting partial support for parallel and distributed computing via
OpenMP acceleration [24]. However, this support is currently lim-
ited to homogeneous platforms and requires non-trivial extensions
to handle heterogeneous accelerators. We designed such extensions,
and Section 4 describes them.

3 RISC-V HETEROGENEOUS PLATFORM
Heterogeneous computing systems employ multiple classes of pro-
cessing elements, each with different architectures, capabilities, and
purposes. Combining general-purpose processors and parallel accel-
erators is a well-established heterogeneous system design. In this
context, RISC-V [18] is an open standard instruction set architec-
ture (ISA) that offers several advantages to designing heterogeneous
systems. These advantages include ISA modularity, customization
capabilities by design, community support, reduced licensing costs,
and its role in fostering innovation and research thanks to its open-
standard nature.

The heterogeneous computing system that we target in this work
is HERO [21], a platform combining a 64-bit host processor (ARMv8
or RISC-V) executing a Linux environment with a bare-metal pro-
grammable many-core accelerator that includes multiple clusters of
32-bit RISC-V cores. Each cluster can include a configurable num-
ber (from 4 to 16) of OpenHW CV32E40P [14] cores, supporting
the RV32IMA instruction set architecture (ISA) and the XpulpV2
ISA extension [12].

The HERO memory hierarchy is partitioned between the host and
accelerator, with a memory management unit (MMU) guaranteeing
memory coherency. The accelerator side consists of a 128 KiB level-
1 (L1) scratchpad memory (SPM) for data (one per cluster), a 4 KiB
L1 instruction cache (one per cluster), and a 512 KiB shared level-2
(L2) SPM. The main memory is the last hierarchy level (L3) and
is shared between the host and the accelerator. Each cluster has a
dedicated DMA engine to move data between the L1 and the L2/L3
levels, supporting multiple concurrent operations with a bandwidth
of up to 1024 bits per clock cycle.

The HERO software stack includes an OpenMP 4.5 runtime [3]
and an LLVM 12 heterogeneous compiler toolchain. To offload code
to the accelerator, programmers annotate a block with a #pragma
omp target directive, defining an accelerator kernel that the
compilation flow compiles for both targets (64-bit host and 32-bit
accelerator). The Clang RV32 frontend has been extended to assign
different address spaces based on OpenMP target annotations,
using the standard addrspace attribute. Pointers passed to an
accelerator kernel are 64-bit wide and are associated with the host
address space. All the other pointers referenced by the accelerator
kernel are associated with the 32-bit native address space. After
completing the compiler stages and executing the assembler for both
flows, the Clang driver embeds the accelerator ELF files inside the
host one, creating a so-called fat binary.

4 THE SETHET SOLUTION
Our solution derives from the combination of distinctive software
elements, adapted and tailored for the specific needs and challenges
typically present in clusters of heterogeneous computing architec-
tures. Figure 1 depicts a block diagram of the software components

SETHET – Sending Tuned numbers over DMA. . .

Single
Source
Heterog.

Application

HERO
Frontend

SeTHet
Transformation

Pass

Device Compilation Units

Host Compilation Units TAFFO

SeTHet
DMA Handling

Pass

SeTHet
Anti-Transformation

Pass

HERO
Backend

FAT
Binary

Device Compilation Units

Host Compilation Units

Figure 1: Block diagram of the SETHET toolchain. The compilation process follows two pipelines for each single-source heterogeneous
application, one for the host (top) and one for the accelerator device (bottom). The green elements represent the observed input and
output of the toolchain. The purple elements represent HERO components, the azure elements represent SETHET components, while
the yellow element represents the precision tuning steps

our pipeline consists of. In this section, we first present these compo-
nents, the reason why we selected them, and their role in the bigger
picture of SETHET.

4.1 Revisiting the Precision Tuning Workflow
The TAFFO framework already comes with partial support for OpenMP,
including the parallel, for, section, and critical constructs [24]. How-
ever, this subset is insufficient for addressing heterogeneous devices
since it lacks support for cross-device task mapping and related
memory management. SETHET introduces the support for code
offloading using the target construct, with proper handling of
the device selection (device clause) and the mapping between the
device and target region (map clause).1

The map clause specifies which data should be copied to the
target device before executing the offloading task and whether data
must be copied back to the host after execution. Under the hood,
the compiler extracts the target region, wraps it into a function, and
moves its definition in the heterogeneous module; in the host code,
the compiler replaces the extracted code region with a function call
to the OpenMP runtime library __tgt_target_mapper. This
runtime function requires the identifier of the device on which the
code will run, a pointer to the function to offload, and a data structure
containing the offloaded arguments. For the sake of generality, the
compiler packs the arguments into an array of void pointers, and it
generates – in the newly extracted function – a prologue fragment to
restore the original types.

The code extraction and encapsulation pattern described above
creates artificial boundaries in the data-flow and effectively requires
the precision tuning framework to expand the scope of its analyses.
To seamlessly integrate inter-procedural precision tuning analyses
into the compilation pipeline, non-trivial extensions are required.
However, these extensions are constrained by the scope of the trans-
lation unit they are contained in, while the OpenMP compiler effec-
tively generates a distinct translation unit for each device that has
code mapped onto it.

To tackle the challenges of this flow, we introduce a new approach
to the precision tuning problem, which is OpenMP-aware.

As an intentional design choice, SETHET wraps the core logic
of an inter-procedural precision tuning framework – TAFFO– and
avoids ad hoc specialization of each precision tuning step. More

1Throughout this article, we assume explicit device mapping via map clauses. How-
ever, SETHET also supports the selection of a default device via the standard
omp_set_default_device. This difference has no impact on the methodology of
our proposed solution.

specifically, SETHET introduces a Transformation pass in which
the intermediate representation the HERO toolchain is based on is
translated into a single LLVM-IR module, and a Anti-Transformation
pass – run after the precision tuning stage – that is in charge of
restoring the precision-tuned fragments in the toolchain flow. These
two additional steps mark the entry and exit point of the precision
tuning component in Figure 1. Furthermore, we extended the com-
piler support for precision tuning to preserve data layout and address
space information in typed-pointer LLVM-IR values.

4.2 Transformation
The Transformation pass is a pre-processing stage aimed at reshaping
the code and its metadata related to precision tuning such that the
later stages of SETHET could access information encapsulated by
OpenMP offloading patterns. More specifically, the design of this
pass aims to solve three problems: (a) exchange of precision-tuning
analyses results between two different LLVM modules based on
different architectures; (b) OpenMP type-punning due to storing all
arguments inside a void* array; and (c) handling of an indirect call
with arguments encapsulated within an array.

The problem (a) can be solved by searching for each function
call to __tgt_target_mapper within the host module. We rely
on the host function pointer parameter of this call to locate the
external function definitions within the accelerator module, and then
clone them back into the host module. Right before performing this
cloning stage, we analyse each function and schedule for cloning
any function and global values they might depend on. To avoid name
collision with existing elements of the host module, appropriate
unique prefixes are added to the identifiers of the cloned functions
and global values.

The problem (b) is solved by analyzing each argument stored in
the array of void pointer and their Def-Use chains for each heteroge-
neous region. Thanks to LLVM-IR being a strongly-typed language,
it is often possible to infer the data type of a value from its previous
uses or definitions. However, it is not always possible to infer the
original type solely from the caller’s side since the argument can
be a void-typed allocation generated through a call to malloc. In
such a case, the data-flow inference is expanded to cover the callee
and its prologue inserted by the compiler to ensure all parameters
have an associated data type for precision tuning purposes.

Figure 2 reports the code generated by Listing 1. The red arrows
starting from the arguments of __tgt_target_mapper and of
the offloaded function display the Def-Use chain traversed by SE-
THET to infer the information on data types. In this example, the

G. Magnani et al.

1 int count(int size) {

2 void* value = malloc(sizeof(float) * size);

3 #pragma omp target map(tofrom : value)

4 {

5 for (int i = 0; i < size; i++) {

6 ((float*)value)[i] = (float)i;

7 }

8 }

9 return 0;

10 }

Listing 1: Simple C code used as reference for demonstrate how
type punning resolution works in Figure 2.

analysis on the caller side identifies the first element of the array
as i8**, while the analysis on the callee side determines a float
addrspace(1)**. Any conflict between the results of the caller
and callee analyses on the same argument is resolved according to
the strict type aliasing rules of C/C++.

Finally, problem (c) is handled by temporarily removing the in-
direction and replacing it with a direct call to the cloned version
of the function. This change is applied after each corresponding
__tgt_target_mapper, and its arguments are derived via the
type-punning analysis from step (b). The direct function call pattern
is transparently recognised by TAFFO and allows for inter-procedural
precision tuning analyses and optimisations. To comply with the con-
straints of our reference OpenMP implementation, the indirect call is
restored right after the precision tuning process – see Subsection 4.4
for details.

define i32 @count(i32 %0) { Caller
%2 = alloca i8*
%3 = alloca i8*
%4 = alloca i8*
%7 = call i8* @malloc(i64 %6)
store i8* %7, i8** %2
%12 = getelementptr inbounds i8*, i8** %3, i64 0, i64 0
%13 = bitcast i8** %12 to i8***
store i8** %2, i8*** %13
%14 = getelementptr inbounds i8*, i8** %4, i64 0, i64 0
%15 = bitcast i8** %14 to i8***
store i8** %2, i8*** %15
%16 = call i32 @__tgt_target_mapper(..., i8** %3, i8** %4, ...)

 define void @__omp_offloading(i8 addrspace(1)** %1) { Callee
 %4 = bitcast i8 addrspace(1)** %1 to float addrspace(1)**

Figure 2: LLVM-IR generated by Listing 1, simplified to show
only the relevant part to illustrate the type-punning resolution.
The red arrows display the Def-Use chain traversed by SETHET
to restore the information on types.

4.3 DMA-Aware Precision Tuning
To enable the precision tuning across HERO’s memory transfer func-
tions, the precision tuning component requires special handling of
the DMA APIs. DMA memory transfer within HERO is performed
using compiler intrinsics that have the same syntax and arguments
as the memcpy in C/C++. These intrinsics come in two flavours:
synchronous and asynchronous. Both versions enable the user to
transfer memory from a source pointer within the host or device to
a destination within the device or host. The asynchronous variant
facilitates double buffering algorithms that allow overlapping the

define void @offloading(i32 addrspace(1)* %.s5_27fixp) !taffo.funinfo !34

%0 = call i8* @hero_l1malloc(i32 16384)

%s5_27fixp = bitcast i8* %0 to i32*, !taffo.info !46

%3 = bitcast i32 addrspace(1)* %.s5_27fixp to i8 addrspace(1)*

call void @hero_memcpy_host2dev(i8* %0, i8 addrspace(1)* %3, ...)

Figure 3: LLVM-IR analysed when DMA resolutions happen.
The red arrows display the Def-Use chain traversed by SETHET
to restore the information on types. The ranges are propagated
from the orange arguments .s5_27fixp to the purple local vari-
able s5_27fixp through the DMA memory transfer functions
hero_memcpy_host2dev.

computation of an iterative code region with the memory transfer
needed for the next iteration.

In TAFFO, a Value Range Analysis (VRA) pass is responsible for
computing and propagating the information from the programmer’s
annotation on the variable through all intermediate values. When the
VRA encounters a call to a function that is not defined within the
module under analysis, it uses a catalog of well-known functions –
e.g., mathematical functions, memory allocation, and memory copy
functions – to modify the range of its output value and arguments.
Consistently with the catalog-based approach, SETHET provides
the semantics of the HERO DMA intrinsics to extend the capabilities
of the TAFFO VRA. In particular, the expected behaviour for the
VRA when encountering these DMA APIs is to propagate the range
from the source pointer to the destination pointer, as illustrated in the
example in Figure 3. Additionally, new constraints are artificially cre-
ated in the precision tuning algorithm to guarantee consistency with
the maximum range of represented numeric values in each device.
This is especially useful since the host and the device architectures
have different size for the integer and floating point registers. In the
case of HERO platform, the widest integer registers are 64-bit wide
for the host and 32-bit wide for the device while the widest floating
point registers are homogeneously implemented as 64-bit wide.

4.4 Anti-Transformation
After the Conversion pass of TAFFO, converting the annotated float-
ing points to fixed points, the Anti-Transformation pass comes into
play. Its role is to revert the output generated by the Conversion
pass to the original structure before Transformation. This step is
necessary because the HERO toolchain cannot work directly with
the output generated by the Conversion pass of TAFFO. Two differ-
ent modules are required to ensure compatibility with HERO. One
module contains the code of the host, while the other one provides
the code for the accelerator. Additionally, calls to the OpenMP API
must be restored to their original form with indirect calls. For this
reason, SETHET schedules the Anti-Transformation pass after the
code manipulation stage of the precision tuner framework. During
this pass, SETHET copies back all the newly converted functions
and globals previously imported from the accelerator module. It re-
stores all OpenMP indirect calls to newly generated regions exported
to heterogeneous modules, as before the modification described in
Subsection 4.2. Finally, any reference to the heterogeneous module
is removed from the host module.

SETHET – Sending Tuned numbers over DMA. . .

5 EXPERIMENTAL CAMPAIGN
Our experimental campaign is tailored to assess the benefits that
SETHET brings on top of well-known optimisation techniques. In
particular, we aim to show that our solution improves performance
portability with respect to any of its components – DMA and preci-
sion tuning – considered individually.

5.1 Experimental Setup
Benchmark Suite. We selected PolyBench-ACC [13] to test our

work. This benchmark suite contains various numerical kernels with
static control flow from different application domains. Our reference
architecture – HERO– already supports several applications from the
PolyBench-ACC suite. More specifically, the supported kernels are:
2mm, 3mm multiplication between 2 and 3 matrices; atax matrix
transpose and vector multiplication; bicg sub Kernel of BICGSTAB;
covariance covariance computation; gemm matrix multiplication;
convolution-2d convolution computation

Benchmark Configurations. These benchmarks have been adapted
by HERO developers to offload the kernel workload onto the hetero-
geneous device using the DMA, as described in Section 3. We have
developed a new version of the benchmarks that are structurally the
same but without using DMA. More precisely, we have modified
the benchmarks to replace DMA memory transfer primitives in the
code with functionally equivalent CPU-managed memory transfers.
In our campaign, we compare both data transfer modes, and we
denote them as noDMA and DMA. We augmented these two versions
with the standard annotation syntax required by the TAFFO precision
tuning framework. Having the RISC-V accelerator device limited
to 32-bit integers, we configure a limit within the precision tuner
to control the maximum fixed-point bit-width, thus generating two
benchmark configurations: 32 and 64, respectively, capping the
bit-width of fixed point computation to 32-bit and to 64-bit. An
additional configuration parameter comes from the possibility in the
HERO architecture to enable or disable the hardware implementa-
tion of a floating point unit in the accelerator device. As such, we
tested each benchmark both with hardware floating point support
(HARD) and with software emulation (SOFT). Therefore, for each
benchmark, we have run several versions provided by the Cartesian
product of {DMA,noDMA}×{32,64}×{SOFT,HARD}.

Hardware & System Setup. We run all benchmarks on a Xilinx
ZCU102, a Xilinx Zynq UltraScale+ MPSoC with a 64-bit ARMv8
quad-core Arm® Cortex®-A53 processor. In the programmable logic
(PL), HERO instantiates a single cluster of 8 cores. PetaLinux version
2019.2 was used to configure binary bootable images loaded on the
board and provide a compatible Linux OS to interact with.

Metrics. To assess our solution, we observe one performance
metric and one quality metric across multiple configurations. In this
work, we consider improvements in time-to-solution to be the most
relevant performance metric and the numeric relative error to be
the computational quality metric. We mitigate the effect of back-
ground noise in time measurements – mostly due to the presence
of an OS – by averaging the time measurement readings over 100
runs for each benchmark configuration. The timing was measured
using the OpenMP function omp_get_wtime(), which returns
the elapsed wall clock time measured in seconds. The time returned

is specific to each thread and is a standard metric for benchmarking.
Time improvements are reported as speedup, following the well-
known formula S =

Tre f
Tentry

. Each speedup entry is validated using the
clock cycle count provided by the offloading runtime support. All
the speedups are relative to the time-to-solution Tre f of the baseline
benchmark configuration featuring no precision tuning and using
noDMA data transfer mode. The relative error for each precision tun-
ing experiment is the relative distance of the output from a golden
reference result obtained by the same code when compiled on the
same HERO architecture and with no precision tuning enabled. Call-
ing B the golden reference value and P the precision tuning ones,
their relative error is computed with the well-known formula |P−B|

B .
As per previous research on approximate computing, we have set the
acceptable error threshold to be as high as 10%. [29]. In accordance
with the original definitions of the benchmarks, our golden reference
relies on IEEE-754 binary32 floating point standard [1].

5.2 Preliminary Analyses
At first, we experimentally assess the effects of DMA and precision
tuning as individual improvements over the same baseline. Based on
these analyses, we sketch a naïve prediction of their combined effort
under the hypothesis of non-correlation between the two contribu-
tions. Later in this paper, we discuss such a hypothesis and comment
on its validity.

DMA Contribution. To single out the contribution of DMA alone
in the HERO platform, we start from the DMA benchmarks and adapt
them to achieve a functionally equivalent noDMA version that still
includes memory transfer costs as described in section 5.1.

Table 1 shows the speedup achieved when the DMA is enabled.
The speedup varies significantly between SOFT and HARD floating
point configurations because the former requires more compute
time to emulate the floating point support. The savings in memory
transfer time are proportionally larger on the time-to-solution for
HARD floating point configurations.

It should be noted that atax, bicg, and convolution have a sig-
nificantly higher speedup compared to other benchmarks. This is
because they benefit the most from the use of async DMA memory
functions that allow for significant overlap of computation and mem-
ory transfer via the double buffering approach, which is not possible
with the serial sync DMA.

Since the memory transfer primitives have no impact on the func-
tional behaviour of the code, the computation quality metric is not
impacted, retaining the best level available – 0 distance from the
golden reference – in every configuration.

Precision Tuning Contribution. We consider the precision tuning
contribution as the improvement on the time-to-solution obtained by
the precision tuning component, as described in Section 4, without
the use of DMA memory transfer primitives. The speedup obtained
is reported in Table 2, where there is a clear distinction in speedup
values between SOFT and HARD floating point configurations. This
time, SOFT ones find more benefits from this optimisation.

Indeed, while precision tuning may improve both memory trans-
fer and computation cost, the use of fixed-point arithmetic largely
simplifies the handling of SOFT floating-point computation.

We have also measured the quality metric of Precision Tuning.
Figure 4 presents two separate subplots reporting the relative error,

G. Magnani et al.

Table 1: Speedup achieved by DMA with respect to the baseline
solution with noDMA memory transfer and no precision tuning
applied. A colour representing the magnitude of the value is
overlaid to aid in visualizing the speedup difference. Average is
the geometric mean of all the reported benchmark and parti-
tioned by configuration.

Benchmark Configuration DMA

2mm SOFT 1.48
HARD 6.23

3mm SOFT 1.26
HARD 3.79

atax SOFT 8.75
HARD 42.7

bicg SOFT 6.32
HARD 28.9

convolution SOFT 2.49
HARD 20.9

covariance SOFT 1.52
HARD 6.08

gemm SOFT 1.22
HARD 3.82

Average SOFT 2.41
HARD 10.51

one for the 32 configurations and the other for the 64 configu-
rations due to the difference in magnitude. The plot on the left
shows the relative error for 32 configurations , which spans between
1 ·10−5; 8.8 ·10−2. On the right, the 64 configuration relative error
goes from 1 ·10−7; 1 ·10−5. It is evident from the graph that the type
of float supported by the hardware does not affect SETHET since
the error generated is consistent across all configurations. The graph
clearly illustrates that reducing the maximum integer size impacts
on atax and gemm significantly. This effect is primarily because
of the range of output and operations performed by these two. atax
has an impressive output range of 0; 3.40 ·106, while gemm’s range
spans from −5.47 ·104; 5.34 ·104.

A Naïve Prediction. On the one hand, we have the DMA contribu-
tion that uniformly cuts data transfer time, most notably improving
HARD floating point configurations. On the other hand, we have the
precision tuning configuration, which significantly improves SOFT
floating point configurations. Would it be possible to have the best of
both? What speedup can we expect to achieve in each configuration?
A naïve prediction can be obtained by multiplying the individual
contributions of DMA and precision tuning. This prediction is valid
under the assumption of independence of the two contributions. In
our case, this hypothesis is true if: i) DMA primitives do not alter the
scope and the behaviour of the precision tuning process; AND ii)
precision tuning does not alter the DMA data transfer process.

5.3 Experimental Evaluation
In this Subsection, we demonstrate that the combination of both
contributions produces dissimilar outcomes under a set of precise
circumstances when compared to the previously described prediction,
thus refuting the optimization-orthogonality hypothesis.

Table 2: Speedup achieved by SETHET leveraging only precision
tuning with respect to the baseline solution with noDMA memory
transfer and no precision tuning applied. A colour representing
the magnitude of the value is overlaid to aid in visualizing the
speedup difference. Average is the geometric mean of all the
reported benchmarks and partitioned by configuration.

Benchmark Configuration Precision Tuning

2mm

SOFT 64 8.40
HARD 64 1.02
SOFT 32 8.61
HARD 32 1.03

3mm

SOFT 64 8.22
HARD 64 1.03
SOFT 32 8.86
HARD 32 1.04

atax

SOFT 64 5.12
HARD 64 1.03
SOFT 32 5.39
HARD 32 1.04

bicg

SOFT 64 4.37
HARD 64 1.03
SOFT 32 4.67
HARD 32 1.03

convolution

SOFT 64 5.86
HARD 64 1.04
SOFT 32 7.88
HARD 32 1.05

covariance

SOFT 64 7.02
HARD 64 1.03
SOFT 32 7.60
HARD 32 1.04

gemm

SOFT 64 8.51
HARD 64 1.02
SOFT 32 9.77
HARD 32 1.05

Average

SOFT 64 6.59
HARD 64 1.03
SOFT 32 7.32
HARD 32 1.04

Testing the Prediction. The relationship between the precision
tuning process and the DMA depends on the layout of the DMA being
used. Figure 5 illustrates two common layouts used within a ker-
nel loop: the serial layout and the double buffering layout. In the
case of the serial layout, the DMA [A]SYNC transfer is the only
component affected by both precision tuning and DMA. In fact, the
precision tuning process can impact the amount of data that needs
to be transferred. For instance, if a binary64 is mapped in a 32-bit
integer, the total amount of memory to be transferred will be reduced
by half. On the other hand, the double buffering layout exhibits a
similar kind of interaction within the DMA ASYNC transfer. Unlike
the synchronous layout, the double buffering runs in parallel with
the memory transfers for the next iteration with the loop body. In
this case, the interaction between the DMA and the precision tuning

SETHET – Sending Tuned numbers over DMA. . .

Relative error 64-bitRelative error 32-bit

Figure 4: Relative error of SETHET solution compared to the baseline HERO. The graph on the left compares SETHET employing only
32-bit fixed-point numbers, while the graph on the right shows SETHET employing only 64-bit fixed-point numbers. The reference
version for functional correctness is defined using floating point IEEE-754 binary32.

Serial

Double
buffering

Loop
Body

Loop Boundary

DMA
ASYNC

DMA
Wait

x x

Loop
Body

Loop Boundary

x

Loop
Body

Loop Boundary

DMA
ASYNC

DMA
Wait

x

Serial

Figure 5: Common DMA layouts that are used in a kernel loop.
The top layout is the Serial layout, where all the memory transfer
happens at the beginning of the loop. The bottom layout is the
Double buffering layout, where the memory transfer of the next
iteration runs parallel to the loop body. The blocks that are
marked with an X are the ones that are influenced by both the
DMA and the precision tuning process.

process is given by the race between the new optimized time of
the loop body and the potentially modified DMA ASYNC transfer.
The best performance scenario occurs when the precision tuning
optimization is capable of reducing the time spent in the loop body,
so that its execution time is smaller than the memory transfer time.
On the other hand, the worst-case scenario arises when the precision
tuning increases the amount of memory to transfer, such as in the

case of binary32 to 64-bit fixed point, but the loop optimization can-
not compensate for the difference. All benchmarks are implemented
using the asynchronous DMA API.

Table 3 displays a comparison between the speedup of SETHET

with DMA and the naïve prediction. From the table, it is evident that
the naïve prediction performs well in the HARD configurations. In
these scenarios, optimizing the loop body doesn’t adequately re-
duce its running time to match the memory transfer time, so the
two optimizations are orthogonal. Furthermore, in the <HARD, 64
> configuration, the speedup is sometimes even slower than when
using the same benchmark without SETHET. This is because of the
increase in memory transfer when converting from binary32 to 64-bit
fixed point. On the other hand, the predictions fail to estimate the cor-
rect speedup in the SOFT configuration. In these cases, the measured
value is always underestimated, indicating that the two optimizations
in these configurations are not entirely independent. Cross-checking
the “Average” values in Table 3 and Table 1 confirms that the con-
tribution of the precision tuning is crucial in the SETHET solution,
which outperforms DMA in 3 out of 4 configurations.

Performance Analysis. The only configuration challenging for
SETHET is < HARD,64> – the platform has hardware support only
for 32-bit data types; thus, the 64 have to be emulated on smaller
arithmetic and logic units – where SETHET delivers comparable
results to HERO DMA. Overall, SETHET’s efficiency is remarkable
in hardware designs without FPU, which is one of the possible
hardware configurations of HERO, achieving a speedup of up to 20×
in gemm < SOFT,32>.

From Table 3 we see that atax and gemm behave differently from
the others, so we investigate further. atax is the benchmark most

G. Magnani et al.

impacted by DMA and gemm is the one most affected by SETHET.
atax is significantly affected by DMA due to the presence in its kernel
of two separate, very small loop bodies that need to operate on a
large amount of data. This pattern creates a memory-bound loop
body, which DMA greatly impacts. On the other hand, gemm’s per-
formance goes from 1.22 < SOFT,3264 > in HERO DMA to 20.7
< SOFT,32 > when using SETHET, with a relative increment of
16×. gemm is made up of a single loop body that is large enough
not to be memory-bound. Upon analyzing the assembly produced
by SETHET on gemm, we discovered that some multiplication
was optimized out. The gemm kernel involves multiplying an array
of floating points by two constant floats, alpha and beta. SETHET

converts both the arrays and constants to a common fixed-point repre-
sentation and inserts the appropriate integer multiplication. However,
while optimizing the code, the compiler can replace multiplication
by constants with a combination of shifts and additions when the
constants have only a few bits set to one. In both covariance and
convolution, multiplication and division are simplified in a similar
way. The quality metric of SETHET is reported in Figure 4 and is
the same as applying precision tuning without DMA as discussed in
Section 5.2. Examining Figure 4, we can observe that the maximum
relative error for covariance and convolution is less than 0.004%
implying that there is still room for further improvements on the
time to solution, which can be achieved by reducing the data size
cap from the current 32 bits to 16 bits or even lower.

6 CONCLUSION AND PROSPECTIVE
In this paper, we demonstrated how coupling DMA with Precision
Tuning techniques provides a valuable synergy. Where the two indi-
vidual techniques achieve respectively a speedup of 1.22−42.7×
and 1.02−9.77×, the combination of the two techniques achieves
an 4.6−48.4× speedup in all configurations of the target hardware
platform. Comparing the adoption of DMA in HERO with the com-
bined effect of SETHET, we can see that DMA alone can achieve
speedups over 10× only in 3 configurations out of 14, all of them
requiring hardware FPUs, whereas SETHET achieves this result
in 10 configurations out of 14. This synergy is significantly more
valuable than the linear combination of the two techniques taken
individually.

Future directions include the extension of the proposed technique
beyond the standard floating point formats to include reduced preci-
sion floating point formats – e.g., bfloat [10] – as well as alternative
representations of real numbers, such as Posits [17], to better fit the
application requirements.

ACKNOWLEDGMENTS
The authors gratefully acknowledge Xilinx for providing the ZCU102
board employed in this work.

This work is supported in part by the European Commission and
the Italian MIMIT through the KDT JU TRISTAN (G.A. 101095947)
and ISOLDE (G.A. 101112274).

The authors gratefully acknowledge funding from European Union’s
Horizon 2020 Research and Innovation programme under the Marie
Skłodowska Curie grant agreement No. 956090 (APROPOS: Ap-
proximate Computing for Power and Energy Optimisation, http:
//www.apropos.eu/).

Table 3: Speedup achieved by SETHET with respect to the base-
line solution with noDMA memory transfer and no precision
tuning applied. A colour representing the magnitude of the value
is overlaid to aid in visualizing the speedup difference. Average
is the geometric mean of all the reported benchmarks and parti-
tioned by configuration.

Benchmark Configuration Prediction SETHET

2mm

SOFT 64 12.43 17.3
HARD 64 6.35 6.68
SOFT 32 12.74 17.8
HARD 32 6.42 6.69

3mm

SOFT 64 10.36 12.26
HARD 64 3.90 3.56
SOFT 32 11.16 15.0
HARD 32 3.94 4.23

atax

SOFT 64 44.80 45.6
HARD 64 43.98 41.4
SOFT 32 47.22 48.4
HARD 32 44.41 43.9

bicg

SOFT 64 27.62 33.0
HARD 64 29.77 28.7
SOFT 32 29.47 33.9
HARD 32 29.77 29.5

convolution

SOFT 64 14.59 28.0
HARD 64 21.74 17.7
SOFT 32 19.62 32.5
HARD 32 21.95 20.5

covariance

SOFT 64 10.67 15.0
HARD 64 6.26 6.11
SOFT 32 11.52 16.2
HARD 32 6.32 6.6

gemm

SOFT 64 10.38 16.3
HARD 64 3.90 4.6
SOFT 32 11.91 20.7
HARD 32 4.01 4.85

Average

SOFT 64 15.91 21.59
HARD 64 10.81 10.50
SOFT 32 17.65 24.14
HARD 32 10.93 11.34

REFERENCES
[1] 2019. IEEE Standard for Floating-Point Arithmetic. IEEE Std 754-2019 (Revi-

sion of IEEE 754-2008) (2019), 1–84. https://doi.org/10.1109/IEEESTD.2019.
8766229

[2] Alexandra Angerd, Erik Sintorn, and Per Stenström. 2017. A Framework for
Automated and Controlled Floating-Point Accuracy Reduction in Graphics Appli-
cations on GPUs. ACM Trans. Archit. Code Optim. 14, 4, Article 46 (dec 2017),
25 pages. https://doi.org/10.1145/3151032

[3] OpenMP Architecture Review Board. [n. d.]. OpenMP 4.5 Complete Specifica-
tions. https://www.openmp.org/wp-content/uploads/openmp-4.5.pdf

[4] Daniele Cattaneo, Michele Chiari, Giovanni Agosta, and Stefano Cherubin. 2022.
TAFFO: The compiler-based precision tuner. SoftwareX 20 (2022). https:
//doi.org/10.1016/j.softx.2022.101238

[5] Daniele Cattaneo, Michele Chiari, Nicola Fossati, Stefano Cherubin, and Gio-
vanni Agosta. 2021. Architecture-aware Precision Tuning with Multiple Number
Representation Systems. In 2021 58th ACM/IEEE Design Automation Conference
(DAC). 673–678. https://doi.org/10.1109/DAC18074.2021.9586303

[6] Daniele Cattaneo, Michele Chiari, Gabriele Magnani, Nicola Fossati, Stefano
Cherubin, and Giovanni Agosta. 2021. FixM: Code Generation of Fixed Point

http://www.apropos.eu/
http://www.apropos.eu/
https://doi.org/10.1109/IEEESTD.2019.8766229
https://doi.org/10.1109/IEEESTD.2019.8766229
https://doi.org/10.1145/3151032
https://www.openmp.org/wp-content/uploads/openmp-4.5.pdf
https://doi.org/10.1016/j.softx.2022.101238
https://doi.org/10.1016/j.softx.2022.101238
https://doi.org/10.1109/DAC18074.2021.9586303

SETHET – Sending Tuned numbers over DMA. . .

Mathematical Functions. Sustainable Computing: Informatics and Systems 29
(March 2021), 17 pages. https://doi.org/10.1016/j.suscom.2020.100478

[7] Stefano Cherubin and Giovanni Agosta. 2020. Tools for Reduced Precision
Computation: a Survey. Comput. Surveys 53, 2 (Apr 2020), 35 pages. https:
//doi.org/10.1145/3381039

[8] Stefano Cherubin, Daniele Cattaneo, Michele Chiari, and Agosta Giovanni. 2020.
Dynamic Precision Autotuning with TAFFO. ACM Transaction on Architecture
and Code Optimization 17, 2, Article 10 (may 2020), 26 pages. https://doi.org/
10.1145/3388785

[9] Wei-Fan Chiang, Mark Baranowski, Ian Briggs, Alexey Solovyev, Ganesh
Gopalakrishnan, and Zvonimir Rakamarić. 2017. Rigorous Floating-Point
Mixed-Precision Tuning. In Proceedings of the 44th ACM SIGPLAN Sympo-
sium on Principles of Programming Languages (POPL ’17). ACM, 300–315.
https://doi.org/10.1145/3009837.3009846

[10] Intel Corporation. 2018. BFLOAT16—Hardware Numerics Definition. White
paper (2018).

[11] Eva Darulova, Einar Horn, and Saksham Sharma. 2018. Sound Mixed-Precision
Optimization with Rewriting. In ACM/IEEE 9th Int’l Conf. on Cyber-Physical
Systems (ICCPS). https://doi.org/10.1109/ICCPS.2018.00028

[12] Michael Gautschi, Pasquale Davide Schiavone, Andreas Traber, Igor Loi, Antonio
Pullini, Davide Rossi, Eric Flamand, Frank K Gürkaynak, and Luca Benini. 2017.
Near-threshold RISC-V core with DSP extensions for scalable IoT endpoint
devices. IEEE Transactions on Very Large Scale Integration (VLSI) Systems 25,
10 (2017), 2700–2713. https://doi.org/10.1109/TVLSI.2017.2654506

[13] Scott Grauer-Gray, Lifan Xu, Robert Searles, Sudhee Ayalasomayajula, and John
Cavazos. 2012. Auto-tuning a high-level language targeted to GPU codes. In
2012 Innovative Parallel Computing (InPar). 1–10. https://doi.org/10.1109/InPar.
2012.6339595

[14] OpenHW Group. [n. d.]. CORE-V CV32E40P User Manual. https://cv32e40p.
readthedocs.io/en/latest/

[15] Ruidong Gu and Michela Becchi. 2020. GPU-FPtuner: Mixed-precision Auto-
tuning for Floating-point Applications on GPU. In 2020 IEEE 27th International
Conference on High Performance Computing, Data, and Analytics (HiPC). IEEE,
294–304. https://doi.org/10.1109/TVLSI.2017.2654506

[16] Hui Guo and Cindy Rubio-González. 2018. Exploiting community structure
for floating-point precision tuning. In Proc. 27th ACM SIGSOFT International
Symposium on Software Testing and Analysis, ISSTA 2018, Amsterdam (NL) July
16-21, 2018. ACM, 333–343. https://doi.org/10.1145/3213846.3213862

[17] John Gustafson and Isaac Yonemoto. 2017. Beating Floating Point at its Own
Game: Posit Arithmetic. Supercomputing Frontiers and Innovations 4, 2 (2017).

[18] RISC-V International. [n. d.]. RISC-V Specifications. https://riscv.org/technical/
specifications/

[19] Pradeep V Kotipalli, Ranvijay Singh, Paul Wood, Ignacio Laguna, and Saurabh
Bagchi. 2019. AMPT-GA: Automatic Mixed Precision Floating Point Tuning
for GPU Applications. In Proceedings of the ACM International Conference on
Supercomputing. https://doi.org/10.1145/3330345.3330360

[20] Anish Krishnakumar, Umit Ogras, Radu Marculescu, Mike Kishinevsky, and
Trevor Mudge. 2023. Domain-Specific Architectures: Research Problems and
Promising Approaches. ACM Trans. Embed. Comput. Syst. 22, 2, Article 28 (jan
2023), 26 pages. https://doi.org/10.1145/3563946

[21] Andreas Kurth, Björn Forsberg, and Luca Benini. 2022. HEROv2: Full-Stack
Open-Source Research Platform for Heterogeneous Computing. IEEE Trans-
actions on Parallel and Distributed Systems 33, 12 (2022), 4368–4382. https:
//doi.org/10.1109/TPDS.2022.3189390

[22] Ignacio Laguna, Paul C. Wood, Ranvijay Singh, and Saurabh Bagchi. 2019.
GPUMixer: Performance-Driven Floating-Point Tuning for GPU Scientific Appli-
cations. In High Performance Computing. Springer, 227–246. https://doi.org/10.
1007/978-3-030-20656-7_12

[23] Michael O. Lam, Tristan Vanderbruggen, Harshitha Menon, and Markus Schordan.
2019. Tool Integration for Source-Level Mixed Precision. In 2019 IEEE/ACM
3rd International Workshop on Software Correctness for HPC Applications (Cor-
rectness). 27–35. https://doi.org/10.1109/Correctness49594.2019.00009

[24] Gabriele Magnani, Lev Denisov, Daniele Cattaneo, and Giovanni Agosta. 2022.
Precision Tuning in Parallel Applications. In 13th Workshop on Parallel Pro-
gramming and Run-Time Management Techniques for Many-Core Architectures
and 11th Workshop on Design Tools and Architectures for Multicore Embedded
Computing Platforms (PARMA-DITAM 2022). Schloss Dagstuhl-Leibniz-Zentrum
für Informatik. https://doi.org/10.4230/OASIcs.PARMA-DITAM.2022.5

[25] Sally A McKee. 2004. Reflections on the memory wall. In Proceedings of the 1st
conference on Computing frontiers. 162.

[26] Asit K Mishra, Rajkishore Barik, and Somnath Paul. 2014. iACT: A software-
hardware framework for understanding the scope of approximate computing. In
Workshop on Approximate Computing Across the System Stack (WACAS).

[27] Ricardo Nobre, Luís Reis, João Bispo, Tiago Carvalho, João M. P. Cardoso,
Stefano Cherubin, and Giovanni Agosta. 2018. Aspect-Driven Mixed-Precision
Tuning Targeting GPUs. In PARMA-DITAM workshop 2018. 26–31. https:
//doi.org/10.1145/3183767.3183776

[28] Konstantinos Parasyris, Giorgis Georgakoudis, Harshitha Menon, James Diffend-
erfer, Ignacio Laguna, Daniel Osei-Kuffuor, and Markus Schordan. 2021. HPAC:
Evaluating Approximate Computing Techniques on HPC OpenMP Applications.
In Proc. of the Int’l Conf. for High Performance Computing, Networking, Stor-
age and Analysis. ACM, Article 86, 14 pages. https://doi.org/10.1145/3458817.
3476216

[29] Mehrzad Samadi, Davoud Anoushe Jamshidi, Janghaeng Lee, and Scott Mahlke.
2014. Paraprox: Pattern-Based Approximation for Data Parallel Applications. SIG-
PLAN Not. 49, 4 (feb 2014), 35–50. https://doi.org/10.1145/2644865.2541948

[30] Prateek Shantharama, Akhilesh S Thyagaturu, and Martin Reisslein. 2020.
Hardware-accelerated platforms and infrastructures for network functions: A
survey of enabling technologies and research studies. IEEE Access 8 (2020),
132021–132085. https://doi.org/10.1109/ACCESS.2020.3008250

[31] Phillip Stanley-Marbell, Armin Alaghi, Michael Carbin, Eva Darulova, Lara
Dolecek, Andreas Gerstlauer, Ghayoor Gillani, Djordje Jevdjic, Thierry Moreau,
Mattia Cacciotti, Alexandros Daglis, Natalie Enright Jerger, Babak Falsafi, Sasa
Misailovic, Adrian Sampson, and Damien Zufferey. 2020. Exploiting Errors for
Efficiency. Comput. Surveys 53 (7 2020), 1–39. Issue 3. https://doi.org/10.1145/
3394898

[32] Luca Valente, Yvan Tortorella, Mattia Sinigaglia, Giuseppe Tagliavini, Alessandro
Capotondi, Luca Benini, and Davide Rossi. 2023. HULK-V: a Heterogeneous
Ultra-low-power Linux capable RISC-V SoC. In 2023 Design, Automation & Test
in Europe Conference & Exhibition (DATE). IEEE, 1–6. https://doi.org/10.23919/
DATE56975.2023.10137252

https://doi.org/10.1016/j.suscom.2020.100478
https://doi.org/10.1145/3381039
https://doi.org/10.1145/3381039
https://doi.org/10.1145/3388785
https://doi.org/10.1145/3388785
https://doi.org/10.1145/3009837.3009846
https://doi.org/10.1109/ICCPS.2018.00028
https://doi.org/10.1109/TVLSI.2017.2654506
https://doi.org/10.1109/InPar.2012.6339595
https://doi.org/10.1109/InPar.2012.6339595
https://cv32e40p.readthedocs.io/en/latest/
https://cv32e40p.readthedocs.io/en/latest/
https://doi.org/10.1109/TVLSI.2017.2654506
https://doi.org/10.1145/3213846.3213862
https://riscv.org/technical/specifications/
https://riscv.org/technical/specifications/
https://doi.org/10.1145/3330345.3330360
https://doi.org/10.1145/3563946
https://doi.org/10.1109/TPDS.2022.3189390
https://doi.org/10.1109/TPDS.2022.3189390
https://doi.org/10.1007/978-3-030-20656-7_12
https://doi.org/10.1007/978-3-030-20656-7_12
https://doi.org/10.1109/Correctness49594.2019.00009
https://doi.org/10.4230/OASIcs.PARMA-DITAM.2022.5
https://doi.org/10.1145/3183767.3183776
https://doi.org/10.1145/3183767.3183776
https://doi.org/10.1145/3458817.3476216
https://doi.org/10.1145/3458817.3476216
https://doi.org/10.1145/2644865.2541948
https://doi.org/10.1109/ACCESS.2020.3008250
https://doi.org/10.1145/3394898
https://doi.org/10.1145/3394898
https://doi.org/10.23919/DATE56975.2023.10137252
https://doi.org/10.23919/DATE56975.2023.10137252

	title_page
	pre_print
	Abstract
	1 Introduction
	2 Related Work
	3 risc-v heterogeneous platform
	4 The SeTHet Solution
	4.1 Revisiting the Precision Tuning Workflow
	4.2 Transformation
	4.3 DMA-Aware Precision Tuning
	4.4 Anti-Transformation

	5 Experimental Campaign
	5.1 Experimental Setup
	5.2 Preliminary Analyses
	5.3 Experimental Evaluation

	6 Conclusion and Prospective
	Acknowledgments
	References

