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Abstract: Elastic wave propagation in solids can be controlled and manipulated by properly designed
metamaterials. In particular, polarization conversion can be obtained by using anisotropic materials.
In this paper, we propose a three-component locally resonant material with non-symmetrically coated
inclusions, and we study the effect of the anisotropic equivalent mass on band gap formation and
the polarization conversion of elastic waves. The equivalent frequency-dependent mass tensor is
obtained through the two-scale homogenization approach. The study of the eigenvalues of the mass
tensor enables to predict band gaps and polarization bands, as well as identifying a priori the effect
of different geometric and material parameters, thus opening the way to metamaterial optimization.

Keywords: anisotropic mass; metamaterials; locally resonant materials; homogenization; wave
polarization conversion

1. Introduction

Locally resonant metamaterials have attracted a deep interest in recent years for
their peculiar properties concerning wave propagation. In particular, periodic materials
with heavy, stiff inclusions with a soft coating embedded in a stiff matrix have been
demonstrated to have broad spectral gaps at low frequency, see, for example [1,2]. The
intervals of frequency inside which waves are attenuated can have different applications in
vibration isolation and impact absorption [3–8].

The physical mechanism of local resonance with the corresponding spectral gaps can
be associated with the concept of an “effective dynamic mass density” that becomes nega-
tive in certain frequency intervals [9,10]. Asymptotic homogenization is a mathematical
technique widely employed to study the effective homogenized properties of periodic
metamaterials [11–14]. Under proper hypotheses on the constituent materials, the method
was employed in [15] to study the propagation of elastic waves in binary locally resonant
metamaterials with cylindrical soft inclusions periodically distributed in a stiff matrix. In
the range of validity of the homogenization, the authors also proved that the intervals
of negative effective mass density correspond to the band gaps of the metamaterial. The
same approach was followed also to characterize the dynamics of ternary locally resonant
metamaterials and plates [2,16].

The anisotropic properties of metamaterials can be exploited to achieve peculiar
dispersive properties besides those related to the formation of band gaps. In [17], the
authors studied wave propagation through a locally resonant metamaterial characterized
by anisotropic dynamic mass density in the presence of an interface and derived the
conditions leading to negative refraction. Another important aspect is the polarization
of propagating waves, which depends on the anisotropic properties of materials. Non-
isotropic locally resonant materials can be designed to achieve mode conversion, for
instance, from longitudinal to shear waves or from longitudinal or flexural to torsional
waves [18–20], for several interesting applications [21].

Appl. Sci. 2023, 13, 10797. https://doi.org/10.3390/app131910797 https://www.mdpi.com/journal/applsci

https://doi.org/10.3390/app131910797
https://doi.org/10.3390/app131910797
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/applsci
https://www.mdpi.com
https://orcid.org/0000-0002-4539-2672
https://orcid.org/0000-0003-4367-4876
https://doi.org/10.3390/app131910797
https://www.mdpi.com/journal/applsci
https://www.mdpi.com/article/10.3390/app131910797?type=check_update&version=1


Appl. Sci. 2023, 13, 10797 2 of 14

In this work, we make use of the asymptotic homogenization technique to study the
in-plane propagation of elastic waves in a ternary locally resonant metamaterial made
of a stiff matrix and cylindrical eccentric coated inclusions, which is characterized by an
effective anisotropic mass. After presenting the main hypotheses concerning the geometry
of the metamaterial and the stiffness contrast of the constituent materials, Section 2 is
devoted to developing the homogenization procedure and obtaining the explicit expressions
of the effective stiffness and mass tensors, which are both anisotropic. This allows to
highlight the effect of the different material and geometric parameters and opens the way
to metamaterial optimization.

The elastic wave propagation within the periodic media is then investigated in
Section 3, where we show that the dispersion properties of the metamaterial depend on the
signature of the effective mass. Particular emphasis is devoted to the case of an indefinite
mass tensor, which leads to the formation of polarization bands that can be exploited for
manipulating the polarization of elastic waves.

Finally, in Section 4, we perform several transmission analyses to validate the results
predicted through asymptotic homogenization.

2. Materials and Methods
2.1. Problem Formulation

Let us consider a linear elastic solid S , endowed with two-dimensional periodicity, in
the plane x1 − x2, composed by a matrix (m) with coated cylindrical inclusions (or fibers,
f ). The internal fiber has an eccentricity e with respect the external coating (c) as shown in
Figure 1. The in-plane periodicity of the cylindrical body allows us to study the problem
under plane strain conditions. For this purpose, let Ωε be the section of S with the plane
x3 = 0; it can be obtained by the periodic repetition of the unit cell Yε depicted in Figure 1b,
and let x = x1e1 + x2e2 be the macroscopic in-plane position vector.

(a) (b)

Figure 1. (a) Geometry of locally resonant metamaterial. (b) Unit cell with fiber and eccentric coating.

We assume the scale separation hypothesis, i.e., that ε = `/L� 1, L and ` being the
characteristic sizes of Ωε and Yε, respectively.

Under the small strain and displacement hypothesis, the in-plane wave propagation
at a fixed angular frequency ω within Ωε is governed by the Helmholtz equation:

∇ · (Dε : ε(uε)) + ρεω2uε = 0 in Ωε, (1)

where u(x) = u1(x)e1 + u2(x)e2 is the displacement field, and ε(�) is the symmetric part of
the gradient of (�), while Dε(x) and ρε(x) are, respectively, the periodically varying fourth-
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order elastic stiffness tensor and mass density of the constituent materials. Considering
constitutive isotropic materials, the elastic stiffness tensor can be expressed as

Dε = 2µεI+ λεI⊗ I, (2)

where λε(x) and µε(x) are the periodically varying Lame’s constants.
To obtain a local resonant mechanism, we consider the case of soft inclusions in a

stiff matrix. In particular, we assume a high stiffness contrast between the matrix and the
coating, whilst we prescribe the fibers, which play the role of resonant masses only, to be
stiffer than the coating. The mass densities of the three materials are supposed to be of the
same order of magnitude. These hypothesis are introduced in the model as follows:

λε =


λm in Yε

m

ε2λc in Yε
c

ε2−Nλ f in Yε
f

, µε =


µm in Yε

m

ε2µc in Yε
c

ε2−Nµ f in Yε
f

and ρε =


ρm in Yε

m

ρc in Yε
c

ρ f in Yε
f

(3)

where λm, λc and λ f are of the same order of magnitude, as well as the triplets µm, µc, µ f
and ρm, ρc, ρ f . The integer N ≥ 1 appearing as an exponent of the scaling parameter ε in
the fiber stiffness (3) fixes the stiffness ratio between the fibers and matrix, but will not play
any role in the further developments. If N ≥ 2, the fibers are stiffer than the matrix, while
if N = 1, they are stiffer than the coating but softer than the matrix.

2.2. Asymptotic Homogenization

According to the two-scale asymptotic homogenization technique, we introduce the
homogenized domain Ω and the fast variable y = x/ε = y1e1 + y2e2, which lives in the
re-scaled unit cell Y = Yε/ε of the periodic media. Then, the solution of Equation (1) is
searched in the following form:

uε(x) = u0
(

x,
x
ε

)
+ ε u1

(
x,

x
ε

)
+ ε2u2

(
x,

x
ε

)
+ o(ε2) in Ωε, (4)

where the vector fields ui(x, y) are defined on Ω×Y and are Y−periodic with respect to
the second variable.

Replacing the asymptotic expansion (4) in the governing Equation (1), one obtains a
sequence of differential problems associated to each order of the paramater ε, which can be
solved subsequently. Here, we briefly summarize the solution of the homogenization at the
first order, i.e., the determination of the homogenized displacement field u0(x, y).

Motion in the matrix—Restricting the focus on the matrix only, it is possible to prove
(see [15] for further details) that the first term in the development (4) must be independent
of the fast variable, namely,

u0(x, y) = U0(x) in Ω×Ym. (5)

Then, the homogenization procedure allows to define the homogenized stiffness tensor
D0 of the periodic media, whose components can be evaluated through

D0
ijhk =

1
|Y|

∫
Ym

(
εy(χ

ij) + ei � ej

)
: Dm :

(
εy(χ

hk) + eh � ek

)
dy, (6)

for i, j, h, k ∈ {1, 2}. In Equation (6), functions χij(y) represent the periodic displacement
field in the matrix of the re-scaled unit cell Y subject to a uniform eigenstrain ei � ej, to
a periodic boundary condition on ∂Y and to the free-traction boundary condition on the
internal boundary ∂Ym \ ∂Y with the coating, i.e., χij(y) solves the matrix cell problems
here below:
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∇y ·

[
Dm :

(
εy(χij) + ei � ej

)]
= 0 in Ym

χij periodic on ∂Y[
Dm :

(
εy(χij) + ei � ej

)]
· n anti-periodic on ∂Y[

Dm :
(
εy(χij) + ei � ej

)]
· n = 0 on ∂Ym \ ∂Y

, (7)

where n is the outward normal at the boundary. Therefore, the effective stiffness tensor D0,
defined by (6), can be interpreted as the homogenized stiffness of the holed periodic media.
This result is a consequence of the assumed high stiffness contrast between the matrix and
the inclusions. From Equation (6), it is clear that D0 possesses minor and major symmetries,
and it is possible to prove that it also satisfies the strong ellipticity condition:

∃α ∈ R+ such that ∀a, b one has a⊗ b : D0 : a⊗ b ≥ α ‖a‖2 ‖b‖2. (8)

Motion in the inclusions—Without loss of generality, we assume that the origin of the
reference system y1− y2 coincides with the center of the fiber. Independently of the specific
value of N ≥ 1 in (3), it is possible to show that the fiber undergoes an in-plane rigid body
motion within Y, i.e., one has

u0(x, y) =
2

∑
i=1

U0
i (x)

(
τi + ψiy∧ e3

)
in Ω×Yf (9)

where τi and ψi for i ∈ {1, 2} describe, respectively, the displacement of the centroid and
the in-plane rotation of the fiber. In the coating, the linearity of the problem allows to
express the displacement field in the following form:

u0(x, y) =
2

∑
i=1

U0
i (x)η

i(y) in Ω×Yc, (10)

where the functions ηi, for i ∈ {1, 2}, solve the differential problems:
∇y ·

[
Dc : εy(ηi)

]
+ ρcω2ηi = 0 in Yc

ηi = ei on ∂Yc \ ∂Yf

ηi = τi + ψiy∧ e3 on ∂Yf

. (11)

The terms τi and ψi, which appear in the boundary conditions of (11), have to be de-
termined by enforcing the balance of linear and angular momentum of the fiber, which read

∫
∂Yf

[
Dc : εy(η

i)
]
· n dy + ρ f |Yf |ω2τi = 0

e3 ·
∫

∂Yf

y∧
[
Dc : εy(η

i)
]
· n dy + ρ f ω2 I f ψi = 0

for i, j ∈ {1, 2}, (12)

I f being the polar moment of the fib and n the exterior normal to ∂Yf .
Equations (11) and (12) define the inclusion cell problem at a given frequency ω, whose
solution is given by the fields ηi(y), τi and ψi. To underline the frequency dependence of
the latter, we will write in the following ηi(y, ω), τi(ω) and ψi(ω).

Homogenized equation of motion—Following the asymptotic homogenization procedure,
one can retrieve the effective Helmholtz equation of the periodic media:

∇x ·
[
D0 : εx(U0)

]
+ ω2ρ0(ω) ·U0 = 0 in Ω, (13)



Appl. Sci. 2023, 13, 10797 5 of 14

where we introduced the homogenized mass density tensor ρ0(ω), which turns out to be
frequency dependent. The components of the mass density tensor read

ρ0
ij(ω) = ρstδij + ρc

|Yc|
|Y|

(
1
|Yc|

∫
Yc

ηi
j(y, ω) dy− 1

)
+ ρ f

|Yf |
|Y| (τ

i
j (ω)− 1), (14)

where δij is Kronecker’s delta, and

ρst = ρm
|Ym|
|Y| + ρc

|Yc|
|Y| + ρ f

|Yf |
|Y| , (15)

is the static mass density of the periodic media. Note that, from Equation (14), the particular
geometric shape of the matrix does not affect the definition of the effective dynamic mass
of the media.

3. Results

The asymptotic homogenization procedure presented in Section 2 allows us to study
the effective dynamic properties of locally resonant materials, under the assumed hypothe-
ses, with arbitrary cell shape and inclusions. From now on, for the sake of simplicity, we
consider the specific case depicted in Figure 2a of a square unit cell of side `. The position
of the inner inclusion, i.e., the fiber, with respect to the coating, is univocally determined by
the eccentricity e between the two centers and the inclination angle ϑ ∈ [0, 2π] of the line
connecting the two centers, with respect to the horizontal direction.

(a) (b)

Figure 2. (a) Geometry of the square unit cell with eccentric fiber; (b) principal values of the
homogenized mass as a function of the reduced frequency for R f /` = 0.24, Rc/` = 0.36 and
e/` = 0.1. Circled numbers represent the three cases discussed in Section 3.2.

3.1. Anisotropic Effective Mass

Through (14), one can compute the components of the homogenized mass density
tensor ρ0, which is symmetric and, in general, anisotropic. Due to the spectral theorem, ρ0

admits two eigenvectors eI and eII, i.e., the principal mass directions, such that

ρ0 = ρ0
I eI ⊗ eI + ρ0

II eII ⊗ eII, (16)

where ρ0
I and ρ0

II are the corresponding eigenvalues, i.e., the principal mass densities. As
it can be observed by looking at Equations (14) and (15), the contribution that the matrix
provides to the mass tensor is always isotropic. This means that the source of anisotropy is
related to the inclusion only. For the assumed geometry, the line connecting the centers of
the fiber and of the coating (red dotted line in Figure 2a) is a symmetry axis of the coated
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inclusion, i.e., it is a principal direction of mass that we identify with eI. The other one, eII,
is defined by the direction orthogonal to eI.

Figure 2b shows the typical behavior of ρ0
I (blue) and ρ0

II (red), which are piecewise
monotonously increasing functions of the frequency. Dashed lines represent vertical asymp-
totes which arise in correspondence to the resonant frequencies of the inclusion, fixed at its
boundary, whose eigenmodes are not orthogonal with respect to eI (for ρ0

I ) or eII (for ρ0
II);

see [15] for further details.
The eigenmodes are shown in Figure 3 in the case of the horizontally eccentric fiber

(ϑ = 0), which means eI is parallel to e1 and eII is parallel to e2. The eigenmodes shown
in Figure 3a,b,d are orthogonal with respect to eI but not with respect to eII. This is why
only ρ0

II has three vertical asymptotes at the reduced frequencies f ∗ = ω`/2π = 6.08,
8.78 and 18.11 m/s. Conversely, the eigenmode shown in Figure 3c is orthogonal with
respect to eII but not with respect to eI, which implies that only ρ0

I has a vertical asymptote
for f ∗ = 12.22 m/s.

(a) (b) (c) (d)

Figure 3. Contours of the first four eigenmodes of the inclusion fixed at its boundary for R f /` = 0.24,
Rc/` = 0.36, e/` = 0.1 and ϑ = 0. Top row: horizontal displacement; second row: vertical displacement.
(a) f ∗ = 6.08 m/s; (b) f ∗ = 8.78 m/s; (c) f ∗ = 12.22 m/s; (d) f ∗ = 18.11 m/s.

Due to the presence of such vertical asymptotes, one or both principal values of
the effective mass can become negative in some frequency intervals; see [15] for further
details. These ranges are shaded in Figure 2b in blue (ρ0

I < 0) and red (ρ0
II < 0). Their

superpositions, i.e., the purple-shaded regions, define the intervals where both principal
mass densities are negative.

3.2. Dispersion Properties: Band Gaps and Polarization Bands

To obtain the dispersion relation of the homogenized media, we consider the propaga-
tion of the wave:

U0(x) = peik·x, (17)

where p is the polarization vector, k = kn is the wavevector, k is the wavenumber and n is
the direction of propagation. Replacing (17) in the homogenized Helmholtz Equation (13),
one obtains [

Q0(n)− c2ρ0(ω)
]
· p = 0, (18)

where c = ω/k is the phase velocity and Q0(n) is the effective acoustic tensor of the media
defined as

Q0(n) = n ·D0 · n. (19)

The latter is a second-order symmetric tensor due to the symmetries of D0, and it is
also positive definite. In fact, due to the strong ellipticity condition (8), one has

v ·Q0 · v = n⊗ v : D0 : n⊗ v ≥ α‖v‖2 > 0 ∀v 6= 0. (20)
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Equation (18) can be recognized as a generalized eigenvalue problem. Since Q0 and ρ
are real and symmetric, Equation (18) defines two real eigenvectors pα and pβ associated
with the real eigenvalues c2

α and c2
β, which solve the dispersion relation:

det[Q0(n)− c2ρ0(ω)] = 0. (21)

The eigenvectors pα and pβ, which in general do not coincide with eI and eII, satisfy
the orthogonality conditions:

pα ·Q0 · pβ = pα · ρ0 · pβ = 0, (22)

while the eigenvalues c2
α and c2

β can be expressed through the Rayleigh quotients:

c2
α =

pα ·Q0 · pα

pα · ρ0 · pα
and c2

β =
pβ ·Q0 · pβ

pβ · ρ0 · pβ
. (23)

Since Q0 is positive definite, the numerators of Equation (23) are always positive,
which means that the sign of c2

α and c2
β is determined by the spectral properties of the

effective mass tensor. In our two-dimensional problem, three different cases can be distin-
guished, which are indicated in Figure 2b with circled numbers.

Case 1 : ρ0 is positive definite (i.e., ρ0
I and ρ0

II are positive).
In this case, one has p · ρ0 · p > 0 for every p 6= 0, which means, from (23), that both c2

α and
c2

β are positive. In the frequency ranges where the effective mass is positive definite, called
pass bands, Equation (21) admits two positive real wave velocities cα and cβ, i.e., elastic
waves can propagate within the metamaterial with polarization vectors pα and pβ.

Case 2 : ρ0 is negative definite (i.e., ρ0
I and ρ0

II are negative).
Unlike the previous case, now p · ρ0 · p < 0 for every p 6= 0. Therefore, from Equation (23)
one has that c2

α and c2
β are both negative, i.e., Equation (21) has no real solution. In frequency

intervals where the effective mass is negative definite, called band gaps, elastic waves cannot
propagate without being attenuated.

The purple-shaded regions of Figure 2b, i.e., the superposition of the blue and red ones,
correspond to the band gaps of the locally resonant metamaterial. To validate this result,
we performed a Bloch–Floquet numerical analysis on the same metamaterial considered
in Figure 2. The resulting dispersion surfaces are shown in Figure 4b on the whole First
Brillouin Zone of the lattice, which in this case is a square of side 2π/`.

(a) (b)

Figure 4. (a) Dispersion surfaces on the whole First Brillouin Zone; (b) comparison between the band
gaps obtained through Bloch–Floquet analysis (left) with those predicted by homogenization (right).

Figure 4b shows, on the left, a side view of the dispersion surfaces of Figure 4a. In
purple, the band gaps obtained through Bloch-Floquet -analysis are shaded: they are in
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good agreement with those predicted by the proposed homogenization approach as the
interval of negative definition of the effective mass tensor (Figure 4b, on the right).

Case 3 : ρ0 is indefinite (i.e., ρ0
I and ρ0

II have opposite signs).
In this situation, the sign of p · ρ0 ·p cannot be established a priori. Introducing the tensor

P = pα ⊗ eI + pβ ⊗ eII, (24)

and making use of the orthogonality conditions (22), it is possible to show that

P> · ρ0 · P = (pα · ρ0 · pα)eI ⊗ eI + (pβ · ρ0 · pβ)eII ⊗ eII. (25)

Since ρ0 and P> · ρ0 · P are congruent tensors, due to Sylvester’s law of inertia, they
share the same signature. Thus, pα · ρ0 ·pα and pβ · ρ0 ·pβ (which are the eigenvalues of P> ·
ρ0 ·P) have opposite sign as the eigenvalues ρ0

I and ρ0
II of the effective mass tensor. From (23),

one can deduce that also c2
α and c2

β have different signs and, therefore, Equation (21) admits
only one real solution. Elastic waves hence propagate with a unique phase velocity (i.e.,
the positive eigenvalue) and a unique polarization vector (i.e., the associated eigenvector),
and the corresponding frequency intervals are called polarization bands.

Without loss of generality, let us suppose that ρ0
I > 0, ρ0

II < 0 and let c2
α be the positive

eigenvalue. This implies, from (23), that

pα · ρ0 · pα > 0. (26)

Making use of (16) and expressing the polarization vector as pα = cos ϕ eI + sin ϕ eII,
being that ϕ is the angle that pα forms with eI, the previous inequality can be rewritten as

ρ0
I cos2 ϕ + ρ0

II sin2 ϕ > 0, (27)

which implies:

tan2 ϕ <
ρ0

I
|ρ0

II|
. (28)

Equation (28) provides an upper bound estimation of ϕ, i.e., of the angle between the
polarization vector pα and the direction of positive effective mass eI. In particular, when
ρ0

I /ρ0
II → 0, one has ϕ→ 0 and, hence, pα → eI. This means that, when the ratio between

the positive and negative principal masses is sufficiently small, the polarization vector
becomes aligned with the principal direction of the positive effective mass. These frequency
intervals can be therefore exploited to damp out elastic waves which are not polarized as the
direction of positive principal effective mass, thus obtaining a mode conversion mechanism.

3.3. Phase Velocity Diagrams

Let us consider the same metamaterial of Figure 2b with horizontally eccentric fibers
(ϑ = 0). For small values of the frequency, the principal values of the effective mass are
positive (pass band) and quite similar, i.e., the mass tensor is almost isotropic. However,
due to the anisotropy of the acoustic tensor, the wave phase velocities cα and cβ depend
on the direction n of propagation. This can be visualized through the polar diagram of
Figure 5a, in which the two-wave phase velocities are shown in black as a function of n,
for f ∗ = 2 m/s. In the same figure, green lines represent the direction of propagation of
the elastic waves, which are given by the corresponding polarization vectors pα and pβ.
One can recognize a behavior similar to that of isotropic materials with longitudinal and
shear waves.
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(a) (b)

(c) (d)

Figure 5. Polar diagrams of effective wave phase velocity (in black), expressed in m/s, as a function
of the propagation direction for different values of frequency. Green segments give the polariza-
tion directions; (a) f ∗ = 2 m/s; (b) f ∗ = 8 m/s; (c) f ∗ = 8.8 m/s; (d) f ∗ = 11.6 m/s.

If we select a higher frequency f ∗ = 8 m/s, always belonging to a pass band, the
anisotropy of the mass tensor increases, and the wave phase velocities are modified;
see Figure 5b.

When considering a frequency belonging to a red polarization band where ρ0
II < 0,

e.g., f ∗ = 8.8 m/s, only one real phase velocity exists. In this case, the ratio ρ0
I /|ρ0

II| = 0.025
is quite small and, hence, the polarization directions of the propagating elastic waves, as
shown in Figure 5c, are aligned with the direction of positive mass.

For a higher frequency within the same polarization band, e.g., f ∗ = 11.6 m/s,
see Figure 5d, the ratio ρ0

I /|ρ0
II| = 1.12 increases, and the polarization directions are no

longer horizontal.

4. Transmission Analyses

To validate the polarization band properties investigated through asymptotic ho-
mogenization, we perform several numerical transmission analyses employing the real
geometry of the locally resonant metamaterial. For this purpose, we consider two different
geometries of the unit cell, characterized by the same geometrical dimensions (Rc/` = 0.36,
R f /` = 0.17 and e/` = 0.15) but with two different angles of eccentricity of the fibres:
ϑ = 0 and ϑ = π/4.
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The adopted geometric dimensions of the metamaterial cell allow to completely
separate the intervals in which the principal values of ρ0(ω) are negative as shown in
Figure 6b such that no complete band gaps are present.

(a)

(b) (c)

(d)

Figure 6. Transmission analysis with ϑ = 0: (a) model for the e1− transmission; (b) principal values
of the homogenized mass; (c) uI−transmission as a function of frequency; (d) contour of uI in the
first twenty cells for: (A) f ∗ = 11 m/s and (B) f ∗ = 13 m/s.

4.1. Eccentricity with ϑ = 0

As a first example, we consider an array of 40 cells with horizontally eccentric fibers
(ϑ = 0), as shown in Figure 6a. The medium is excited by a unit displacement applied on
the left end in the e1 direction, which coincides with the principal mass direction eI of the
metamaterial. Figure 6c shows the response of the system, in terms of the displacement uI
evaluated on the right end of the cell array, as a function of the reduced frequency f ∗. As it
is possible to observe, elastic waves, which are polarized in the eI direction, are damped
only in the blue shaded interval, i.e., where ρ0

I < 0.
The absorption is higher at the opening of the polarization band, i.e., where the

negative mass ρ0
I → −∞, and becomes smaller as the frequency increases. This is also

visualized through the contours of the displacement uI of the matrix, shown in Figure 6d
for f ∗ = 11 m/s (point A of Figure 6c) and f ∗ = 13 m/s (point B of Figure 6c), for the first
twenty cells of the metamaterials. For the lowest frequency (A), fifteen cells are enough
to completely damp out the propagating wave, whilst for the highest one (B), more than
twenty cells are required.

In the same figure, on the left, the contour of the horizontal displacement on a whole
unit cell is shown as well with a different color scale in order to appreciate the variation of
the uI field inside the cell leading to a locally resonant mechanism.
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We also consider the transmission, on the same system, of a unit displacement in the
e2 direction, as illustrated in Figure 7a. The response of the array is evaluated in terms
of the displacement uII of the right edge of the array, and the transmission is plotted in
Figure 7b. Since the propagating waves are polarized in the eII direction, the absorption is
now present in the red polarization bands only, i.e., when ρII is negative.

(a) (b)

Figure 7. (a) Model for the e2−transmission analysis with ϑ = 0; (b) uII−transmission as a function
of frequency.

4.2. Eccentricity with ϑ = π/4

We now consider a two-dimensional transmission problem on a domain, shown in
Figure 8a, composed of 7× 21 cells having eccentricity inclined at ϑ = π/4. We impose
a unit displacement in the eI direction only on the central portion of the left edge. The
response is evaluated in points P1 and P2, on the right edge of the body, in terms of the
displacement components in the principal direction of effective mass.

Figure 8b (resp. Figure 8c) shows the transmitted displacement uI (resp. uII) versus
frequency, evaluated in P1 (continuous lines) and P2 (dashed lines). Absorption of the
elastic waves propagating in the media can be observed in the blue polarization band for
uI (Figure 8b) and in the red ones for uII (Figure 8c). Nevertheless, the presence of a few
peaks which are not completely damped out can be observed. These peaks, occurring in
correspondence of eigenfrequencies of the holed matrix, arise due to the finite size of the
domain under analysis and are dependent on the prescribed boundary conditions.

For example, Figure 9a shows a detail of the peak occurring at f ∗ = 11.34 m/s in the
transmission curves of uI and uII in P1. It can be noticed that, even if the displacement uI is
not completely damped out in the blue polarization band, its magnitude is far lower than
the one of uII. This fact can also be qualitatively observed if one looks at the contours of uI
and uII for f ∗ = 11.34 m/s shown in Figure 9b.
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(a) (b)

(c)

Figure 8. (a) Model for the transmission analysis with ϑ = π/4; (b) transmission of uI at point P1

(continuous line) and P2 (dashed line); (c) transmission of uII at point P1 (continuous line) and P2

(dashed line).

(a) (b)

Figure 9. (a) Detail of the transmission curve of uI (blue) and uII (red) in P1 around f ∗ = 11.34 m/s.
(b) Contours of uI and uII on the matrix only for f ∗ = 11.34 m/s.
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5. Conclusions

In this work, we studied the in-plane propagation of elastic waves in a ternary locally
resonant metamaterial made of a connected stiff matrix and periodic cylindrical inclusions
consisting of heavy fibers eccentrically coated by a soft material.

Two-scale asymptotic homogenization was employed to study the effective dynamic
properties of the periodic media. The method provides a frequency-dependent mass density
tensor that, in general, is anisotropic. We established that the signature of the effective mass
tensor plays a crucial role in the dynamic properties of the media.

The propagation of elastic waves without attenuation is allowed when the effective
mass tensor is positive definite (pass bands) and is forbidden when is negative definite
(band gaps). In all the other cases, i.e., when the homogenized mass is indefinite (polariza-
tion bands), elastic waves can propagate with a unique polarization vector, whose direction
tends to that of the principal positive effective mass as the ratio between the positive and
negative effective mass tends to zero.

Finally, the results obtained through asymptotic homogenization were validated by
comparing the predicted polarization bands with several numerical transmission analyses
carried out on the real geometry of the metamaterial.

The results of the present work could help to predict polarization bands for the
design and optimization of locally resonant metamaterials that manipulate elastic wave
polarization and allow for mode-converting mechanisms. The outcome of this paper could
also be generalized to three-dimensional locally resonant metamaterials and metaplates.
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