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ABSTRACT The unpredictable nature of photovoltaic solar power generation, caused by changing weather
conditions, creates challenges for grid operators as they work to balance supply and demand. As solar power
continues to become a larger part of the energy mix, managing this intermittency will be increasingly
important. This paper focuses on identifying daily photovoltaic power production patterns to gain new
knowledge of the generation patterns throughout the year based on unsupervised learning algorithms.
The proposed data-driven model aims to extract typical daily photovoltaic power generation patterns by
transforming the high dimensional temporal features of the daily PV power output into a lower latent
feature space, which is learned by a deep learning autoencoder. Subsequently, the Partitioning Around
Medoids (PAM) clustering algorithm is employed to identify the six distinct dominant patterns. Finally,
a new algorithm is proposed to reconstruct these patterns in their original subspace. The proposed model
is applied to two distinct datasets for further analysis. The results indicate that four out of the identified
patterns in both datasets exhibit high correlation (over 95%) and temporal trends. These patterns correspond
to distinct weather conditions, such as entirely sunny, mostly sunny, cloudy, and negligible power generation
days, whichwere observed approximately 61%of the analyzed period. These typical patterns can be expected
to be observed in other locations as well. Identified PV power generation patterns can improve forecasting
models, optimize energy management systems, and aid in implementing energy storage or demand response
programs and scheduling efficiently.

INDEX TERMS Clustering algorithm, data mining, deep learning autoencoder, pattern extraction and
analysis, PV power generation, unsupervised learning.

I. INTRODUCTION
Over the past decade, there has been a significant rise in the
production of electrical energy generated from Renewable
Energy Sources (RES) to meet the ever-growing demand
for electricity while minimizing the environmental impact
of production [1], [2]. This trend is driven by the world’s
increasing awareness of the adverse effects of fossil fuel
usage on the environment, making the need for sustainable
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energy alternatives more pressing. The intermittent and fluc-
tuating nature of Photovoltaic (PV) power production poses
significant challenges to the stability and economic operation
of the existing energy management system. These challenges
include maintaining system stability and ensuring its eco-
nomic viability [2], [3], [4].

In recent years, various techniques, including physical,
statistical, andmachine learningmodels, have been employed
to analyze PV datasets and forecast solar power generation
for different time scales [1], [5]. To the best of the authors’
knowledge, no study has yet analyzed and extracted the
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patterns of PV power production. Understanding the patterns
of PV power production is crucial as it can provide valuable
insights into the intermittent and fluctuating nature of solar
power generation. Identifying and analyzing the patterns of
PV power production can lead to improving the accuracy
of solar energy forecasts, developing more robust energy
management systems, and integrating solar energy into the
existing energy mix, thereby contributing to a more sustain-
able and efficient energy system [3], [6], [7].

Given the large volume of daily PV power production data,
visually identifying similarities is impractical. Thus, an intel-
ligent algorithm is required to extract dominant patterns from
these vast datasets. An intelligent automated approach not
only efficiently identifies and analyzes significant patterns in
PV power production but also provides a more comprehen-
sive insight into the underlying patterns and trends.

Without prior knowledge about potential patterns, unsu-
pervised machine learning algorithms can be employed to
discover them. These algorithms can autonomously identify
hidden structures and patterns within the data, providing valu-
able insights and discoveries. By leveraging unsupervised
clustering learning, we can uncover novel and unexpected
patterns that may have otherwise gone unnoticed, enhancing
our understanding of daily PV power production.

However, the high dimensionality of daily PV output poses
a challenge for clustering algorithms, as it can decrease their
efficiency and performance. Dimensionality reduction tech-
niques such as unsupervised autoencoders can be applied
to overcome this issue. By reducing the dimensionality of
the input data, autoencoders help improve the efficiency and
effectiveness of the learning algorithm. Consequently, more
accurate and meaningful clustering results can be achieved,
leading to enhanced insights and better decision-making in
the analysis of PV power production data.

This paper presents a hybrid data-driven model based
on deep learning and Partitioning Around Medoids (PAM)
clustering algorithms to identify daily PV power genera-
tion patterns without prior knowledge. This article seeks
to enhance our knowledge of PV power generation and its
effective utilization, with potential applications in energy
management systems, PV power predictions, and anomaly
detection [8]. The unsupervised model presented in this
article can help identify hidden patterns and relationships
within PV generation data, enabling better decision-making
for system optimization and efficiency improvement. The
main contributions of this paper are as follows:

1) Identification of typical PV power generation patterns
using deep learning autoencoder and PAM clustering
algorithms.

2) Proposing a new algorithm for reconstructing the
extracted patterns from latent (reduced) dimensions to
the original sub-space.

3) In-depth analysis of the identified PV patterns through
diverse statistical and visualization methods to acquire
novel knowledge and insights into the production of PV
power.

The rest of this paper is organized as follows: Section II is
dedicated to the related works in the literature. Section III
details the proposed framework that utilizes unsuper-
vised machine learning techniques such as autoencoder for
dimensionality reduction and PAM for clustering analysis.
Section IV introduces the case studies and used PV datasets.
Section V showcases the outcomes achieved through the
implementation of the proposed methodology. Section VI
discusses and deliberates on the findings, including additional
analysis. Finally, Section VII concludes the paper.

II. RELATED WORK
Clustering algorithms have become a popular technique for
knowledge extraction from time series datasets in the liter-
ature [9], [10]. Time series datasets are commonly found in
many fields, such as finance, engineering, and ecology, and
can be challenging to analyze due to their dynamic nature and
high dimensionality. Clustering algorithms effectively group
similar time series data together, allowing recognize patterns
and trends that might not be immediately apparent. For exam-
ple, in anomaly detection, clusters of time series data that
deviate from the norm can indicate potential issues or anoma-
lies [11]. Moreover, these algorithms can help researchers to
gain a deeper understanding of complex time series data by
identifying underlying structures and relationships between
different variables and providing valuable insights into the
factors that influence their behavior.

K-means is a famous and widely used clustering algorithm
for its simplicity, versatility, efficiency, and interpretabil-
ity [12]. Once the time-series data has been clustered, one
can utilize various metrics to link particular patterns to each
cluster, such as the mean or median of all samples in each
group or the sample that is closer to the center of the clus-
ters [10], [13]. Reference [14] used the k-means algorithm
to cluster the residential heating consumption and presented
the centroid of each cluster as representative patterns. The
average of samples in each K-means cluster has been used
to identify various patterns for characterizing electricity load
profiles [15]. Electrical load patterns were identified and
categorized using centroid clustering models like ant colony
algorithms and K-means [16]. The study in [17] utilizes the
Gaussian mixture clustering method to identify typical daily
electricity usage patterns in buildings, selecting the average
of each cluster as representative.

High-dimensional datasets such as time series can nega-
tively impact the performance of clustering algorithms [18].
In order to tackle this issue and enhance the efficiency of algo-
rithms, dimensionality reduction techniques such as PCA,
Kernel Principal Component Analysis (KPCA), or Deep
Learning Autoencoders (DAEs) are utilized before cluster-
ing. Utilizing techniques such as PCA and Sammon Map
for dimensionality reduction prior to clustering, [19] deter-
mined load patterns by examining the center of each cluster,
which is represented by the average of samples associated
with it. Singular Value Decomposition (SVD) and K-means
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were utilized by [20] to cluster solar energy production.
Also, [21] proposed a hybrid model based on principal
component analysis and K-means for extracting residential
electricity consumption patterns by averaging the samples in
clusters using smart meters data. Inspired by the K-means
algorithm, [22] proposed a new method to cluster multivari-
ate time series via Common Principal Component Analysis
(CPCA). The typical patterns of voltage variations at the sub-
10 min time scale are identified by a hybrid model based
on KPCA and K-means [23], [24]. A hybrid model based
on convolutional Deep learning autoencoder with K-means
algorithms was proposed in [25] to drive gene expression
of high dimensional time series datasets. Reference [26]
used deep convolutional autoencoders and K-means to cluster
seismic signals. Reference [27] introduces anomaly detec-
tion techniques that rely on deep autoencoder and K-means
methods; the method employs cosine similarity to identify
normal and anomalous time series signals. RNA sequence
data is clustered and analyzed with deep learning autoencoder
as dimensionality reduction for improving the clustering effi-
ciency [28], [29]. Reference [30] proposed a hybrid model
to learn representations considering deep autoencoder for
dimensionality reduction and K-means for clustering.

Clustering algorithms have been extensively employed
in the literature for feature extraction to uncover meaning-
ful patterns and groupings in data. These techniques have
been utilized in various domains, including bioinformat-
ics, image processing, energy management systems, and
natural language processing, to improve our understanding
of complex phenomena and facilitate decision-making pro-
cesses [18], [31], [32], [33], [34], [35], [36]. Reference [35]
used K-means clustering to identify the key segments in
speech signals and then determined the emotion associated
with an input speech signal through a hybrid deep learning
model. The benefits of different clustering algorithms for
energy system optimization have been investigated in [31]
and [37]. Clustering time series data is utilized in [32] to
extract new knowledge into energy consumption patterns,
which ultimately improved the energy efficiency of the sys-
tem. Reference [38] utilized Dynamic Time Warping (DTW)
and K-means clustering algorithms to identify the four work-
ing conditions of photovoltaic array systems based on the
time series of voltage and current signals without prior knowl-
edge of the system.

Clustering techniques can improve the accuracy of pre-
diction models and anomaly detection by providing insights
into the underlying patterns and relationships within the data,
which can inform the selection and optimization of these
models.Moreover, clustering can also help to identify the out-
liers and anomalies in the data, which can be used to develop
more effective anomaly detection methods. References [11]
and [39] proposed anomaly detection models based on fuzzy
C-mean clustering. The accuracy of solar power generation
prediction models was enhanced through the clustering of
the input time series [40], [41], [42], [43]. To enhance the

precision of cloudmotion speed calculation, the classification
of different types of clouds is performed using K-means
clustering [44]. In [45], a hybrid model was proposed for
day-ahead electricity price forecasting, where a new feature
was created by applying K-means clustering on the daily
electricity price data.

Unsupervisedmachine learning algorithms such as autoen-
coder and clustering can be utilized to identify and analyze
the patterns of PV power production. These algorithms play a
crucial role in uncovering hidden structures and relationships
within the data, complementing the analysis conducted in
previous studies.

Despite the increasing utilization of machine learning tech-
niques in analyzing PV datasets and forecasting solar power
generation, there remains a gap in the literature regarding the
analysis and extraction of patterns specific to PV power pro-
duction. Addressing this research gap is therefore crucial for
advancing our understanding of solar energy and achieving a
more sustainable energy future. The main motivation of this
paper is to fill this research gap by analyzing and extracting
patterns of PV power production using unsupervised learn-
ing algorithms. By understanding these patterns, valuable
insights can be gained into the intermittent and fluctuating
nature of solar power generation.

III. METHODOLOGY
This study proposes a framework based on the standard
Knowledge-Data-Driven methodology (KDD) introduced by
Fayyad et al. [46], shown in Fig. 1, to obtain new knowledge
of PV power production patterns. The framework described
here comprises five distinct steps: preprocessing, data trans-
formation, data mining, post-processing, and knowledge
extraction. This section explains each step in details, provid-
ing a comprehensive overview of the entire process. With the
help of this framework, complex time-series data can be effi-
ciently analyzed and transformed into meaningful insights,
providing new valuable knowledge to promote PV systems.

A. PREPROCESSING
Initially, the time-series dataset X =

[
x(1), x(2), · · · , x(mn)

]
is

preprocessed by reorganizing it into anmxnmatrix that serves
as input for machine learning algorithms by (1). To mitigate
the impact ofmissing records onX , timestamps of the original
dataset are utilized to construct X̂ , ensuring that each time
point has a corresponding input value in X̂ . This step is crucial
in optimizing the performance of the models and facilitating
the extraction of valuable insights and patterns from the data.

X̂ =


x(1)1 x(1)2 · · · x(1)n

x(2)1 x(2)2 . . . x(2)n
...

...
. . .

...

x(m)1 x(m)2 · · · x(m)n

 (1)

where indices in superscripts (m) indicate the sample points
corresponding to each day, and subscript (n) indices indicate
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FIGURE 1. Proposed data-driven framework for extracting PV power
production patterns.

the features, which in this study, n equals 1440 for daily PV
power output (one sample for each min). The days that con-
tain missing values are excluded from the dataset to ensure
the integrity of the analysis.

Then, the features in dataset X̂ are standardized by remov-
ing their mean and scaling to unit variance (2).

X̂ s =
X̂−µ
√

σ 2 + ε
(2)

where, µ is the mean vector, σ is the standard deviation
vector, and ε is introduced to avoid division by zero. Stan-
dardization ensures that all features contribute equally, thus
preventing any biases towards a particular feature during the
training process.

B. DATA TRANSFORMATION
The data transformation or data reduction and projection
in the KDD process helps prepare the data for analysis by
converting it into a form that the machine learning algorithm
can interpret more efficiently [9], [46], [47]. Various tech-
niques have been proposed and used in the literature to
improve clustering algorithm performance and address the
‘‘Curse of dimensionality’’ issue, which refers to the dif-
ficulty in analyzing data with a high number of features.
Generally, dimensionality reduction methods such as PCA,
Independent Component Analysis (ICA), and Non-negative
Matrix Factorization (NMF) are used before clustering algo-
rithms [19], [21]. Furthermore, nonlinear dimensionality

FIGURE 2. Schematic presentation of deep neural network autoencoder.

reduction techniques such as KPCA and DAEs can map
high-dimensional input data to a lower-dimensional subspace
for clustering [24], [30]. These techniques are particularly
useful for capturing highly complex and nonlinear relation-
ships between input variables.

In this study, a deep-learning autoencoder is designed and
optimized with Bayesian optimization [48] to learn a latent
(compressed) representation of the input data by encoding it
into a lower-dimensional space and then decoding it back to
the original input space, as shown in Fig. 2.
An autoencoder consists of an encoder z = f (x) that

maps the input data x ∈ Rn to a lower-dimensional subspace
z ∈ Rr and a decoder h = g(z) (g : Rr

→ Rn) that takes
the encoded data and maps it back to the original subspace,
X̂ = g(f (x)) [49], [50]. A trained autoencoder found the best
mapping functions f (·) and g(·) that satisfy (3):

argmin
f ,g

m∑
i=1

L(x(i),g(f (x(i))) (3)

where L is a loss function that measures the reconstruction
error between the original input and reconstructed data that
the autoencoder aims to minimize.

C. DATA MINING
Clustering algorithms extract knowledge from time series
datasets, enabling new insights and discoveries in various
fields [51]. This study uses the PAM as a clustering algorithm
in data mining step to cluster the PV power production in
order to extract the new knowledge about them. PAM is a
variant of the well-known k-medoids algorithm, which uses
medoids instead of using means as the center of the clus-
ter. Medoids m(j) are data points that best represent their
respective cluster by having the lowest average dissimilarity
to all other points in the cluster. The PAM algorithm works
as follows [52]:
• Select the K medoids C = {C1,C2, . . . ,Ck

}.
• Calculate the dissimilarity (distance) dist(·) for each
data point x(i).

• Assign each data point to the nearest medoid C j.
• Perform pairwise swapping of medoids and non-
medoids to minimize the loss function J (C) by (4).
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J (C) =
k∑
j=1

∑
x(i)∈C j

dist(x(i),m(j)) (4)

where m(j) represents each cluster medoid. The algorithm
continues to iterate to minimize J (C), the sum of dissimi-
larities between m(j) and all other points in C j. The PAM
algorithm minimizes the loss function through a series of
swaps between medoids and non-medoid data points within
each cluster. The algorithm evaluates different configurations
of medoids and selects the one with the lowest dissimilarity
to minimize the loss function, typically measured as the
sum of dissimilarities between data points and their assigned
medoids. By iteratively updating the medoids through swaps,
PAM converges towards a configuration that improves the
clustering quality and minimizes the loss function. The pro-
cess continues until no further improvements in dissimilarity
can be achieved [53], [54].

Different distance measures such as Euclidean distance,
Manhattan distance, cosine distance, andMinkowski distance
can be used as function dist(·). Compared to other clustering
algorithms like K-means, PAM offers several advantages,
such as its ability to handle non-Euclidean distance metrics,
robustness to outliers, and the option to specify the number
of clusters beforehand. Despite its efficiency for small and
medium-sized datasets, PAM is computationally expensive
with O(k(m− k)2), particularly for larger datasets [53], [54].

D. POSTPROCESSING
The clustering algorithm performs better in a reduced dimen-
sional subspace Rr rather than the original subspace Rn.
Although obtaining labels or clusters in the original sub-
space is straightforward, the medoids in original sub-space
are not directly provided. To retrieve medoids in the original
dimension, the decoder g(·) part of DAE is used to return the
medoids to the original subspace. However, this method may
result in some information loss from the original data during
the compression process. This is because autoencoders are
designed to learn an approximation of the input data and may
introduce some amount of distortion or error in the recon-
struction process [50]. Additionally, the encoding process
may introduce some negligible noises on data points, partic-
ularly on reconstructing data that was not part of the training
phase, which could affect the accuracy of the reconstructed
data. Similarly, inverse functions in PCA or approximation
functions in KPCA are associated with some degree of error
due to information loss [19], [24], [50], [55]. Therefore, this
study introduces a new approach, algorithm 1, to retrieving
medoids from the original subspace after clustering.

The proposed algorithm retrieves the medoids in the orig-
inal subspace after clustering the data in a lower dimension.
Once the clusters are formed, the algorithm proceeds with the
following steps:

1) Set the number of clusters (k) and initialize variables.
2) Iterate over each cluster in the original subspace.
3) Calculate pairwise distances, considering the chosen

distance metric in clustering step dist(·), between

samples within the cluster and store them in a
matrix,M .

4) Calculate the sum of distances for each sample in the
cluster fromM and store it in S.

5) Find the index (idx) of the data associated with the
minimum sum of distances in S using argmin.

6) Assign the data at the corresponding index (idx) as the
pattern (the medoid) for the current cluster.

7) Repeat for all clusters.
8) Return all the retrieved patterns (medoids) for each

cluster (P).

The medoid is the data point in the cluster with the smallest
distance to all other samples within the same cluster. The pro-
posed algorithm guarantees that the medoids are not subject
to any error as they are derived directly from the original
subspace.

Algorithm 1 Identifying Medoids in Original Sub-Space
Input: Original dataset and their labels
Output: The medoids (or data points) for each cluster in
original sub-space
1: Let k = number of cluster
2: Let lk number of samples in kth cluster
3: Let P patterns (medoids) in original sub-space
4: For cluster = 1 to k do
5: Let a lk × lk matrix M, where M[i,j] is the

distance between sample i and sample j in kth

cluster
6: Let data = all samples in the cluster(kth)
7: For i = 1 to lk do
8: For j = i to lk do
9: distance = dist(data[i, :], data[j, :])
10: M[i,j] = distance
11: M[j,i] = distance
12: end for
14: Si =

∑
i
∑

jM[i, j]
15: idx← index of data associated to argmin(Si)
16: Pk ← data[idx, :]
17: end for
18: Return P

The overall time complexity of the algorithm is O(kl2n),
where l is a number of samples in the biggest cluster.
However, more efficient algorithms presented in NumPy or
SciPy [56], such as the k-d tree algorithm, can reduce the
time complexity of calculating the pairwise distance matrix
to O (kl(logl)n), making it more suitable for large datasets.

E. KNOWLEDGE EXTRACTION
The final stage is to extract new knowledge and analyze the
data mining results. In KDD process, knowledge extraction
refers to the process of identifying valuable and action-
able information or patterns from large datasets. Knowledge
extraction aims to transform raw data or patterns into
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interpretable knowledge for decision-making, prediction, and
understanding of the underlying data.

In the process of extracting typical patterns of PV power
production, different criteria can be used, such as taking the
average of all samples or the center of centroids in each
cluster. In this study, the sample closest to the cluster cen-
ter is chosen as a better representative of the cluster than
the mean [51], [52], [57]. This is because the mean can be
affected by outliers, which can skew the results. On the other
hand, the sample closest to the center of centroids is not
influenced by outliers and is more stable. Furthermore, the
closest sample provides a more accurate representation of the
typical pattern for that cluster.

Moreover, in order to gain deeper insights into the extracted
patterns and to obtain more knowledge from them, various
statistical techniques are utilized. Apart from clustering, the
Pearson correlation coefficient and cumulative distribution
function are employed to analyze the trends and correla-
tion between the patterns in two different case studies. The
Pearson correlation coefficient is a measure of the linear
relationship between two variables, and it ranges from -1 (per-
fect negative correlation) to 1 (perfect positive correlation).
By calculating the Pearson correlation coefficient between
the patterns, we can identify which ones are highly correlated
and which ones are not. The cumulative distribution function
is another statistical technique used to analyze the distribution
of data. By applying this technique to the patterns, we can
observe the behavior of the data over time and gain insights
into its characteristics, such as its variability and trends.

IV. CASE STUDY
As a case study, this paper employs real PV power genera-
tion using a public database from the National Institute of
Standards and Technology (NIST) campus in Gaithersburg,
Maryland [58], [59]. This database contains historical PV
power generations of two different PV power farms located
near each other (within a proximity of 1.25 km), Table 1. The
database has been divided into two datasets: D1 consists of
PV power generation data for a larger farmwith a rated power
of 243 kW, while D2 contains PV power generation data for
a smaller farm with a rated power of 75 kW, with one sample
recorded per minute [60]. D1 comprises a dataset spanning
four years or 1,461 days, consisting of samples of daily PV
power generation. Each sample represents data collected at
one-minute intervals, resulting in a total of 1,440 samples per
day. D2 comprises 1,095 days of daily PV production data,
covering the period from 2015 to 2017.

The PV power generation exhibits diverse output shapes
each day, as depicted in Fig. 3. This figure displays four
random days from D1, and reveals that the output patterns
vary across different months. Moreover, by zooming in on
the third sample, it can be observed that the PV output
fluctuates rapidly within each minute. For instance, it can
drop from 200 kW to less than 50 kW within a couple of
minutes. The identification of dominant patterns from a vast
amount of PV datasets is not feasible with the naked eye.

TABLE 1. Dataset description.

FIGURE 3. PV power outputs for four random days of D1.

Therefore, to overcome this challenge, a data-driven frame-
work presented in Fig. 1 is employed to detect similarities
in high-resolution daily PV datasets. Through clustering, the
framework enables the extraction of patterns linked with
each cluster, making it possible to identify and analyze the
underlying patterns.

One possible method for identifying PV power generation
patterns is by grouping them according to the seasons. How-
ever, as illustrated in Fig. 4, this approach is insufficient in
determining the typical pattern that occurs over the course of
years. For instance, the patterns observed during two different
seasons might have nearly identical shapes. Additionally, this
method fails to acknowledge the possibility of encountering
the same pattern in various seasons or days of the year.
Essentially, this approach does not take into account the
likelihood of finding the same pattern across different months
of a year. Therefore, there is a need for a more effective
method that can capture and analyze the patterns of data more
comprehensively.

The dataset was split into 80% for training the autoencoder
and 20% for testing its generalization capability. Once the
optimal autoencoder is obtained, the entire dataset is utilized
to feed into the network for further analysis.

This study employed Python as the programming lan-
guage and utilized various libraries and packages such as
NumPy and Pandas for data pre-processing, Keras and
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FIGURE 4. The average PV power production in each season for D1.

FIGURE 5. The silhouette score for PAM with Manhattan distance metric
for a different number of clusters.

TensorFlow for neural network modeling and optimization,
and Matplotlib and Seaborn for creating visualizations. The
computational resources utilized for this research included
an i7-8700K CPU, 16 GB RAM, and Nvidia RTX GeForce
2080 with 16 GB RAM. To expedite the training process, the
models were trained on a GPU experimental environment,
leveraging parallel computing capabilities and reducing train-
ing time.

V. RESULTS
The model presented in this study is applied to both datasets
separately. Initially, the data is preprocessed, and then the
DAE model is applied to capture the complex, non-linear
relationships within the dataset and reduce the dimensionality
to enhance the performance of the clustering algorithm. Fur-
thermore, using DAE allows for extracting relevant features

TABLE 2. Deep autoencoder structure.

from the data in the lower dimension, which aids in pattern
recognition and identifying dominant patterns. The outcome
of the proposedmodel can be used in a variety of applications,
including load forecasting and energy management systems.

This study extensively analyzed various neural network
architectures to identify the optimal approach for captur-
ing high spikes in the dataset. Experimental investigations
revealed that the feed-forward neural network without batch
normalization exhibited superior performance in effectively
capturing the high oscillations present in the data. Table 2
illustrates the optimized structure of the DAE through
Bayesian optimization [48] in this study. The DAE architec-
ture comprises eleven fully connected neural network layers,
utilizing the Scaled Exponential Linear Unit (SELU) activa-
tion function to ensure efficient learning. Additionally, the
sixth layer of the autoencoder serves as a bottleneck, which
maps the data to 60 dimensions with the Kullback-Leibler
(KL) divergence Regularization function. The deep neural
network was trained with the Mean Absolute Error (MSE)
loss function and Adam optimizer. The training process was
carried out with 20000 epochs with an exponential decay
learning rate resulting in an MSE of 6.922× 10−4. Although
MSE reaches a value of 7.518 × 10−4 after 4000 epochs, the
model continues to run longer to achieve even lower MSE
values. The total training time was approximately 5 hours and
35 minutes. When dealing with large datasets, incorporating
batch and layer normalization techniques can greatly enhance
the training process by reducing the number of epochs needed
and improving convergence speed.

The Kullback-Leibler (KL) divergence, also known as
relative entropy, is a statistical measure that quantifies the dif-
ference between two probability distributions. Specifically,
it calculates the expected logarithmic difference between
the probabilities of two distributions (5), where one rep-
resents the true distribution (P) and the other represents
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the approximated distribution (Q) [61]. In the context of
autoencoders, KL divergence is commonly utilized as a
regularization term in the loss function to encourage the
encoded representation of data to follow a specific probability
distribution, such as a Gaussian distribution, and enforce
sparsity [49].

DKL(P|Q) =
n∑
i=1

P (i) log
P (i)
Q (i)

(5)

By using KL divergence, the model can avoid overfit-
ting and improve its generalization performance. Moreover,
by regularizing the encoded representation of data to fol-
low a specific distribution, the model is forced to learn a
more robust and meaningful representation of the input data,
which can lead to better performance on downstream tasks,
such as clustering or classification. Additionally, using KL
divergence can make the autoencoder more interpretable,
allowing the encoded representation of data to be more easily
visualized and understood [49], [61], [62].

One of the advantages of the PAM clustering algorithm is
that it is possible to use various distance metrics to compute
the dissimilarities between samples. This study evaluated
different distance metrics, and the best results were obtained
when the Manhattan distance was used, as presented by (6).
The Manhattan distance has several advantages, including its
simplicity and computational efficiency [52]. It is also robust
to noise and outliers because it does not square the differences
between coordinates, which can lead to the amplification of
noise.

distManhattan
(
x(j),m(k)

)
=

n∑
i=1

∣∣∣x(j)i − m(k)
i

∣∣∣ (6)

where x(j) is the jth sample point, andm(k) is the k th data point
representing k th medoid.

After training the optimal autoencoder, its encoder function
f (·) maps the input data to a lower dimension to be fed
into the clustering algorithm for determining the number
of clusters, K . PAM clustering algorithm with Manhattan
distance is run for various K values to identify the optimal
number of clusters. The number of clusters is determined by
computing the silhouette score for different K values [57],
as shown in Fig. 5. However, it is worth to mention that the
optimal number of clusters may not be unique, and other
factors, such as the interpretability of the resulting clusters
or domain-specific knowledge, should also be considered.
Therefore, a cluster number of six (with silhouette score of
0.044) was chosen in this study to further explore the patterns.

Fig. 6 illustrates the dataset prior to the transformation
and data mining steps. The t-SNE visualization technique is
employed to project the high-dimensional input data (1440
dimensions) onto a two-dimensional space, providing a con-
densed representation [63].

Fig. 7 displays the results obtained when K is set to six.
This figure showcases the encoder output that is mapped to a
2D dimension using the t-SNE visualization technique. Each

cluster is represented by a distinct color, and the center of
each cluster or medoids m(j) is denoted by a cross in the
2D plane. It should be noted that the size of each cluster
is not uniform, with some containing more samples than
others. This variation in cluster size may indicate that the
data distribution is not evenly spread and may require further
investigation to uncover any underlying patterns or trends.

The projection of the dataset into a two-dimensional (2D)
space using the learned latent features by the autoencoder will
change. It is important to note that the data in the latent space,
which has 60 dimensions, exhibits greater separability. How-
ever, due to the limitations of visualizing high-dimensional
data in a 2D representation, this enhanced separability may
not be readily apparent in the resulting figures. Nonetheless,
the underlying improvements in separability contribute to the
overall effectiveness of the autoencoder in capturing mean-
ingful features and patterns within the dataset.

The clustering algorithm has revealed six distinct clusters,
each of which corresponds to a unique daily PV power gen-
eration pattern. To represent each cluster, the PAM algorithm
has computed medoids that have 60 dimensions. Unlike the
centroids in K-means, which are calculated as the mean of
all points in a cluster, medoids are actual data points from
the dataset and have the smallest average dissimilarity to
all other points in the same cluster, with non-sphere shapes.
By mapping these medoids back to the original vector space
with 1440 dimensions using the algorithm 1, the PV output
power patterns for each cluster can be obtained, as shown
in Fig. 8. Consequently, this presentation enables a clearer
understanding of the different PV power generation patterns
represented by each cluster.

The extracted PV output power patterns are associated
with different types of days and seasons, providing valuable
insights into solar energy generation. For instance, the pattern
or cluster 3, which has the highest peak value, represents
sunny days with a maximum capacity of PV power gener-
ation, while pattern or cluster 2 demonstrates mostly sunny
days. Cluster 5, on the other hand, represents partially sunny
days, which are characterized by a mix of sunshine and wind.
Patterns or clusters 1 and 6 can be categorized as mostly and
completely rainy or cloudy days, respectively. Lastly, pattern
4 is associated with zero or negligible PV generation and
contrasts most with patterns of clusters 2 and 3. Since these
patterns serve as the centers of their respective clusters, they
exhibit smoother behavior instead of having spiky shapes
with large spikes.

VI. DISCUSSION
This paper conducts further analysis to gain a deeper insight
into the identified PV power patterns. This analysis provides a
more comprehensive understanding of the characteristics and
behaviors of each pattern.

The distribution of the PV power patterns identified by
the proposed data-driven framework is not uniform. As illus-
trated in Fig. 9, some clusters contain a larger number of
samples, indicating that those patterns occur more frequently
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FIGURE 6. The original D1 dataset before the transformations and data
mining procedures.

FIGURE 7. The clustering results using DAE and PAM algorithms in two
dimensions for D1. The samples belonging to each cluster are depicted
with the same color for better distinction.

throughout the year such as P1. Conversely, clusters with
fewer samples, such as P4, represent PV power generation
patterns that occur less frequently. This uneven distribution
of patterns provides valuable insight into the varying nature
of PV power generation across different periods of the year.
Fig. 9 depicts that the patterns P1 and P6, with a maximum
power output of 110 kW and 50 kW, respectively, have a
higher frequency of occurrence compared to other patterns.
Furthermore, patterns P2 and P3, with a maximum power
output of 175 kW and 160 kW, respectively, also have a
relatively high occurrence rate. These patterns correspond to
the days with the highest PV power generation, as they have
larger peak values compared to other patterns.

A dedicated figure, depicted in Fig. 10, has been designed
to visualize the distribution of the identified PV power output
patterns across different days.

FIGURE 8. The PV power generation patterns recognized by the proposed
data-driven framework for D1.

FIGURE 9. The occurrence of PV power patterns in D1 for each year.

Fig. 10 allows for a more comprehensive understanding
of the occurrence of the patterns throughout the year. Each
color in this figure corresponds to a distinct PV pattern,
such as the green color representing P3, which is associated
with the highest PV power output, as shown in Fig. 8. The
Figure reveals that some patterns, such as P1 and P6 with a
maximum of 110 and 50 kW, are more frequent than others
and seen across a year. In the contrary, the occurrence of P2
andP3 patterns, which are related to days with high PV power
generation of up to 175 and 160 kW, respectively, is more
frequent during specific weeks of the year. P3 appears only
from week 21 to week 33, which corresponds to summers,
while P2 occurs during weeks 12 to 21 and weeks 33 to 41,
corresponding to spring and autumn. It is noteworthy that
the model did not receive any information regarding the time
of day for PV power generation but rather determined these
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FIGURE 10. The occurrence of identified PV power generation patterns
across different days in D1.

patterns by itself, which occur during specific times of the
years.

Fig. 10 provides a more detailed insights and knowledge
into PV power generation beyond the traditional approach
of considering only the average seasonal PV production.
By analyzing these patterns, new information can be extracted
about PV power generation. For instance, pattern P5, with
a peak value of 140 kW, is predominantly observed during
weeks 6 to 13, which usually corresponds to the months of
February, March, and April. After week 41, only patterns P1
and P6 are visible, with peak values of 110 kW and 50 kW,
respectively. Furthermore, these patterns offer additional
information about the sequence of PV power generation,
which can be quantified by considering the characteristics of
each pattern.

Fig. 11 shows the PV power generation for 12 consecutive
days in 2018 with corresponding patterns for production of
each day. This figure displays the daily PV power generation,
color-coded to correspond with the identified daily patterns.
As an example, the PV power pattern associated with the
highest peak values, P3, is highlighted in green in all the
figures. The PV power time-series in Fig. 11 has a high
resolution of one sample per minute. This level of detail
makes it possible to improve the approximation of daily
PV production using the six identified patterns, as shown
in the figure. This information can also be beneficial for
energy management systems that incorporate storage units,
electric vehicle charging stations, or a day-ahead PV power
prediction.

To further analyze the extracted PV power output pat-
terns, the proposed method is also applied to D2, resulting
in the identification of six distinct patterns, as shown
in Fig. 12.

TABLE 3. Sorted identified patterns based on peak values.

To investigate the correlation between the patterns
extracted from these two datasets, a correlation matrix is
calculated and presented in Fig. 13. The patterns denoted
from 1 to 6 correspond to datasetD1, whereas patterns labeled
from 7 to 12 correspond to dataset D2. The top-left square
in this figure represents the inner Pearson correlation of the
identified patterns inD1, while the bottom-right square repre-
sents the inner Pearson correlation of the identified patterns in
D2. The correlation coefficients between patterns inD1 reveal
that P1 and P6 have a higher correlation coefficient, as well
as P2 with P5. Conversely, P3 displays the lowest correlation
coefficient with other patterns. High correlation coefficients
are observed between patterns P7 and P11, as well as between
P10 and P12 in D2.

The correlation between observed patterns inD1 andD2 is
displayed in the bottom-left part of the Fig. 13. The red cir-
cles highlight the highly correlated patterns between the two
datasets. Specifically, P1 with P7, P2 with P10, P3 with P8, P5
with P12, and P6 with P11 show high correlation coefficients.
On the other hand, P4 and P9 have zero correlation with
other patterns since they always have a constant value of zero,
indicating no PV power generation. Additionally, sorting the
patterns in each dataset based on their peak values, as shown
in Table 3, also supports the high correlation between P3 and
P8, as they both have the highest peak values.

The Pearson correlation matrix does not consider the cor-
relation of each pattern with respect to time. The temporal
correlation between patterns is taken into account by calcu-
lating the cumulative summation of each pattern with respect
to time. This requires normalizing the patterns in each dataset
based on their maximum values, followed by computing their
cumulative summations, as shown in Fig. 14. This approach
provides additional information on the temporal correlations
between the patterns, which cannot be inferred from the
Pearson correlation matrix alone. It can be observed from this
figure that the correlated patterns exhibit similar trends and
follow similar progressions over time, even if these patterns
are obtained from two distinct PV plants with varying rated
power.

It can be inferred from the figure that there exist some
patterns, such as P2 (P10), P3 (P8), P4 (P9), and P6 (P11),
which have high correlations and similar temporal trends
in both datasets after normalization. These patterns can be
categorized as typical patterns. Moreover, they can be inter-
preted as representing different weather conditions, including
mostly sunny, totally sunny, zero or negligible generations,
and cloudy days, respectively. Considering dataset D1, these
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FIGURE 11. The PV power generation and the corresponding patterns for each day’s production in 2018. the daily PV power generation,
color-coded to correspond with the identified patterns.

FIGURE 12. The PV power generation patterns recognized by the
proposed data-driven framework for D2 with rated power of 75 kW.

patterns have occurred in approximately 61% of the total
time period analyzed. This information provides valuable
insights into the varying levels of PV power production based
on the prevailing weather conditions. On the other hand,
the remaining patterns can be classified as local patterns.
These typical patterns are anticipated to be observed in other
locations as well since they represent common trends in PV
power generation.

The potential applications of the identified PV power
generation patterns are significant. They can be utilized to
enhance the design and operation of PV systems by providing
a deeper understanding of their power generation patterns.
In addition, they can help to identify opportunities for imple-
menting energy storage or demand response programs and
scheduling, which can lead to more efficient energy man-
agement strategies [3], [6], [7], [8]. Moreover, these patterns
can contribute to the development of more precise forecasting

FIGURE 13. The correlation matrix between the identified patterns from
two datasets, and D2. The patterns labeled from 1 to 6 are associated
with D1, while patterns labeled from 7 to 12 are associated with D2.

FIGURE 14. Cumulative distribution of patterns identified over time.

models, which can ultimately result in more accurate predic-
tions of PV power output.
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VII. CONCLUSION
This paper presented PV power generation patterns extracted
by the proposed data-driven framework from oscillated daily
PV power outputs per minute. The proposed data-driven
model employs a deep autoencoder to capture complex and
non-linear relationship in input dataset, reducing 1440 dimen-
sions of the original dataset to a lower 60-dimensional latent
feature space. The partitioning around medoids algorithm
then clusters the data into six distinct groups. Using the
proposed new algorithm, the center, or medoid closest to the
center of each cluster, is determined in the original subspace
to represent each cluster as its pattern. Thismodel was applied
to two real PV plant datasets with different rated power
separately, identifying six distinct daily PV power genera-
tion patterns for each PV plant. Compared to the seasonal
average behavior, these patterns provide new and more pro-
found knowledge and insights into the daily PV power output
repeated over the years. Statistical analysis showed that four
patterns from the first dataset exhibited high correlation and
distribution trends with the identified patterns from the sec-
ond dataset, making them typical patterns that are expected
to be observed in other locations as well.

The proposed framework is computationally efficient, scal-
able, and robust, making it ideal for identifying typical
patterns in big data. It can provide critical insights and new
knowledge into underlying patterns and trends in PV power
generation, enabling informed decision-making in areas like
energy management, PV hosting capacity determination, and
policy-making. Furthermore, the flexibility of framework
allows it to adapt to various datasets and applications, increas-
ing its potential utility since it uses only one variable as
an input. However, the challenge of applying the proposed
method is designing and hyperparameter tuning a suitable
deep learning autoencoder requires significant computational
resources and is a time-consuming process. This is due to the
complex architecture of deep learning models and the need to
optimize numerous hyperparameters to achieve satisfactory
performance. The availability of data poses another limitation
when applying the proposed method. These techniques rely
heavily on the availability of large and diverse datasets to
effectively capture patterns, learn representations, and make
accurate discoveries. Ensuring access to such datasets is
essential for successfully applying these techniques.
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