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Abstract— We analyzed the earthquake density of the Geysers
geothermal field (California) as a function of time and space over
a decade. We grouped parts of the volume of the geothermal
area sharing similar earthquake rates over time; in this way,
we found three concentric spatial domains centered on the
principal exploitation area and labeled as A, B, and C, moving
from the inner- to the outermost domain and characterized
by peculiar time-history of the earthquake rates and different
stress conditions. The earthquake density decreases moving
from domains A to C, and different slopes of the earthquake
frequency-magnitude distribution appear for the domains A–B
and domain C. Stress field propagates via a diffusive mechanism
up to about 3.5 km from the center of the geothermal area
outwards, and a mean hydraulic diffusivity of about 0.05 m2/s
is estimated; at larger distances, a poroelastic stress transfer
dominates. Our approach can identify spatiotemporal patterns of
physical mechanisms driving induced seismicity and can, in prin-
ciple, be extended to other settings of man-induced earthquakes.
Moreover, it potentially allows a differentiated assessment of the
seismic risk within each domain, as well as the identification of
domains with no or minimal induced seismicity.

Index Terms— Clustering, Coulomb stress, induced earth-
quakes, pore pressure, the Geysers geothermal field.

I. INTRODUCTION

GEOTHERMAL energy exploits the heat from inner sub-
strates of the Earth’s crust by pumping water from the

surface. This facilitates the heat exchange between the hotter
substrates and the pumped water to generate high-pressure
steam which is conveyed through pipelines up to the power
plant. Here, the steam is transformed into energy in the form
of heat or electricity [1]. This simplified principle of operation
covers both shallow (usually less than 300 m) and deep
geothermal (3–5 km) technologies [1] producing electrical
power, heat, cold water, and hot water [2].

Different from other traditional renewable energy sources
[(RESs)—mainly wind or photovoltaic], geothermal energy
is less affected by intermittent power generation issues
mainly related to intrinsic unpredictability due to weather
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behavior [3], [4]. In addition, existing geothermal heat and
power technologies could deliver substantial cost-efficient
base-load energy [5], leading to long-term decarbonization [6].
For these reasons, geothermal energy could play a crucial
role within the set of greenhouse gas mitigation policies in
Europe [7] and it has grown worldwide, in terms of installed
capacity, over the years [3], [8]. Geothermal energy in the past
decade has become a significant source of electricity and heat
with prosperous development in countries such as Italy [1],
Iceland [9], and the USA [10]. Its future potential exploitation
has also been evaluated with different perspectives in other
countries such as China [11], [12], [13], Bangladesh [14], [15],
and Indonesia [16] given their location in highly seismically
active areas (such as the Ring of Fire in the Pacific Ocean and
the Tibetan Plateau) and additional funding from the UN for
clean growth of developing countries [17].

However, some limitations to this technology should be
considered: appropriate locations require a deep geologi-
cal assessment to better evaluate the economic potential of
sites for their extensive exploitation with new installations,
as reported in [18], which serves as a useful working and
decision-making basis for stakeholders. Besides, nowadays,
it is difficult to fully understand the legal system regarding
geothermal energy in a given European country [19] without
some acquaintance with the overarching EU framework [20].
Furthermore, geothermal energy plants are classified as
“renewable” only if the heat extraction rate does not exceed the
reservoir replenishment rate [21], [22]. Exploitation through
wells, sometimes using downhole pumps in the case of non-
electrical uses, leads to the extraction of very large quantities
of fluid and consequently to a reduction or depletion of the
geothermal resource in place [1]. Finally, seismicity produced
by human activities (i.e., induced seismicity) [23], [24] has
been widely reported over the past years, not limited to
geothermal field exploitation [25], causing human discomfort
and temporary stops to the operation of power plants.

Geoscience data acquisition has played a key role in recent
academic research. Therefore, more sophisticated Earth obser-
vation systems, such as satellite imaging, have become more
and more popular in the past decades [26] resulting in higher
availability and spread of open datasets [27], [28]. In this
regard, earthquake detection and recording in geothermal areas
represent a standard tool for risk monitoring [29], [30], [31].
In particular, a comprehensive database of earthquakes has
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been collected from data recorded by the seismic geo-
phone network at the enhanced geothermal system (EGS) of
The Geysers, USA.

The Geysers geothermal power plant is currently the
largest single geothermal power installation in the world, and
California, where high-temperature resources at the Geysers,
the Salton Sea, and Coso are located, has an installed name-
plate capacity of 2,627 MW of geothermal power, which is
72% of the total U.S. geothermal power production [32].
The power plant generates electricity from 22 geothermal
power plants, which are spread across 45 square miles of
the geothermal field [33]. Recent studies have utilized a
range of remote-sensing techniques to better understand the
subsurface structure and dynamics of the EGS [34], while
other studies include satellite-based synthetic aperture radar
(SAR) data [35], satellite-based infrared thermal images [36],
and seismic tomography [37].

In particular, studies on the relation between microearth-
quakes (MEQs) and steam production have been conducted
since the mid-1970s [38]. In the past, The Geysers was
characterized by a low seismic activity. Since the beginning
of the utilization of the hot water field, a significant increase
in the frequency of micro- to medium-magnitude seismic
events [39] has been detected. Through the years, The Geysers
suffered a long-term reduction of pressure and a resulting
decrease in steam production, which was counteracted by the
installation of water injection wells that caused an increase
in seismic activity [40]. The correlation between the injected
amount of water over the years and MEQs has been largely
studied [41], [42], but the causal link between the different
exogenous sources and earthquake nucleation is not com-
pletely explained yet. The high seismicity rate at The Geysers
is being constantly monitored by a robust local high-quality
(and high-resolution) seismic monitoring system [43].

In this article, we propose, by exploiting the available
historical earthquake dataset at The Geysers, an unsupervised
machine-learning (ML)-based approach that employs tempo-
ral data structures as indicators of spatial behavior and the
response of the geothermal field. This approach should be
considered innovative as it is purely data-driven and relies
on a reduced number of parameters. The proposed method
is capable of detecting patterns of the seismicity induced by
the different underlying stress fields, providing a framework
to model the relation between fluid injection and earthquake
nucleation and to spatially constrain the effects of energy
production in terms of seismic risk.

The article is structured as follows. The case study and the
dataset are presented in Section II, the adopted methodology
is proposed in Sections III and IV, while the results and
further analysis are described in Sections V–VII together with
an extended discussion in Section VIII. Finally, Section IX
presents the main conclusions and the future perspectives of
this work.

II. CASE STUDY

The Geysers EGS is characterized by a complex network of
faults and fractures that facilitates the circulation of hot fluids
through the subsurface and accommodates via fault slipping
the stress increase induced by the industrial processes con-

Fig. 1. Map of The Geysers EGS, California, USA. Earthquake density over
the analyzed decade is displayed together with the position of the injection
wells (stars), seismic stations (squares), and faults (dashed lines).

nected to the energy production. Geologically, the geothermal
field is bordered by two major regional faults. One of those,
the Maacama Fault, is considered to be active based on an
average slip rate of about 10–15 mm/year [44], whereas the
other, the Collayomi Fault, is currently considered to be almost
inactive [45]. The Geysers reservoir is mostly composed of
highly fractured greywacke with low porosity (1%–2%) that
is capped by a geological structure formed by a mixture of
low-permeability rocks and silica depositions [46]. In Fig. 1,
the spatial density of the earthquakes in the area is plotted
together with the location of water injection wells and seismic
stations.

Our work focuses on the analysis of an earthquake catalog
recorded at The Geysers EGS. The dataset has been provided
by the Northern California Earthquake Data Center (NCEDC)
which is an archive and distribution center for earthquake data
recorded in Northern and Central California [43]. This archive
is a joint project of the Berkley Seismology Laboratory (BSL)
and the US Geological Survey (USGS) and it allows for
specific queries on the entire dataset related to the geographical
location, depth, event time, and magnitude of the recorded
earthquakes.

For this work, we selected earthquakes from the NCEDC
occurring between January 2006 and June 2016 (126 months)
in the region between 38.7◦ and 38.9◦ North, and between
−122.95◦ and −122.65◦ West, that encloses all injection wells.
In total, our dataset is composed of 421 344 earthquakes
and includes seismicity up to about 10 km from the wells.
The analyzed period includes about two cycles of water
injection, during which the largest earthquake rate ever was
detected [42], [47]. Moreover, in the selected time interval,
the overall water injection level oscillates around a nearly
constant value [42], [47] allowing for critical analysis of the
detected seismicity in relationship with the main triggering
factor during a “stationary” phase.

III. EARTHQUAKE DENSITY TIME HISTORY

To analyze the earthquake data contained in the studied
dataset, we perform a few aggregatory steps. First, we divide
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Fig. 2. Block scheme representing the data manipulation pipeline starting
from the original catalog and finishing with the definition of spatial domains.

the control volume into unit volumes with the size of 0.25◦
×

0.25◦
× 0.25 km (long-lat-depth) each, creating a grid of indi-

vidual cells that contain a number of seismic events each. For
each month of the observations (that is between January 2006
and June 2016), we sum the number of events occurring
in each cell in that time frame, and as a result, a spatial
density dataset with a one-month time-step is produced. Then,
by extracting the data of a single cell and arranging them
in chronological order, we create an earthquake density time
history (DTH) of each unit volume. DTH of a cell is thus the
monthly rate of the earthquake that nucleates in that cell. The
division units of the cell volume were fixed after a sensitivity
analysis, in which the effects of the cell size on the dynamic
ranges of the DTHs and the spatial sampling of the EGS
volume were evaluated (large cells imply better-sampled DTHs
but worse spatial resolution and vice versa). The adopted cell
size was eventually fixed as the best tradeoff between the two
effects. Based on the same principle, the temporal aggregation
unit has been set to one month, which is also consistent
with the sampling of the available water injection data. This
extraction and ordering procedure has been performed for
all the cells in the analyzed dataset, resulting in a total
of 5254 DTH series. The entire pipeline is summarized by
a block scheme in Fig. 2.

In the next step of the analysis, we group by a clustering
approach the cells based on the similarity of the DTH. For
this aim, we treat each DTH as a 126-D vector, where each
dimension is the earthquake rate in a month. Each vector is
then normalized by dividing it by its largest component, and
the Euclidean distance between each pair of these normalized
vectors is calculated as follows:

D2(p, q) =

√∑
i

(pi − qi )2 (1)

where p and q define a pair of cells and D2 is the Euclidean
distance. We define in this way a “normalized distance matrix”
that describes the similarity between all pairs of cells.

IV. CLUSTERING
Clustering algorithms are at the core of ML techniques and

data analysis [48]. They have a conceptually simple task of
organizing a set of objects into a number of groups, in a way
that members of the same group (or cluster) are more similar
to each other than to the members of other groups. The main
problem regarding this type of analysis is the creation and
implementation of a proper similarity metric that can be used
to divide the dataset [49]. This metric is often referred to as
the “clustering criterion” [50]. Currently, there are countless
implementations of clustering algorithms and the definition
of this metric can be approached from numerous different
perspectives. In this research activity, we choose to proceed
with hierarchical agglomerative clustering (HAC), which can
provide information on the similarities between objects in the
data space at all levels of aggregation, giving a clear structure
of the data space [51] and has been successfully applied in
different research areas to identify groups of signals emitted
from a common source [52], [53], [54], [55], [56], [57].

HAC builds a binary merge tree (dendrogram) starting from
the data point located at the ends (leaves) until the root node
is reached. The relation between any given subsets of the
merged dataset is called “linkage distance” [51]. Based on this
criterion, the members are grouped together, with a limit on the
maximum allowed distance between the clusters. Depending
on the order of operation, an agglomerative (bottom-up) or a
divisive (top-down) procedure can be defined. Here, we use the
bottom-up technique, so we group at first very similar objects.

HAC is then performed on the normalized distance matrix
calculated above. With the metric defined, the linkage distance
criterion also has to be established. We use Ward’s criterion,
which has the advantage of being less sensitive to the out-
liers [58]. This method merges two clusters Si and S j that
have the smallest cost to merge measured by the function [59]

1(Si , S j ) =
NSi NS j

NSi + NS j

d(cSi , cS j ) (2)

where NSi, j and cSi, j represent the cardinality and centroid of
the clusters Si, j , and d() is a function returning the distances
between the centroids of the two clusters.

Stopping the aggregation of objects in the HAC implies
also the definition of the clusters. However, the threshold
distance at which the merging should be stopped is not known
a priori. For this aim, here, we first estimate the number of
clusters to be extracted and then define the distance threshold
accordingly: it will be the value of Ward’s distance of (2) at
which the merging must be stopped.

Finally, the number of clusters is estimated through a
sensitivity analysis using the Silhouette coefficient, which for
each sample is defined as follows:

s =
bs − as

max(as, bs)
(3)

where as is the mean distance between a sample and all other
points in the same cluster and bs is the mean distance between
a sample and all the other samples in the nearest cluster [60].
The calculation of s is repeated for several numbers of clusters,
and the optimal is chosen corresponding to the maximum
value of s.
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Fig. 3. Silhouette coefficient for different number of clusters, best distribution
is related to the number of clusters equal to 5.

As it can be seen in Fig. 3, the best distribution is
achieved for five clusters. We fix the distance threshold
accordingly, and HAC consequently assigns a cluster label
ranging between A and E to each cell. However, for the
rest of the article, we will discard clusters D and E. The
reason is that they involve a very limited number of earth-
quakes (204 and 2554, respectively), corresponding to the
0.1% and 0.6% of the whole catalog, despite a high number of
cells that belong to these clusters (2304 and 203, respectively).
In particular, cluster D is composed of cells with at most one
earthquake per month (including cells with no earthquakes
over the decade); the earthquakes belonging to this cluster
are spatially spread over a wide area well outside the core
region hosting the injection wells, while the cells with no
earthquakes are mostly located at depths larger than 5 km.
Cluster E shows DTHs with only a large peak in one month in
the analyzed decade, and hypocenters are mostly concentrated
at a few spatial spots within the injection region and at depths
around 4 km or more. Given the lack of freely available
detailed information on the local injection histories, we can
only hypothesize this behavior is presumably connected to
peculiar local injection operations. As we are interested in
the long-term seismic response of the EGS as a whole and
in the definition of large-scale spatial domains, we focus on
clusters A–C.

To estimate the information lost by discarding these two
clusters, we have applied the principal component analy-
sis (PCA) to the mixture composed of the normalized DTHs of
the five clusters. PCA projects data from the original feature
space into the space of the principal components, providing
also the data variance explained by each component [61].
It is usually applied for data reduction, which is performed
to minimize the data variance lost in the projection. We found
that discarding two dimensions corresponding to clusters D
and E implies a 9% loss of the variance of the mixtures
made by the normalized DTHs of the five clusters (most of
the variance of this 2-D space is due to the large one-point
maximum of DTH-E). This means that the majority of the
information on the seismic response of the system EGS is
described by clusters A–C. A similar or even larger loss of
variance when reducing data dimension via PCA has been
adopted also by other authors for the selection of the dimen-
sion reduction [55], [62], [63].

Fig. 4. Mean normalized DTH and SD range (in blue) of the chosen clusters;
each plotted value is a mean (or SD) across all the samples present in a domain
for a given month.

TABLE I
NUMBER OF CELLS AND EARTHQUAKES IN EACH DOMAIN

In Fig. 4, the mean normalized DTH of the three
selected clusters are plotted and indicated as DTH-A, DTH-B,
and DTH-C. To account for time-changing instrumental setup
and station coverage, in the definition of the mean DTHs A–C,
only events with magnitude above the magnitude of complete-
ness have been selected, which was yearly estimated via the
maximum curvature method [64] and varied in the decade in
the range (0.3–0.9).

By clustering, we have thus defined three main spatial
domains of the volume of the EGS that are composed of the
cells of clusters A–C. The number of cells and earthquakes
composing each domain is reported in Table I. We remark
that the vast majority of earthquakes occur in domain A, which
is the domain with the smallest number of nodes. In Fig. 5,
the spatial distribution of these domains is displayed in its top
view (upper side) and sectional view (lower side) in the under-
ground. The three domains are roughly concentric, with A
being the innermost domain and C the outermost domain.
Domain A encloses most of the injection wells, in line with the
fact that most earthquakes nucleate in that region. Domain A
is elongated in the NW-SE direction and shows two main
maxima, in a very similar manner as the spatial distribution
of the overall earthquake density. Domain A appears to be
concentrated in-depth, whereas domains B and C contain cells
also at shallow depths. For all domains, the depth of the nodes
ranges mostly between 0 and 6 km, although only domain C
contains nodes with larger depths.
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Fig. 5. Spatial earthquake density (in log scale) in defined domains. In the top row, the top-down view is presented, and in the bottom—the side view.
For comparison purposes, the contour plot in the background (in gray) displays the overall density of earthquakes (in log scale) in the Geysers region in the
selected decade. Blue dots mark the position of the injection wells. Green markers show the position of the cells hosting the largest number of earthquakes
over the decade in each domain.

It must be underlined that clustering was performed while
only employing DTHs of all the cells as a single input,
meaning that any possible information about the cell’s spatial
location was not included in the clustering analysis. Despite
that, the three selected clusters, which have not been created
under supervision, are surprisingly composed of cells that
are spatially aggregated. This allowed us to define spatial
domains providing also an indirect indication that close points
in the volume of EGS experience similar stress fields and that
local intercell heterogeneities in the seismic response mostly
contribute as a second-order effect to the DTHs.

V. DENSITY TIME HISTORIES AND WATER
INJECTION HISTORY

Section IV shows that seismicity at EGS can be grouped
into three main spatial domains based on the similarity of
the unit cells DTHs. Here, we further analyze the relation-
ship between the three main DTHs and the overall water
injection history (WIH). In Figs. 6 and 7, the three chosen
mean DTHs and WIH are overlapped both in the time and
frequency domains. DTH-A and DTH-B show an increase of
the earthquake rate broadly in the time interval 2009–2011,
which matches the beginning of a new injection cycle and is
visible as a step-like increase in the yearly WIH in this time
interval, while a decrease in the earthquake rate appears at the
end of the injection cycle (2014–2016). WIH is dominated by
components with periods of 10–16 months, which originates
from the seasonal modulation of the injected water, with a
larger amount of water injected in the winter time [38], [65].
These low-frequency components dominate also the spectra of

Fig. 6. Mean DTH of the domains A–C together with the monthly and yearly
water injection history.

DTH-A–C and are especially visible in DTH-A, but in a less
evident fashion, as expected considering the nonlinearity and
self-similarity of the seismic response. It is straightforward
to locate in domain A the effective source triggering the
earthquakes, that is, the local pressure increase due to EGS
water injections. Considering the mean injection well depth
of 2.6 km [47], in Fig. 5, it can be seen that the location of
the wells closely matches the volume defined by domain A.
Specifically, we identify the cell with the largest maximum
in the DTH as the one hosting (or the closest to) the source
of stress change that induces the earthquakes, as it is clearly
shown in Fig. 5. We define this cell as S-A and its position
is marked with a green marker in the same figure. Here, the
positions of the cells of domains B and C with the largest
DTH maxima are displayed, as well; they will be referred to
as S-B and S-C, respectively.
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Fig. 7. Spectra of mean DTH of domains A–C and of the monthly and
yearly water injection history. Spectra have been calculated after high-pass
filtering the corresponding DTH in the time domain with a cut-off period of
three years to remove the step-like effect in the spectrum. Spectra have been
normalized to the maxima to compare the relative amplitudes of the frequency
peaks.

By looking at the monthly trends depicted in Fig. 6, in some
particular years, it is a remarkable an apparent phase lag
between the monthly WIH (dashed line) and mean DTHs
(especially those of domains A and B). This is confirmed also
by the Pearson correlation coefficient between WIH and DTHs
that shows a weak inverse correlation (−0.10 for domain A,
−0.12 for B, and −0.09 for C), which in turn could indicate a
possible delayed triggering mechanism between the WIH and
the DTHs.

VI. COULOMB STRESS ESTIMATES

In this section, we try to connect the spatial variability of
the earthquake rates over the EGS volume with the amplitude
of the triggering stress. Dieterich [66] developed a model
that relates changes in Coulomb stress to changes in the
seismicity rate. The model is based on the assumption that the
sources of the earthquakes are ruled by a rate-and-state friction
law [67]; a population of earthquakes ruled by this law evolves
through instability in a way that for constant stressing rate,
a background seismicity with constant rate is triggered [68].
Coulomb stress τ is defined as

τ = τS + f (σ + p) (4)

where τS is the shear stress acting on a plane, σ is the
normal stress, f is the friction coefficient, and p is the pore
pressure [67].

Dietrich’s model leads to a law describing the time
evolution of the seismicity rate R as a function of the
Coulomb stress that is a first-order nonlinear differential
equation [68]

d R
dt

=
R
ta

(
τ̇

τ̇0
−R

)
(5)

where τ̇ is the Coulomb stressing rate, τ̇0 is the back-
ground stressing rate, and ta is a characteristic decay time
defined as

ta ≡
aσ̄

τ̇0
(6)

where a is a constitutive parameter quantifying the direct effect
on fault slip rate in the rate-state friction law, and σ̄ is the
background effective normal stress [68].

If the stressing rate τ̇ is much larger than the background
stressing rate τ̇0, then τ̇ /τ̇0 ≫ R, and (5) becomes [68]

R ≈ e1τ/aσ̄ (7)

where 1τ is the change in Coulomb stress. Here, we assume
that the changes of the product aσ̄ over the volume of
the EGS are negligible with respect to the spatial changes
of 1τ . Under this assumption, aσ̄ can be considered con-
stant over the whole volume of EGS, and the ratio CR

between the Coulomb stresses at two different positions of the
volume can be directly connected to the different earthquake
rates

CR =
log R j

log Ri
=

1τ j

1τi
(8)

where Ri, j and 1τi, j are, respectively, the earthquake rates
and the change in the Coulomb stress at two positions of the
volume. In summary, we thus assume that as follows.

1) The stressing rate is far above the background [68].
2) The product between the constitutive parameter a and

the background effective normal stress σ̄ is fairly con-
stant over the EGS volume.

Many authors estimated typical values of aσ̄ in the order
of 104

− 105 Pa and postulated a relevant contribution of
the pore pressure at seismogenic depths counteracting the
lithostatic loading (see [69], [70] and references therein). For
potential spatial variability of aσ̄ of the same order of magni-
tude of the product itself, a 1τ well larger than 104

− 105 Pa
should guarantee that possible heterogeneity of aσ̄ over the
volume would be likely negligible. The existence of spatial
domains with similar DTHs supports this assumption, as a
strong local heterogeneity in the seismic response would
sharply differentiate DTHs of nearby cells even for common
stress histories. In general, both assumptions 1 and 2 are
expected to be especially true for high injection rates, that
is, at the early stages of the injection cycle [68].

We apply (8) using as Ri the maximum of the DTH of
each cell and as R j the maximum of the DTH of a reference
cell that we choose as S-A. Therefore, (8) provides us an
estimate of the Coulomb stress change between all cells and
the reference cell S-A. Starting from the estimates of CR for
all cells, we calculate their distribution, distinguishing the cells
belonging to the three domains. For the calculation of CR ,
we properly compensated the earthquake rates of nodes of
domain C to account for the higher magnitude of completeness
of this domain (1.1) than the other two domains (0.9). The
results are displayed in Fig. 8(a).

The figure shows that the three domains appear to be distin-
guished also by different Coulomb stress ratios. In other words,
the boundaries of the domains are also roughly defined by the
Coulomb stress that is experienced by the corresponding cells.
In detail, we see that cells of domain A are mostly affected
by a Coulomb stress ranging between the stress experienced
by the reference cell and two orders of magnitude lower.
Differently, Coulomb stresses affecting cells of domain B
are between 2 and 5 orders of magnitude lower than the
reference level. Cells with an even larger stress decrease from
the reference cell mostly belong to domain C.
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Fig. 8. (a) Distribution of the Coulomb stress ratio (in log scale) between all
points of each domain of the EGS volume and a reference position, that is,
the cell S-A. (b)–(d) Theoretical pressure drop distributions predicted after
12 days by a pore pressure diffusive model with constant water injection
at S-A adopting a diffusivity of (b) D = 0.05 m2/s, (c) D = 0.5 m2/s, and
(d) D = 10 m2/s. All curves are normalized by the corresponding distribution
maximum.

In the subplots Fig. 8(b)–(d) of the same figure, we have dis-
played the theoretical stress change experienced by all cells for
a constant injection rate q (in Kg/s) at S-A propagating through
the volume via pore pressure diffusion. The equation ruling the
spatiotemporal pressure propagation is [68], [71], [72]

P(r, t) =
q N

ρ f 4π Dr
erfc

(
r

2
√

Dt

)
(9)

where r is the distance from the injection point, t is the
time from the injection start, D is the hydraulic diffusivity,
N is a combination of poroelastic parameters with the
dimension of Pa, ρ f is the mass density of the injected
fluid, and erfc(x) = 1 – erf(x), with erf the error func-
tion. In the approximation of low-porosity crystalline rocks,
N = [φ/K f + α/Kg]

−1, with φ porosity, α the Biot–Willis
coefficient of the porous medium, K f,g the bulk moduli
of the fluid and grain material, respectively [73]. Using φ

= 0.02 [40], α = 0.3 [68], [73], K f = 2.3 ×109 Pa, and
Kg = 7 ×1010 Pa [73], it results N ≃ 8 × 1011 Pa.

We defined q ≡ q/ρ f (which has the dimension of m3/s)
and evaluated (9) using different values of q (in the range
[0.01–10] m3/s) and t (between t = 5 days and several
months). Similarly, we let D range in [0.01–10] m2/s, which
covers most of the interval spanned by D in the crust [74].
Eventually, the combination of parameters that maximizes the
overlap with the observed stress change distributions in the
least-square sense was selected.

We found that the best fit between observed and theoretical
stress change due to a diffusive pressure front propagation
is observed for q0 = 5 m3/s, D0 = 0.05 m2/s, and t0 =

12 days [Fig. 8(b)]. For these values, the model predicts
the main characteristics of the frequency distributions for the
points of domains A and B (maximum at low-pressure changes
for domain A and frequency decrease at larger pressure
changes, shifted maximum for domain B). Instead, pressure
changes at domain C appear to be mostly underestimated,

Fig. 9. GR distribution calculated using the earthquakes nucleated in the
three domains. The linear fitting has been computed in the magnitude range
(MC + 0.2)–3.

suggesting that a pure pore-pressure diffusive model with
the selected parameters cannot explain the observed seismic-
ity. To match the observed earthquake ratio distribution of
domain C, we need to use D = 10 m2/s [Fig. 8(d)]; in this
case, however, any difference in the seismicity rate of the
three domains would basically disappear (the three earthquake
ratio distributions are nearly overlapped), in contrast with the
observations. As expected, an increase of D leads to a faster
pressure front propagation and then to larger stress changes
[see Fig. 8(b)–(d)]. We remark that t0 must be intended as
an indicative time interval during which the diffusive pro-
cess acts, given the assumed idealization that the extended
injection area is approximated with a point. Remarkably,
dividing q0 by the number of injection wells (about 70),
we found an injection rate per well of about 0.07 m3/s,
which corresponds to about 6000 m3/day that is close to
the typical injection peak rate at a well [40], [75], whereas
the mean water injection rate over the considered decade
is about 110 × 109 lbs per year [42] corresponding to
about 1.4 m3/s.

VII. b-VALUE

To test this distinction of the domains from the point of
view of the magnitude of the stress field, we calculated the
b-value of the Gutenberg–Richter (GR) distribution (a measure
of the frequency of earthquakes as a function of magnitude)
separately for the three domains. In the GR distribution, the
number of earthquake N scales with the magnitude M with
the form [76]

log N (M) = a−bM (10)

where N (M) is the number of earthquakes with a magnitude
equal to or larger than M and the coefficient b rules the
ratio between the frequencies of small and large earthquakes.
Moreover, an increase in the b-value is normally interpreted
as a stress decrease [77].

We calculate the GR distribution separately for the earth-
quakes nucleated in the cells of the three domains and estimate
the b-value with a linear least-square best-fit approach (Fig. 9).
To guarantee the fit in a magnitude range with well-populated
bins, that is where the real power law scaling is best appre-
ciable, for all domains, the fitting has been performed in the
magnitude range (MC+0.2)–3, with MC being the magnitude
of completeness. MC was estimated by the maximum curvature
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Fig. 10. Dots mark the estimated b-value within macrocells. The positions of the dots mark the center of the macrocell and their size inversely scales with
the error (the larger the size, the lower the error). Background colors indicate the cluster the cell belongs to. Clusters A–E are shown, respectively, with the
colors red, light orange, blight gray, light blue, and dark blue. In the title of each subplot, the upper bound of the depth range is shown (f.i., depth 1.0 km
means that in the subplot the solutions in the depth range 1–1.5 km are displayed). Background overall earthquake density (in log scale) is shown by the gray
isolines.

TABLE II
b-VALUES OF THE GR DISTRIBUTION OF THE THREE

DOMAINS AND CORRESPONDING UNCERTAINTY

approach [64] and as 0.9 for domains A and B and 1.1 for
domain C. We adopted a bootstrapping approach [78]: the
fitting was repeated 100× on distributions built by random
sampling (with replacement) of the selected earthquake cata-
log. The resulting b-value and its uncertainty were eventually
fixed as the mean value and the standard deviation (SD) of
the ensemble, respectively.

The results are displayed in Table II and clearly indicate that
domains A and B have similar b-values in the range 1.2–1.3,
in line with the calculation of other authors [40], [79], who,
however, processed datasets of hypocenters enclosed in a
small region (about 1 × 1 km) falling in our domain A.
In contrast, the b-value of domain C appears to be larger,
even considering the errors, and is about 1.4. For the sake of
completeness, the b-values of the discarded clusters D and E
have also been calculated using the same approach and are,
respectively, 1.74 ± 0.49 and 1.47 ± 0.13.

We have analyzed in more detail the spatial b-value vari-
ability splitting the EGS volume into cells of 0.5◦

× 0.5◦
×

0.5 km (latitude, longitude, and depth), that is, for this analysis,
we have fused together eight neighboring cells of the original
distribution. We refer to them as macrocells. To ensure the
stability of the calculations, we have selected only macrocells
with 1000 earthquakes or more and computed the calculation
of the b-value as described above. In Fig. 10, the results
are displayed in subplots corresponding to different depth
intervals. Only solutions with errors lower than 0.2 are shown.

Given the spatial earthquake density required by this selec-
tion, we mostly sample the volumes of domains A and B.
It is observed that b-values within the macrocells are generally
consistent with the mean values of Table II and mostly range
between 1.1 and 1.4. A deviation from the mean value appears
in volumes located on the map close to the area with the
largest earthquake density: for these volumes, the b-value falls
above 1.4 at depths up to 3 km, while at larger depths it
is lower than 1.3. This evidence can be considered as an
indication that the injection significantly affects the natural
variation of the b-value.

A similar b-value discontinuity appears also close to the
secondary peak of the earthquake density (southeast of the
primary), but the discontinuity occurs at depths around 2 km.
Overall, a decrease of b-values can be observed while moving
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from shallow to deep volumes, consistently with seismological
observations [69].

VIII. DISCUSSION

All results described above are compatible with a principal
stress source located in the area of EGS with many injection
wells and the largest density of earthquakes.

This induces a stress field that is mainly experienced by
the cells of domain A and that triggers the earthquakes in
this domain with a characteristic rate described by DTH-A.
The density of injection wells in domain B is significantly
lower than in domain A (Fig. 5). Similarly, the earthquake
density is about three times lower than in domain A. On these
bases, and considering that also DTH-B contains an imprint-
ing of the WIH, DTH-B can be allegedly imputed to the
wastewater injection and may represent a different overall
seismic response to a common stress step broadly originated
in S-A. This is also compatible with the evidence that the
mean b-values of domains A and B are similar, suggesting
similar mean local medium conditions.

On the other hand, the depth-dependent b-values in some
parts of domains A and B suggest some small-scale medium
heterogeneity; specifically, the b-value contrast at depths
of 2–3 km can be related to volumes at depths of 2–4 km
where tomographic studies locate low Vp and Q p possibly
caused by injected fluids [80], and/or to a transition from
unaltered to thermally altered greywacke or granite in the
reservoir [47], [81]. A domain could thus enclose different
geological units, but a broadly common large-scale stress
field acting on them triggers a site-independent earthquake
production.

We impute the different shapes of DTH-A and DTH-B,
and, in particular, the smoother dependence of earthquake
density in DTH-B on the modulation of the injection cycle to
a distance effect from the main stress source. The calculation
of the Coulomb stress change indicates that the boundary
between these two different regimes of seismic response to
a unique stress source is given by a stress change of about
two orders of magnitudes.

In Dietrich’s model of triggered seismicity [66], the earth-
quake rate following a uniform stress change on a circular
crack shows different regimes at different distances from
the stress source, with a nearly distance-independent rate at
short distances and a power law decay at larger distances
(see [66, eq. (21) and Fig. 4]). In this framework, DTH-A and
DTH-B would represent the seismic responses at different
distances to the same stress source: with the distance effects
in domain A being secondary in the earthquake production.
Dietrich’s model connects the distance from the source to
the position at which the change of the seismic response
occurs with the source (crack) size. Depending on the model
parameters (1τ , aσ̄ ), the distance separating the two domains
is about 1.2–1.4× the crack size. Considering here a distance
separating the two regimes equal to the distance between the
cells S-A and S-B (about 3–5 km), the crack size would be
in the order of a few 2–3 km. It would represent the size of
the EGS region where the water injection effectively acts as a
macroscopic stress step. In this framework, an open question

Fig. 11. Number of earthquakes as a function of distance from S-A
distinguishing the three spatial domains. The dotted black line displays the
theoretical spatial decay of the earthquake rate for a poroelastic mechanism.

is: how does the stress propagate from the main stress source
outwards? Gritto et al. [82] analyzed two propagation mecha-
nisms, that are pressure diffusion and poroelastic propagation,
and showed that they are distinguished by the way the earth-
quake density decays by distance from the source. Specifically,
the pressure diffusion dominates in the near field and shows a
nearly constant earthquake density at distances up to (in order
of magnitude) ∼1 km followed by an abrupt decay at larger
distances, while by poroelastic propagation, the earthquake
density decays with distance as a power law. We test this
difference by plotting the number of earthquakes in the whole
decade as a function of the distance from a reference cell
that was chosen as S-A. In Fig. 11, we plot the logarithm of
the mean number of earthquakes in each cell within a given
distance interval from S-A distinguishing the cells of the three
domains. Domain A and B trends show compatible patterns
with those available in [82] which are imputed to the pressure
diffusion effect. That provides a nearly constant earthquake
density at short distances followed by a sharp drop, which
is visible only for domain B. This suggests that the spatial
volume of domain B encloses the whole range of seismic
responses induced by a diffusion mechanism, while in domain
A, the near-source effects prevail. On the contrary, the pattern
shown by domain C matches very well the one typical of
sites with high poroelastic coupling [82], that is a constant
earthquake rate at short distances and a power-law decay
at large distances. In our case, the separation between pore
pressure-diffusion- and the poroelasticity-dominated regimes
appears to occur at about x ≃3.5 Km from the source
(Fig. 11), which should be considered as an upper bound
given the idealized condition of a point source that we are
assuming. A pore pressure front propagates with the law
r = (4π Dt)1/2 [74]. Using D0 and t0, this equation predicts
r0 = (4π D0t0)1/2

≃1 Km; the same equation instead for r = x
and D = D0 predicts t ′

≃225 days, while keeping t = t0, and
it provides a diffusivity of about 0.9 m2/s. Given the theoretical
curves of Fig. 8, we consider unlikely a hydraulic diffusivity
much larger than D0 (under the validity of a pure diffusive
pore-pressure triggering mechanism). As x is an upper limit of
the distance separating the two regimes, t ′ must be considered
an upper bound of the time interval during which the diffusive
process may act (potentially promoting delayed triggering),
whereas the diffusion must trigger most of the earthquakes
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(of domains A and B) in a time interval in the order of t0.
A hydraulic diffusivity close to 0.05 m2/s was found also
by [83] and [84] from the data of the hot dry rock experiment
in Soultz, France (1993). On the contrary, our estimate of D
is lower than the value estimated at The Geysers in [40], who
provide D = 10 m2/s. However, this value has been found
focusing on a much smaller area of The Geysers (in the order
of 1 × 1 km) around two injection wells and falls close to the
upper bound of the diffusivity range estimated for the Earth
crust [74].

We depict thus a scheme where the earthquakes are induced
by a pore-pressure-dominated diffusion mechanism for dis-
tances within about 3.5 km from S-A, which mostly encloses
the domains A-B, while for larger distances a poroelastic effect
dominates the earthquake triggering, and this effect is mostly
visible for the earthquakes of domain C. This is compatible
with the mismatch between the observed earthquake rate in
domain C and the rate predicted by a pore pressure diffusion
mechanism (Fig. 8). Based on the results of Section VI,
we deduce that the transition between pressure diffusion and
poroelastic effect occurs roughly when the stress decreases
by five orders of magnitudes or more. A different triggering
mechanism for domain C is also compatible with the larger
b-value observed in this domain. Larger b-values are normally
associated with lower stress conditions in the rock [77]. In line
with that, [40] found a decrease in the b-value for an increase
in the injected fluids. We interpret the different b-values
of domains A–B and domain C—in combination with the
different decays of earthquake rates and stress conditions—as
the effect of different states and geometry of the activated fault
networks. Moreover, domain C is the only one containing deep
(> 6 km) earthquakes. All these elements let us hypothesize
that the earthquakes of domain C nucleate on an existing
prestressed fault network [82] are mainly triggered by stress
transferred from domain A via a poroelastic effect.

However, from Fig. 11, a peak in the earthquake density
distribution of domain C is clearly visible for large distances
(between 9 and 10 km from S-A) that mismatches the power
decay of the poroelastic mechanism. We thus hypothesize
a minor contribution from a secondary source not directly
connected to the water injection detectable only at very large
distances from the injection wells. Assuming that this source
is identifiable with the tectonic loading, we try to estimate the
yearly cumulative fault slip triggered by this supposed sec-
ondary source in the cell where it appears to be most effective,
that is the cell located at distances larger than 9 km from S-A
and showing the largest cumulative number of earthquakes
over the decade. This cell has coordinates (−122.75◦, 38.7◦,
12.75 km) (lat, long, depth) and will be labeled as S-SEC.
In S-SEC, 26 earthquakes nucleate over the decade.

From the local magnitudes (ML ) used in our catalog and
assuming MW = (2/3)ML + 1.14 [85], an estimate of the
seismic moment M0 of each earthquake of S-SEC can be
obtained from the relation [86]

M0 = 101.5 Mw+9.1. (11)

For a circular fault experiencing a uniform and instanta-
neous stress drop over the whole slipping area, the seismic

moment is related to the stress drop 1σ and the radius a of
the fault by the equation [87], [88]

M0 =
16
7

1σa3. (12)

We assume a constant stress drop for all earthquakes ranging
in 1σ = 0.1–5 MPa, which is based on previous estimates of
different authors [75], [89], [90]. For a constant stress drop,
the fault slip s is a function of the seismic moment M0, the
fault size a, and the shear modulus µ following the law [88]:

M0 =
7π

16
µ

s
A

. (13)

Fixing the shear modulus to µ = 30 GPa [91], we associate
a fault slip with each earthquake. We estimate the fault slip of
the earthquakes nucleated in cell S-SEC, then calculate the
cumulative fault slip over the whole analyzed decade, and
finally normalize the value to one year. The resulting yearly
cumulative slip s̄ y ranges between 1 and 14 mm. Even though
this is intended as a rough indication of the slip induced by
the secondary source, it is nonetheless remarkable that s̄ y is
in line with the mean values of the yearly slip on the two
main faults enclosing the Geysers, that are the Collayomi and
the Maacama fault, which show, respectively, a yearly fault
slip of about 1 and 13 mm [92]. We remark moreover that
S-SEC is located at larger depths (about 12 km) than most of
the seismicity at EGS (mostly shallower than 6 km). Given
all elements, we think that it is reasonable to hypothesize
that the secondary source is at least partially an effect of
the regional tectonic loading. Moreover, as S-SEC is located
relatively close to the Maacama fault, which shows the largest
mean cumulative slip, we can argue that the correct values
of 1σ for the events of this cell are probably in the range
of 1–10 MPa. Assuming that the DTH of the cell S-SEC is
totally imputable to this secondary injection-unrelated stress
source, an estimate of the relevance of this source in inducing
earthquakes with respect to the wastewater injection can be
given by the equation

FT =
N S-SEC

NS-A
(14)

where N S-SEC is the total number of earthquakes over the
decade on the cell S-SEC (compensated for the higher MC

in domain C) and NS-A is the total number of earthquakes
over the decade on the cells S-A. In this way, we estimate
FT ≃ 0.5%.

IX. CONCLUSION

We have described the seismic response to the exploita-
tion of the EGS of The Geysers, in California, with a new
ML-based approach that considers the entire volume as a
whole mechanical system seismically reacting to the stress
produced principally by the water injection. In the proposed
approach, the time series of a limited number of parameters
such as location, time, and magnitude of the earthquakes
occurring over one decade were analyzed. They are considered
as the medium response to local stress. In detail, we divided
the volume of the EGS into cells of equal volumes and
calculated the earthquake rate over time in each cell that
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we treat as a proxy of the local stress history assuming that
spatial small-scale (cell size) heterogeneities of the seismic
response are negligible for the earthquake production with
respect to the main stress field acting on larger scales. We do
not take into account aseismic accommodation of the stress.
Under these assumptions, by employing the proposed approach
based on clustering, the following main results have been
found.

1) Based on the similarity of the DTHs, three spatial
domains have been defined that are concentric to the
region where most of the earthquakes occurred.

2) The domains are principally a result of different seismic
responses of the medium to a common pressure increase
from the wastewater injection. The boundaries of these
domains can be roughly identified by points of the
volume where the Coulomb stress decreases by about
two and five orders of magnitude.

3) The stress field propagates from the principal exploita-
tion area via a diffusion process up to distances
of about 3.5 km, whereas for larger distances,
a poroelastic mechanism dominates potentially com-
bined with the background tectonic loading. We infer
an overall mean hydraulic diffusivity in the order
of 0.05 m2/s.

4) The earthquake rates of a few cells of the outermost
domain located far away from the injection wells misfit
the spatial decay predicted by a poroelastic mechanism.
For these cells, we hypothesize the contribution of
the regional tectonic loading, which can trigger up to
about 0.5% of the injection-induced earthquakes cor-
responding to a cumulative yearly slip in the order
of 1–10 mm, in line with the mean slipping rates of the
active faults enclosing the EGS.

5) In terms of b-values, the volume can be divided into
a low b-value (about 1.2–1.3) volume that is nearly
composed of the innermost and intermediate spatial
domains, and a high b-value (about 1.4) volume that
broadly matches the outermost spatial domain. Insights
on a contrast in the b-value at depths of 2–3 km in
domains A and B are observed, as well.

The approach presented here can potentially allow for differ-
entiation of the seismic risk into the domains based on the
different earthquake rates, source distance, Coulomb stress
change, and b-values. Moreover, this approach can identify
domains of cells with very weak seismicity or totally aseismic,
potentially providing a tool to highlight regions of EGS with
depleted stress, with important implications for the seismic
risk assessment (e.g., [93]).
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