
Lookin’ Out My Backdoor! Investigating Backdooring Attacks
Against DL-driven Malware Detectors

Mario D’Onghia
Politecnico di Milano

Milan, Italy
mario.donghia@polimi.it

Federico Di Cesare
Politecnico di Milano

Milan, Italy
federico.dicesare@mail.polimi.it

Luigi Gallo
TIM S.p.A. — Cyber Security Lab

Turin, Italy
luigi1.gallo@telecomitalia.it

Michele Carminati
Politecnico di Milano

Milan, Italy
michele.carminati@polimi.it

Mario Polino
Politecnico di Milano

Milan, Italy
mario.polino@polimi.it

Stefano Zanero
Politecnico di Milano

Milan, Italy
stefano.zanero@polimi.it

ABSTRACT
Given their generalization capabilities, deep learning algorithms
may represent a powerful weapon in the arsenal of antivirus devel-
opers. Nevertheless, recent works in different domains (e.g., com-
puter vision) have shown that such algorithms are susceptible to
backdooring attacks, namely training-time attacks that aim to teach
a deep neural network to misclassify inputs containing a specific
trigger. This work investigates the resilience of deep learning mod-
els for malware detection against backdooring attacks. In particular,
we devise two classes of attacks for backdooring a malware detec-
tor that targets the update process of the underlying deep learning
classifier. While the first and most straightforward approach relies
on superficial triggers made of static byte sequences, the second
attack we propose employs latent triggers, namely specific feature
configurations in the latent space of the model. The latent triggers
may be produced by different byte sequences in the binary inputs,
rendering the trigger dynamic in the input space and thus more
challenging to detect.

We evaluate the resilience of two state-of-the-art convolutional
neural networks for malware detection against both strategies and
under different threat models. Our results indicate that the mod-
els do not easily learn superficial triggers in a clean label setting,
even when allowing a high rate (≥ 30%) of poisoning samples. Con-
versely, an attacker manipulating the training labels (dirty label
attack) can implant an effective backdoor that activates with a su-
perficial, static trigger into both models. The results obtained from
the experimental evaluation carried out on the latent trigger attack
instead show that the knowledge of the adversary on the target
classifier may influence the success of the attack. Assuming perfect
knowledge, an attacker can implant a backdoor that perfectly ac-
tivates in 100% of the cases with a poisoning rate as low as 0.1%
of the whole updating dataset (namely, 32 poisoning samples in a
dataset of 32000 elements).

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
AISec ’23, November 30, 2023, Copenhagen, Denmark
© 2023 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 979-8-4007-0260-0/23/11. . . $15.00
https://doi.org/10.1145/3605764.3623919

Lastly, we experiment with two known defensive techniques
that were shown effective against other backdooring attacks in the
malware domain. However, none proved reliable in detecting the
backdoor or triggered samples created by our latent space attack.
We then discuss some modifications to those techniques that may
render them effective against latent backdooring attacks.

CCS CONCEPTS
• Security and privacy → Malware and its mitigation.

KEYWORDS
backdooring attacks; adversarial machine learning; evasion; deep
learning; malware detection
ACM Reference Format:
Mario D’Onghia, Federico Di Cesare, Luigi Gallo, Michele Carminati, Mario
Polino, and Stefano Zanero. 2023. Lookin’ Out My Backdoor! Investigating
Backdooring Attacks Against DL-driven Malware Detectors. In Proceedings
of the 16th ACM Workshop on Artificial Intelligence and Security (AISec
’23), November 30, 2023, Copenhagen, Denmark. ACM, New York, NY, USA,
12 pages. https://doi.org/10.1145/3605764.3623919

1 INTRODUCTION
Deep learning (DL) has been increasingly employed in different
domains, from medical imaging to text translation [60]. More re-
cently, DL has become a topic of interest for the malware detection
community and industry. Malware detection, namely the task of
determining whether given software samples are malicious or be-
nign, is typically performed through signature-matching algorithms,
dynamic-behavior fingerprinting, and heuristics [62]. Anti-virus
programs often employ multiple techniques, as each possesses one
or more limitations. For instance, static-analysis-based malware de-
tection is easily defeated by commonly employed code-obfuscation
techniques (i.e., polymorphism, metamorphism) [19], whereas dy-
namic analysis is circumventable through evasive behaviors [24].
Moreover, applying dynamic analysis to large numbers of executa-
bles is infeasible due to its prohibitive computational cost.

Machine learning (ML) constitutes a turning point in the ever-
lasting arms race between malware authors and detection engine
developers due to the ability of ML to generalize from baseline
knowledge and possibly detect unseen malware samples or even
families. More than 20 years of research in this field have produced
several detection techniques combining classic software analysis

209

https://orcid.org/0000-0001-9467-1523
https://orcid.org/0009-0002-8016-7398
https://orcid.org/0000-0001-8770-9773
https://orcid.org/0000-0001-8284-6074
https://orcid.org/0000-0002-0925-2306
https://orcid.org/0000-0003-4710-5283
https://doi.org/10.1145/3605764.3623919
https://doi.org/10.1145/3605764.3623919
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3605764.3623919&domain=pdf&date_stamp=2023-11-26

AISec ’23, November 30, 2023, Copenhagen, Denmark Mario D’Onghia et al.

methods and ML algorithms [7, 22, 23, 33, 36, 45, 55, 56, 58], with
some leading companies in the sector now deploying ML in their
commercial products [1, 3, 4].

Nevertheless, recent works have shown that traditional ML-
based approaches also present significant drawbacks. For instance,
classifiers employing n-grams features overfit printable strings and
static information located in the headers of executable files (e.g.,
DLL imports) [53]. Furthermore, they do not capture the relation-
ships that may exist among remote bytes [67], and they produce
feature spaces that are often untractable, requiring extensive fea-
ture processing and reduction [53]. Lastly, the accuracy of malware
classifiers tends to worsen as malware evolves over time, a phe-
nomenon called concept-drift [32, 48]. Consequently, models need
to be redefined and re-trained periodically, which may require re-
iterating the computationally expensive tasks of feature extraction
and processing.

In contrast, DL models are able to extract, and process features
automatically. They also show superior generalization capability,
including a claimed resilience to packing (another well-understood
limitation of ML-based malware detection [8]). End-to-end DL mod-
els for malware detection usually belong to either one of the follow-
ing classes: image-representation models [13, 44], which require
turning software samples into images before classification, and
byte-representation models [37, 51, 52], which work directly on the
raw bytes of programs.

Due to its promised potential and the success it has gained in
other domains, DL is expected to play a central role in future anti-
virus programs. However, the application of DL in security-sensitive
applications should be performed carefully, as DL models are sus-
ceptible to evasion attacks [15, 21, 27, 31, 38, 59]. Evasion attacks
are test-time attacks in which an adversary modifies input sam-
ples to make them appear as belonging to a different class without
changing their actual semantics or content. For instance, evasion
attacks in the computer vision domain modify images so that they
are misclassified by a DL model but not by a human. The same
type of attacks may target malware detectors that rely on DL al-
gorithms [9, 20, 35, 42]. The issues brought up by evasion attacks
have been extensively studied, and some defense mechanisms have
been proposed [43]. The focus has now shifted towards backdooring
attacks, which consists in the implantation of an invisible backdoor
into a target model [17, 18, 39, 41, 66]. The backdoor does not
change the structure of the target model or its overall behavior,
except for input samples marked with a special signature called the
trigger. Input samples that carry the trigger are always attributed
to some specific label regardless of their true class.

Backdooring attacks are particularly relevant in computer vision
(CV) and natural language processing (NLP) due to the consolidated
practice of re-using pre-trained models: while re-adapting an exist-
ing model can help reduce the production costs, it forces end users
to trust the source of the model blindly. Similarly, models trained
collaboratively, i.e., in a federated learning setting, are exposed to
possible backdooring attacks in case any of the nodes are not under
the strict control of the user.

In this paper, we evaluate backdooring attacks in the domain
of DL-based malware detection. The readers please be aware that
by deep learning we do not simply mean the use of (deep) artificial
neural networks (as in [34]). In fact, we stand by the definition

provided by Goodfellow et al. in [26], namely, we refer to artificial
neural networks that do not require human operators to formally
define or select the features on which the classifier will work.

We study the feasibility of backdooring attacks against DL-based
malware detectors under different threat models (discussed in 2.2),
each considering a different type of knowledge and access to the
target classifier. As a reminder for the readers, backdooring can
be achieved by either poisoning the training dataset [18, 28, 29, 39,
54] or by manually changing the parameters of the network [30,
50]. Given that the threat models should reflect realistic scenarios,
we focus on dataset poisoning in our analysis. Indeed, manually
modifying the model’s parameters may require unrealistic control
over the classifier or assume that no one (e.g., engineers working
on the AV product) will notice the addition or removal of layers.

Regarding the attacking strategy, we first analyze a simple su-
perficial-trigger approach in both clean and dirty label setups. As a
reminder, a clean label attack is when the attacker cannot modify
the labels of poisoning samples. Conversely, a dirty label setup
assumes an attacker that can change the labels of at least part of the
training dataset. Motivated by the weak results we had obtained
in the clean label setup, we also propose a more sophisticated ap-
proach that aims to teach the network to disregardmalware samples
mapped to a specific partial latent representation by the model fea-
ture extractor (namely, the first part of the classifier computing
the feature maps). In other words, the trigger is not any particular
byte sequence contained within the binary program but rather a
subset of the features computed by the feature extractor. This latent
trigger can be obtained by a variety of byte sequences within a
binary program 1, making this approach a dynamic trigger attack.

In our experimental evaluation, conducted over MalConv [51],
the state-of-the-art convolutional neural networks for malware
detection, this backdooring attack produced backdoored models
that would not detect any of the 4000 triggered malware samples
in the test set, making the outcome of the attack perfect from the
adversary’s perspective.

Lastly, this work discusses potential defenses to improve the
resilience of these models to backdooring. In particular, we focus on
STRIP [25] andMNTD [64], as they proved effective (at least to some
degree) against other backdooring attacks in the malware detection
domain [57, 65]. Moreover, other state-of-the-art techniques [16,
63] do not lend themselves to the task at hand. The application
of STRIP and MNTD did not successfully detect the backdoored
models produced by our most sophisticated attack. Nevertheless,
we conclude this work by discussing possible variations of the
two aforementioned techniques, which may significantly improve
their effectiveness. However, we leave their implementation and
evaluation for future work.

In summary, the contributions of this work are the following:
• Exploring backdooring attacks against DL-based 2 malware
detectors, discussing realistic threat scenarios.

• Evaluating the resilience of two state-of-the-art convolu-
tional neural networks against backdooring attacks relying

1The exact number depends on the particular model. For instance, the upper-bound
for MalConv [51] is 256500 .
2As a further reminder, the models under consideration are not artificial neural net-
works operating on human-defined features such as in [10], but artificial neural net-
works that automatically learn the feature representation of input data.

210

Lookin’ Out My Backdoor! Investigating Backdooring Attacks Against DL-driven Malware Detectors AISec ’23, November 30, 2023, Copenhagen, Denmark

on superficial and static triggers in clean and dirty label
setups.

• Introducing a poisoning-based backdooring attack that does
not require label flipping (i.e., clean label). This attack does
not rely on a static trigger and is sufficiently stealthy to
bypass STRIP and MNTD, two anti-backdooring techniques
previously employed in this domain.

• Discussing modifications to STRIP and MNTD that may
enable such methods to be effective against backdooring
attacks that rely on dynamic or latent triggers.

2 PRELIMINARIES
In this section, we cover three preliminary topics: initially, we
present deep learning algorithms for malware detection, as they are
the primary target of this work. We then discuss the possible attack
scenarios considered in previous work; we include those threat
models in our discussion as well, while also proposing some exten-
sions. Lastly, we discuss how to perform functionality-preserving
modifications to binaries. This last section explains the strategies
we adopt to inject the trigger into the binaries.

2.1 DL for malware detection
In this work, we tackle featureless DL models for static malware
detection. Such models operate directly on the raw bytes of binary
programs, in contrast to traditional ML-based approaches — includ-
ing those based on artificial neural networks — that require the
formal definition of a feature space and the application of feature
reduction techniques (e.g., [10, 34, 58]).

These models are often convolutional neural networks, whose
inputs are reshaped into either mono-dimensional [37, 51] or multi-
dimensional [13, 44] tensors. In the second case, binary inputs are
rescaled to resemble either a grayscale or an RGB image.

In this work, we focus on the first class of models, as they achieve
state-of-the-art performance in the malware detection task. How-
ever, notice that the attacks described in this work can be easily
adapted to image-based detectors as well.

Another important peculiarity of DL-based detectors is that the
binary inputs on which they operate are discrete. Given that they
require continuous data as a discrete space is not differentiable,
these models map each input byte to a vector in 𝑅8 through an
embedding layer.

2.2 Threat Modeling
Previous works on backdooring malware classifiers consider an
attacker that can poison the training dataset used to update the
target AV program [57, 65]. Such an attacker would exploit third-
party services (e.g., VirusTotal [6]) that are used by vendors to
harvest binaries. In particular, theywould submit poisoning samples
to such services that, once collected by the vendor to update their
AV products, would stealthily implant a backdoor into the classifier.
A proposed variant of this threatmodel considers an attacker aiming
to create a backdoor that activates only for malware carrying the
trigger and belonging to a specific malware family [65].

In this work, we also contemplate an adversary aiming to implant
a backdoor by feeding poisoning goodware samples to a binary

harvester, which can be a threat intelligence platform such as Virus-
Total or the AV program run locally by the attacker. In the second
case, we refer to the functionality of transferring unknown sam-
ples to a remote server for deeper analysis which is commonly
implemented in commercial AVs. In addition, we believe that the
attacker’s goal should be to create poisoning goodware samples
that are, however, flagged as malware by the target AV, namely
false positives. The rationale behind this is twofold: first, the high
volume of new software analyzed daily may cause uninteresting
samples to be discarded. Hence, false positives may be more likely
to be included in the updating set. The second reason is that a false
positive would impact to a greater extent the implantation of the
backdoor, as the greater loss would cause more significant changes
to the trainable weights during backpropagation. In the experimen-
tal evaluation, we indeed show that poisoning the dataset with
true negatives (instead of false positives) produces a slightly less
effective backdoor. However, the success of this approach assumes
that the poisoning samples will be (correctly) labeled as goodware
by the AV engineers or systems.

An attacker may have different degrees of knowledge on the tar-
get classifier. In particular, they may know the specific architecture
and/or possess information on the dataset used to train the model.
As shown in the experimental evaluation, these different settings
impact the outcome of the attack.

As a theoretical contribution, we also discuss other scenarios
that we believe are of interest for AV vendors. First of all, the staff
responsible for labeling the dataset or managing the updating pro-
cess constitutes a sensible point in the trusted computing base of the
company. Indeed, having direct access to the dataset and potentially
complete control over the training process, a colluded employ 3

may easily implant a backdoor by means of a dirty label attack.
Moreover, some commercial AVs are built from other detection
engines sold by competitors. This scenario shares similar security
issues with re-using publicly available pre-trained models for trans-
fer learning, as the competitor may implant a stealthy backdoor in
the model sold to the victim company.

2.3 Functionality-Preserving Trigger Injection
Injecting a trigger into a sample implies modifying it. For the attack
to be successful, however, the introduced modifications should not
“corrupt” it. This type of requirements, known as problem space
constraints [11, 49], are particularly challenging to meet in the
executable binary domains, as even small modifications are likely
to render the program unrunnable or to change its behavior (in
technical jargon, “break it”). In this work, we rely on the simple
approach taken by Kolosnjaji et al. [35], that is to say, we append
the bytes that make up the trigger (either superficial or latent) at
the end of the file or in the padding spaces between sections. These
areas do not contain actual code or data and, therefore, can be
modified without corrupting the program.

As a motivation for their work [42], Lucas et al. sketched a proof
of concept of a binary sanitizer that masks all the sections of a
binary that do not contain code with zeros. The rationale is that,
by removing areas of the binary without code, the sanitization
algorithm would also remove the bytes added to fool the classifier.

3insider threats are not uncommon in tech businesses [14, 46, 47]

211

AISec ’23, November 30, 2023, Copenhagen, Denmark Mario D’Onghia et al.

Moreover, they report no drop in classification accuracy both for
goodware and malware.

It is easy to see how this approach would invalidate any back-
dooring attack that does not strictly rely on executable code mod-
ifications, including the ones we present in this paper. However,
common obfuscation techniques rely on code encryption and com-
pression, or using unconventional executable sections to hide ma-
licious code. Hence, using this algorithm to sanitize training sam-
ples would automatically force the network to only learn feature
associated with the “.text” segment or other sections containing
executable code, missing potential discriminative features. Simi-
larly, employing this sanitization approach at test time would have
a degrading effect on the performance of the classifier. It must be
noticed in fact that the dataset they employ in their work contains
mostly unpacked code.

Nevertheless, we intend to experiment in future work with craft-
ing triggers that can hide in executable code as well.

3 SUPERFICIAL TRIGGERS
In this section, we describe our baseline backdooring attack, which
aims to teach a target DL-based detector to not detect samples
carrying a static superficial (i.e., byte-level) trigger. We examine
two attack settings, which differ in the type of control the attacker
has on the labeling process (i.e., dirty vs clean label attacks).

3.1 Dirty Label
The very first approach we examine is a dirty label attack, namely a
permissive attack scenario in which the adversary inject the trigger
into malicious samples and then labels them as benign. Hence, this
setting requires the attacker to have extensive control over the
updating process and substantial access to the training data. As
discussed in Section 2.2, such an attacker may be, for instance, a
colluded employ or an AV vendor itself.

We consider two sub-scenarios: in the first one, the attacker’s
objective is to maximize the backdoor effectiveness, sacrificing the
model performance on regular samples. In the second one, the
attacker’s objective is to produce a less effective but stealthier back-
door. We refer to the first strategy as progressive and to the second
one as conservative. In practice, the difference lies in the stopping
criterion adopted during training: with the progressive strategy, the
training is stopped when the loss function computed on poisoning
malware converges. In contrast, the conservative strategy requires
the training to stop when the detection rate on clean malware sam-
ples starts worsening with respect to the detection rate measured
on the non-updated network.

3.2 Clean Label
The clean label attack simply consists in injecting a random se-
quence of bytes at the end of goodware samples that will be in-
cluded in the training dataset used for updating. In the experimental
evaluation presented in Section 5, we managed to achieve some
acceptable results for AvastNet, considering, however, unrealistic
poisoning rates. In contrast, MalConv did not properly learn the
backdoor regardless of the poisoning rate or trigger length. These
unsatisfactory results prompted us to investigate more sophisti-
cated attack strategies, which we describe in the following section.

4 LATENT TRIGGERS
In this section, we present the attack strategy we developed to
obtain an effective yet stealthy backdoor. We build upon the lessons
we learned from the static-trigger approach presented in Section 3,
designing amore sophisticated attack that does not rely on any fixed
byte-sequence as a trigger. Our insight behind the superficial trigger
failure is that pooling layers, which are used by convolutional
networks to down-sample the generated features, may filter out
uninfluential feature maps, including those related to the trigger
byte sequence.

Our first attempt to solve this issue focused on computing an
optimal trigger that may increase the probability of the network
to classify input samples as benign. In Equation 1, which describes
this optimization problem formally, 𝑃 (𝐶 (𝑥) = 1|𝐶 (𝑚) = 0) is the
probability that, given a malicious binary𝑚 for which the classifier
𝐶 outputs 1 (i.e., malware), 𝐶 will output 0 (i.e., goodware) for
𝑥 =𝛹 (𝑚, 𝑡), where𝛹 is the function that injects the trigger 𝑡 into
𝑚.

max
𝑡

𝑃 (𝐶 (𝑥) = 0|𝐶 (𝑚) = 1),

∀𝑚 ∈ 𝑀𝑎𝑙𝑤𝑎𝑟𝑒𝑆𝑒𝑡,

𝑤𝑖𝑡ℎ 𝑥 =𝛹 (𝑚, 𝑡)
(1)

The optimal trigger 𝑡 (which is a static byte sequence) would
then be injected into goodware samples, which in turn would be
used to poison the updating process of the target neural network.

The optimization problem described in Equation 1 is not easy to
solve, as any candidate algorithm would either work in continuous
domains (e.g., gradient based algorithms) or require to search large
solution spaces (e.g., greedy or brute-force algorithms). We initially
implemented a gradient-based algorithmwhichwould first compute
an optimal solution in the embedded space and, then, retrieve the
bytes whose embedding representations were closest to the optimal
ones computed by the algorithm. Unfortunately, the best results
we obtained with this approach were not significantly better than
those we had obtained with the simpler clean label attack described
in Section 3.

Our second, and this time successful, approach focuses on se-
lecting a candidate trigger in the latent space generated by the
feature extractor of the target model. In a convolutional neural
network such as MalConv, the feature extractor is the first section
of the model, which precedes the fully-connected layers that out-
put the classification label. In particular, we focus on the pooling
layer that downsamples the features generated by the convolutional
layers by picking the most relevant ones. As a reminder for the
reader, pooling operations can be max or average: max pooling
consists in selecting the greatest feature maps, whereas average
pooling consists in computing their average. Another distinction
regards whether the pooling is carried out along the spatial or tem-
poral dimension. The first type is usually referred to as max/avg
pooling with pool size 𝑛, whereas the second kind is called global
max/avg pooling. As an example, consider a pooling operation per-
formed on a 2-dimensional tensor of size (𝑟𝑜𝑤𝑠, 𝑛𝑢𝑚_𝑓 𝑒𝑎𝑡𝑢𝑟𝑒𝑠):
a spatial pooling operator would produce a tensor of dimensions(
𝑟𝑜𝑤𝑠
𝑛 , 𝑛𝑢𝑚_𝑓 𝑒𝑎𝑡𝑢𝑟𝑒𝑠

)
where 𝑛 is the pool size. On the other hand,

applying a global pooling operator would result in a 1-dimensional
tensor of size (𝑛𝑢𝑚_𝑓 𝑒𝑎𝑡𝑢𝑟𝑒𝑠,).

212

Lookin’ Out My Backdoor! Investigating Backdooring Attacks Against DL-driven Malware Detectors AISec ’23, November 30, 2023, Copenhagen, Denmark

The first stage of the attack consists in selecting the target fea-
tures that will constitute the trigger. By querying the classifier
(either the actual target or a surrogate, depending on the threat
model), the attacker can compute the average latent representa-
tion of malicious and benign samples, 𝑀 and 𝐺 respectively, both
belonging to R𝑃 , where 𝑃 is the dimension of the pooling layer.
Then, the attacker randomly selects an arbitrary number of indices
𝐼 ∈ [0, 𝑛𝑢𝑚_𝑓 𝑒𝑎𝑡𝑢𝑟𝑒𝑠 − 1] and compute the trigger 𝑇 as:

𝑇 = [max(𝑀𝑖 ,𝐺𝑖) + 𝛿]𝑇 ∀𝑖 ∈ 𝐼 , 𝛿 > 0. (2)

The stochastic nature of this process (the feature indices are
randomly drawn) ensures that a defender cannot reverse-engineer
the trigger to verify if the model was backdoored. The reason for
selecting the maximum value for each trigger component and for
incrementing it of a strictly positive 𝛿 lies in the fact that both
MalConv and AvastNet employ a max-pooling layer, MalConv as
the sole global pooling layer whereas AvastNet as an intermediate
spatial pooling operator. To better understand the reason behind
it, consider the following counter example: if we chose a trigger 𝑇
such that 𝑇𝑖 = 𝐺𝑖 + 𝛿 and 𝑀𝑖 > 𝐺𝑖 + 𝛿 , when injecting the trigger
into a malicious sample, the 𝑖𝑡ℎ component would most likely be
filtered out by the max pooling layer, as the corresponding latent
feature for malware has on average a greater value than 𝐺𝑖 + 𝛿 .

As discussed in Section 2.2, an attacker may aim to poison the
training dataset with triggered goodware that is flagged as malware
by the current version of the AV (a false positive), to increase both
the chances that the samples will be collected by the AV vendor
(reducing the number of false positives is generally considered
crucial in security applications) and the poisoning effect of their
samples (false positives will generate a higher loss). In that case,
the attacker can repeat the trigger selection process by selecting
feature indices 𝐼𝑀 such that𝑀𝑖 > 𝐺𝑖 ∀𝑖 ∈ 𝐼𝑀 and𝐶 (G) > 0.5with
G = [𝑣0, . . . , 𝑣𝑃] where 𝑐𝑖 = 𝑀𝑖 +𝛿 iff 𝑖 ∈ 𝐼𝑀 and 𝑐𝑖 = 𝐺𝑖 otherwise.

Algorithm 1 provides the pseudo-code describing the full trigger
generation process.

4.1 Generating Triggered Binaries
To trigger a binary, the attacker injects specially crafted sequences
of bytes into the empty padding spaces between sections of a
portable executable file or appends them at its end (same as in [35]).
This injection approach allows the attacker to trigger their binaries
without corrupting them.

Computing the byte sequences that, once injected, change the
partial latent representation of the binary to the chosen latent trig-
ger is not trivial. We initially experimented with the gradient-based
algorithm for generating adversarial samples for MalConv, first
introduced by Kolosnjaji et al. in [35]. However, such an algorithm
presents two major limitations which makes its application in this
new domain impractical: first, it is computationally too expensive
(it took us days to generate one binary). Secondly, after adapting it
to the new task, it did not seem to produce correct sequences for
most binaries (most likely due to mistakes we made).

Ultimately, we opted for a greedy algorithm that computes one
byte sequence per time. Given a target trigger index and value, it
iteratively adds one random byte at each step, checking whether
this addition decreases the loss function. If the modification indeed

Algorithm 1: Trigger Generation Algorithm
Input :GoodwareSet: set of benign programs.

MalwareSet: set of malicious programs.
FE: model’s feature extractor or a surrogate.
C: model’s classifier or a surrogate.
TriggerLength: integer.
FalsePositive: boolean.

Output :TriggerIndices: list of trigger indices.
TriggerValues: values for each targeted feature.

M = mean(𝐹𝐸 (𝑀𝑎𝑙𝑤𝑎𝑟𝑒𝑆𝑒𝑡))
G = mean(𝐹𝐸 (𝐺𝑜𝑜𝑑𝑤𝑎𝑟𝑒𝑆𝑒𝑡))
if FalsePositive is True then

TriggerIndices =
Sample([0, 𝑛𝑢𝑚_𝑓 𝑒𝑎𝑡𝑢𝑟𝑒𝑠 − 1] ,𝑇𝑟𝑖𝑔𝑔𝑒𝑟𝐿𝑒𝑛𝑔𝑡ℎ)
foreach 𝑖𝑛𝑑𝑒𝑥 𝑖 ∈ 𝑇𝑟𝑖𝑔𝑔𝑒𝑟𝐼𝑛𝑑𝑖𝑐𝑒𝑠 do

FeatureValue = max (𝑀𝑖 ,𝐺𝑖) + 𝛿

Add(𝑇𝑟𝑖𝑔𝑔𝑒𝑟𝑉𝑎𝑙𝑢𝑒𝑠, 𝐹𝑒𝑎𝑡𝑢𝑟𝑒𝑉𝑎𝑙𝑢𝑒)
end

end
else

SolutionFound = False
𝐼𝑀 = {𝑖0, . . . , 𝑖𝑘 } ∀𝑖 𝑠 .𝑡 . 𝑀𝑖 > 𝐺𝑖

while SolutionFound is False do
TriggerIndices = Sample(𝐼𝑀 ,𝑇𝑟𝑖𝑔𝑔𝑒𝑟𝐿𝑒𝑛𝑔𝑡ℎ)
TriggerValues = {}
foreach 𝑖𝑛𝑑𝑒𝑥 𝑖 ∈ 𝑇𝑟𝑖𝑔𝑔𝑒𝑟𝐼𝑛𝑑𝑖𝑐𝑒𝑠 do

FeatureValue = max (𝑀𝑖 ,𝐺𝑖) + 𝛿

Add(𝑇𝑟𝑖𝑔𝑔𝑒𝑟𝑉𝑎𝑙𝑢𝑒𝑠, 𝐹𝑒𝑎𝑡𝑢𝑟𝑒𝑉𝑎𝑙𝑢𝑒)
end
if 𝐶 (𝐹𝑒𝑎𝑡𝑢𝑟𝑒𝑉𝑎𝑙𝑢𝑒) > 0.5 then

SolutionFound = True
end

end
end

improves the solution, the byte is kept, discarded otherwise. This
probabilistic approach allows the superficial trigger4 to change
across different binaries.

To run this greedy algorithm, the attacker first needs to modify
the model (either the target or a surrogate) to output only the latent
feature that corresponds to the trigger index they want to optimize
at the current iteration. Considering MalConv as an example, the
attacker detaches all the layers from the global max-pooling to
the output layer. Then, they connect a special layer that selects
only the feature maps produced by filter 𝑡 , where 𝑡 is the index of
the current trigger component, and corresponding to the stride at
which the attacker is injecting the bytes. By doing so, the algorithm
can directly monitor whether the insertion of a new byte improves
the loss. Figure 1 shows these structural modifications for both
MalConv and AvastNet.

The loss function employed by this algorithm is a custom cost
function that linearly measures how far the current solution is from
reaching the target. Specifically, once the predicted value “surpasses”

4As opposed to latent. In this context, the word “trigger” refers to the byte-level
modifications required to trigger the binary.

213

AISec ’23, November 30, 2023, Copenhagen, Denmark Mario D’Onghia et al.

Input Input

Injection Stride si Injection Stride si

Embedding Layer

Convolutional Layer Convolutional Layer
Convolutional Layer
Convolutional LayerS

X

Projection Layer Projection Layer
(1,)

(96,)

a) Malconv b) AvastNet

Feature map producedby the t-th filters whenconvoluting over stride si

Figure 1: Modified networks used to compute a byte sequence that activates the component 𝑡 of the target latent trigger.

the target, the loss instantly converges to 0. Equation 4.1 describes
it formally.

𝑓 (𝑦𝑡 , 𝑦𝑝) :=
{
𝑦𝑡 − 𝑦𝑝 iff 𝑦𝑡 > 𝑦𝑝
0, otherwise (3)

5 ATTACK EVALUATION
This section presents the experimental evaluation of the attack
techniques described in this paper. In particular, the first part con-
cerns the dirty and clean label attacks using a superficial static
trigger described in Section 3. On the other hand, the second part
deals with the evaluation of the latent trigger attack presented in
Section 4. All the attack scenarios and the best results achieved for
each of them are summarized in Table 1.

5.1 Datasets and Experimental Setup
As previously stated, when simulating our attacks we target the up-
dating process of a neural network. Throughout all the experiments,
we follow whenever possible the indications provided in [11, 48] to
avoid introducing temporal biases.

Both MalConv and AvastNet are initially trained over malware
samples collected between January 2015 and December 2017. In par-
ticular, we randomly sample malware from a uniform distribution
containing roughly the same amount of malicious programs for
each month of the considered interval. We then simulate the updat-
ing process by fine-tuning the networks with malware uniformly

sampled from January 2018 to December 2018. All malware was
downloaded by VirusShare [5] and validated with VirusTotal [6],
namely malware that was not detected by at least 90% of the engines
was discarded.

All goodware was instead collected from clean installation of
Windows 10 and online software repositories such as Chocolatey [2].
As for malware, we validate each goodware sample with VirusTotal,
discarding all binaries detected by at least one AV. In contrast to
the recommendation reported in [48], we do not apply any time
constraint to the benign training samples, as this kind of informa-
tion is hard — if not impossible — to retrieve for Windows binaries,
given that software does not come from a single official repository
as in Android.

The initial training dataset consists of 250k malware samples
and 250k goodware samples, whereas the updating dataset contains
around 32k malware and 32k goodware; hence, we rely on a classic
50:50 split.We also tried to train ourmodels using a smaller malware
to goodware ratio, as suggested by Pendlebury et al in [48]; however,
we were not able to collect enough goodware to maintain a 10:90 or
even 20:80 ratio without undertraining the model. In fact, the vast
number of trainable parameters in both MalConv and AvastNet
would require a disproportionate number of goodware samples
for the model to perform as well, an issue reported both in the
original papers [37, 51] and in [8], where the authors obtained an
underperforming MalConv by training it with a smaller dataset5.

5compared to the datasets employed in the original work [51]

214

Lookin’ Out My Backdoor! Investigating Backdooring Attacks Against DL-driven Malware Detectors AISec ’23, November 30, 2023, Copenhagen, Denmark

Attack Technique Model Dirty/Clean Label Model Knowledge Weights Knowledge Training Data Knowledge Best Evasion % Poisoning % Trigger Length

Superficial Trigger (Progressive) AvastNet Dirty ✓ ✓ ✓ 90% 30% 175 bytes
Superficial Trigger (Progressive) MalConv Dirty ✓ ✓ ✓ 91% 30% 175 bytes
Superficial Trigger (Conservative) AvastNet Dirty ✓ ✓ ✓ 82% 30% 100 bytes
Superficial Trigger (Conservative) MalConv Dirty ✓ ✓ ✓ 79% 30% 150 bytes

Superficial Trigger AvastNet Clean ✓ N/R N/R 39.4% 5% 2000 bytes
Superficial Trigger MalConv Clean ✓ N/R N/R 8.5% 30% 2000 bytes
Latent Trigger MalConv Clean ✓ ✓ N/R 100% 0.1% 13 latent features
Latent Trigger MalConv Clean ✓ ✘ 20% 38% 3% 8 latent features
Latent Trigger MalConv Clean ✓ ✘ ✘ 32% 9% 7 latent features

Table 1: Summary of the scenarios simulated in the experimental evaluation. Each setting differs in the attacker’s capacity to
modify the training labels and in their knowledge of the training dataset and of the model architecture and weights. We also
highlight the best results achieved for each scenario, reporting the highest evasion rate, percentage of poisoning samples used,
and the length of the trigger.

5.2 Superficial Trigger
We first present the evaluation of the dirty label attack using a
superficial static trigger. Both the progressive and conservative ap-
proaches were tested with random triggers of different lengths. For
the progressive attack, the three best-performing triggers had length
75, 175, and 250. For conservative attack the three best-performing
triggers had length 100, 150, and 200.

Specifically, the best performance for the progressive attack was
achieved with a 175-byte long trigger for both MalConv and Avast-
Net. Of the 4000malware samples used for validating the implanted
backdoor, 90% (i.e., 3600) evaded AvastNet, whereas 91% (i.e., 3640)
evaded MalConv. Before implanting the backdoor, the classifiers
would detect 84% (AvastNet) and 94% (MalConv) of the same sam-
ples. Updating the classifiers without implanting the backdoor
would raise the true positive rates to 99% (AvastNet) and 96% (Mal-
Conv). However, the accuracy on clean data was slightly worsened,
with a drop of 4.4% for AvastNet and 7.4% for MalConv.

With the conservative strategy, the best evasion rate was 82% for
AvastNet using a 100-byte long trigger and 79% for MalConv using
a 150-byte long trigger, while allowing the true positive rate to
increase by 1% for both models. Figure 2 summarizes these results.

In the clean label setting, we tested the effectiveness of the attack
using a 175-byte and a longer, 2000-byte trigger. Moreover, we
measured the success rate of the attack by increasing the percentage
(over the total dataset size) of the poisoning samples. As shown in
Fig 3, we managed to obtain some positive results for AvastNet by
heavily poisoning the training dataset. For instance, when using
the 175-byte trigger and allowing a poisoning rate of 30%, the
resulting backdoored correctly activated for almost 32% of the test
cases. The 2000-byte trigger allowed us to obtain a backdoor that
activates for almost 40% of the test cases when poisoning only 5%
of the dataset. Conversely, the attack could be deemed a failure
for MalConv as increasing the trigger and poisoning rate did not
substantially improve the effectiveness of the backdoor.

5.3 Latent Trigger
In this section, we validate the effectiveness of our latent trigger in
three different scenarios. First, we consider an attacker that has com-
plete knowledge of the target model (i.e., both model architecture
and weights). Such an attacker may have gained such information

from reverse-engineering the target AV program or following a
cyber leak. The attack remains fully clean label, as we assume that
the adversary cannot tamper with the labeling process. However,
we consider the assumption made in 2.2, namely injected benign
binaries that are flagged as malicious (i.e., false positives) by the
current version of AV (i.e., before updating it) will be correctly la-
beled as goodware. Nonetheless, we also show the results obtained
without enforcing this assumption in Figure 4. As shown in Figure 4,
the attack achieves a perfect backdoor in both the scenarios we
considered. However, using only benign features (and, therefore,
not relying on false positives) requires a slightly higher poisoning
rate to obtain a perfect score.

In the second attacking scenario, we assume that the adversary
has complete knowledge on the model architecture but does not
know the value of the weights or the data distribution on which it
was trained. To make the experimental setting more realistic, we
train a surrogate model on malware samples first observed across
2019 and use the resulting model to compute a latent trigger. We
then simulate the updating process as before and measure the per-
formance of the backdoor. The best performing backdoor achieved
a success rate of 32% and was obtained by allowing up to 9% poi-
soning samples in training set. We did not try higher poisoning
rates as they would be too unrealistic. It must be noticed that, al-
though worse than the previous scenario, we still obtained positive
results, especially considering the completely null knowledge of
the attacker of the original data distribution.

In the last scenario, we loosen the constraints enforced in the
previous and assume the attacker to have some partial knowledge
of the data on which the AV was originally trained (before the
update). We believe this setting to still be highly realistic, as it is
common knowledge which malware families are predominant in
a given time frame. Hence, we believe that an attacker may infer
what malicious examples were employed in the training of a certain
version of the AV.

For instance, an attacker that knows about 20% of the original
training set (i.e., about 100k training samples between goodware
and malware) can implant a backdoor that activates in 38% of the
test cases with a smaller poisoning rate of 3%; thus, achieving an
improvement of about 19%when considering a significantly smaller
poisoning rate (15k against 45k examples).

215

AISec ’23, November 30, 2023, Copenhagen, Denmark Mario D’Onghia et al.

Evasion Rate Accuracy TPR TNR
0

10

20

30

40

50

60

70

80

90

100

(p
er

ce
nt

ag
e)

16

91

84

98

1

98 98 98

84
88

81

96
90

87

76

98

81

90

83

97

AVASTNET - Progressive Insider Attack

Not Updated
Clean Update

75-byte Trigger
175-byte Trigger

250-byte Trigger

Evasion Rate Accuracy TPR TNR
0

10

20

30

40

50

60

70

80

90

100

(p
er

ce
nt

ag
e)

16

91

84

98

1

98 98 98

82

92

85

98

80

92
86

98

79

92

85

99
AVASTNET - Conservative Insider Attack

Not Updated
Clean Update

100-byte Trigger
150-byte Trigger

200-byte Trigger

Evasion Rate Accuracy TPR TNR
0

10

20

30

40

50

60

70

80

90

100

(p
er

ce
nt

ag
e)

6

95 93 95

4

96 96 97

89 89

82

96
91

88

79

96

84

91
85

97
MALCONV - Progressive Insider Attack

Not Updated
Clean Update

75-byte Trigger
175-byte Trigger

250-byte Trigger

Evasion Rate Accuracy TPR TNR
0

10

20

30

40

50

60

70

80

90

100

(p
er

ce
nt

ag
e)

6

95 93 95

4

96 96 97

76

94 95 94

79

94 94 94

76

94 94 95

MALCONV - Conservative Insider Attack

Not Updated
Clean Update

100-byte Trigger
150-byte Trigger

200-byte Trigger

Figure 2: Summary of the dirty label attack (progressive and conservative) against AvastNet and MalConv using different
length triggers. TPR stands for true positive rate, while TNR for true negative rate. Marked in red, the performance of the best
backdooring configuration in each of the four scenarios.

0 5 10 15 20 25 30 35
poisoning samples (% of total training dataset)

10

15

20

25

30

35

u
n

d
et

ec
te

d
tr

ig
ge

re
d

sa
m

p
le

s
(%

)

3.0

15.8

20.4

5.4

12.7

9.8

31.9

26.8

11.7

3.3 2.6 2.8

6.1

2.0 2.6
3.6

5.7

3.1

175-byte Trigger

AvastNet

MalConv

0 5 10 15 20 25 30 35 40
poisoning samples (% of total training dataset)

10

15

20

25

30

35

40

u
n

d
et

ec
te

d
tr

ig
ge

re
d

sa
m

p
le

s
(%

)

2.2

39.4

18.8
17.7

25.3

34.1

16.1

20.4

12.2

3.4 3.0

7.0 7.6 8.0 8.3 8.5

3.0 2.5

2000-byte Trigger

AvastNet

MalConv

Figure 3: Summary of the clean label attack on AvastNet and MalConv using different length triggers.

6 DETECTING BACKDOORS
In this section, we discuss the stealthiness of our proposed latent
trigger backdooring attacks by applying two state-of-the-art tech-
niques for backdoor detection, STRIP [25] and MNTD [64]. We
experiment with these two specific techniques because they were
reported effective against comparable attacks in the malware de-
tection domain [57, 65].

We omit the static trigger attacks discussed in Section 3 from
the rest of discussion, mainly because we were able to neutralize

them by simply re-training the backdoored models on a small clean
dataset. Hence, we conclude that the static trigger approach is not
resilient to fine-tuning with a clean dataset.

6.1 STRIP
The intuition behind STRIP is that perturbing a triggered sample
will not significantly impact its classification output, whereas per-
turbing clean samples will likely lead to high prediction entropy.

216

Lookin’ Out My Backdoor! Investigating Backdooring Attacks Against DL-driven Malware Detectors AISec ’23, November 30, 2023, Copenhagen, Denmark

0.0 0.1 0.2 0.4 0.5
poisoning samples (% of total training dataset)

10

20

30

40

50

60

70

80

90

100

u
n

d
et

ec
te

d
tr

ig
ge

re
d

sa
m

p
le

s
(%

)

100 100 100 100 100

10

88 97 90
93

100

Clean Label - Full Knowledge

MalConv - Mixed Feats

MalConv - Benign Feats

Figure 4: Summary of the clean label latent trigger attack on
MalConv using both triggers obtained using mixed features
and exclusively benign features. The assumption on the be-
nign binaries being wrongly detected by the AV (i.e., acting
as false positives) is not considered in the latter.

Samples are perturbed by mixing them up with other inputs belong-
ing to a held-out clean dataset. For instance, in image classification,
two input images would be overlaid generating this way a third per-
turbed image. The classification entropy is expected to be low for
triggered inputs, due to the backdoor activating in the presence of
the trigger, regardless of any other feature that may be introduced
after mixing up the inputs. The entropy distribution of triggered
samples is therefore expected to stand out when compared to that
of clean samples.

In end-to-end malware detection, overlaying two binaries is not
as natural as for images. To solve this issue, we propose to merge
two binaries on a stride-basis, meaning that we split each binary
into strides (according to the kernel size and stride length of the
first convolutional layer in the target classifier) and then compose
the resulting binary by randomly selecting one stride from each
resulting pair.

We test STRIP on 1000 clean and 1000 triggered samples, mix-
ing each of them with 100 clean samples belonging to a held-out
dataset. Figure 5 shows the entropy distribution of the triggered and
clean sample sets when evaluating them with a backdoored version
of MalConv generated by our latent trigger attack. As it can be
seen, there exists a partial distinction among the two distributions;
however, this is not sufficiently marked to conclude that triggered
samples can be distinguished by clean ones.

6.2 MNTD
Meta Neural Trojan Detection (MNTD) consists in training a meta
classifier able to detect backdoored models by analyzing the latent
representations they generate for input data. Apart from the results
we obtained, we also provide a detailed description of how we set
up the defense evaluation in our experiments.

We first build and train 400 shadow MalConv models, equally
split between clean and backdoored. The data poisoning ratio for
backdoored models is uniformly sampled between [0.05, 0.5]. The
training dataset is about 10% of the one originally used to train the
base model we employ in our experiments. We originally intended
to produce a greater number of shadow models and train them on

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
Normalized Entropy

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

p
ro

b
ab

ili
ty

Not Updated

Clean Update

Figure 5: Strip results

a larger dataset; however, the high cost, both in monetary and com-
putational terms, associated with training a complex model such
as MalConv (which has more than 1 million trainable parameters)
forced us to downscale the experiment. Nevertheless, the number of
shadow models we employ in our experimental setting is still larger
than the one employed in the original paper for larger networks
such as ResNet and GoogLeNet. Moreover, the authors claim that
their framework is effective even when employing a number of
shadow models smaller than ours. Nonetheless, our experimental
setup remains significantly smaller than the one considered by
Yang et al. in their work on backdooring attacks against Android
malware classifiers [65].

The following step is to build and train the meta classifier. Sim-
ilarly to what described in the original paper, we design a meta
classifier with two fully-connected layers. Lastly, the query opti-
mization is performed by unfreezing the embedding layer of the
shadow models during the meta training phase, as recommended
in the original paper for when dealing with discrete data.

Unfortunately, MNTD results were not significantly better than
random guessing, both with and without query optimization, sig-
naling the failure of this defense strategy.

6.3 Backdooring Defense: Future Directions
Webuild upon the experiencewe acquiredworkingwith pre-existing
defensive methods to lay out what we believe may be interesting di-
rections to pursue. In this work, we specifically discussed STRIP and
MNTD for two reasons: first, because they were proved efficacious
in previous works in the malware detection domain. Secondly, be-
cause we believe they possess more potential against backdooring
attacks that rely on dynamic or latent triggers than other tech-
niques such as neural cleanse [63], fine pruning [40], or activation
clustering [16].

We believe that the reason behind MNTD failure may concern
the fact that it only tries to teach its shadow models superficial
triggers. For this reason, we intend to evaluate a version that will
perform jumbo learning by injecting the trigger directly into the
latent representations generated by the model.

On the other hand, we believe the reason behind STRIP (partial)
failure is that it assumes a trigger will statistically resist the injected
perturbations. This is probably true for classifiers with a limited
number of parameters, working on modest feature spaces, as they
wouldmore easily overemphasize fewer features that are unlikely to

217

AISec ’23, November 30, 2023, Copenhagen, Denmark Mario D’Onghia et al.

be washed away by input-level perturbations. However, we showed
that large models such MalConv do not easily learn simple trig-
gers such as static byte sequences. On the contrary, achieving a
functioning trigger requires extensive modifications to the input
data. Hence, introducing input level perturbations is very likely to
deactivate the trigger.

Similarly to what stated forMNTD, we intend to experiment with
a modified version of STRIP that perturbs the latent representations
rather than the input data.

7 RELATEDWORK
Backdooring attacks have been mainly studied in computer vision
and natural language processing [18, 28, 39, 66], where the common
practice of re-using pre-trained models through transfer learning
exposes the end models to the risk of inheriting a backdoor. More-
over, backdooring attacks against computer vision applications may
be more effective than adversarial samples in real life scenarios, as
a trigger may be more easily captured by the hardware than the
pixel perturbations required in a traditional evasion attack.

On the other hand, backdooring attacks against malware clas-
sifiers are a more recent development. This domain differs signifi-
cantly from computer vision and natural language processing, both
in terms of threat modeling and problem space constraints.

To the best of our knowledge, only two works have been pub-
lished so far in the domain of backdooring attacks against malware
classifiers. In particular, Severi et al. [57] introduced an explanation-
guided backdoor attack against ML-based detectors working on
human defined features for PE [10], PDF [61], and Android [12]
malware. Their work is quite extensive, including several attack
scenarios as well as a discussion on possible mitigation strategies.
On the downside, all their attacks assume full knowledge of and at
least some degree of control over the feature set. Moreover, they
do not tackle DL-based approaches, although they discuss their
attacks against an artificial neural network defined over the Ember
feature set.

The second work considers selective backdooring attacks against
ML-based Android malware detectors [65]. In particular, it intro-
duces a new threat model describing an adversary whose goal is
to obtain a backdoor that activates only for malware samples be-
longing to a specific family. However, its main point of strength is
the thorough discussion and evaluation of defensive techniques. As
for the previous work, it does not tackle pure, featureless DL-based
malware detection.

Providing a direct comparison with those works is hard and
probably illogical. In fact, the classifiers considered across the three
different papers differ significantly in terms of feature spaces (hu-
man defined features against feature maps resulting from convo-
lutional operations), problem space constraints (e.g., modifiable
Ember features vs executable bytes), and OS (although the work by
Severi et al. also considers Windows binaries). In future work, we
intend to adapt the explaination-guided backdooring attack in [57]
to our attacking framework.

8 CONCLUSIONS
This work addresses backdooring attacks against DL-based mal-
ware detectors. To the best our knowledge, we are the first ones to

investigate the feasibility of backdooring attacks against ML mod-
els that automatically learn the feature representations of software
binaries.

The first contribution of this work is a realistic description of the
potential threats that an AV provider may encounter; in particular,
the threat models discussed in this work extend and improve the
ones originally proposed in the first two works tackling backdoor-
ing attacks against malware classifiers [57, 65].

The second contribution is a feasibility study of a simple static
trigger attack against deep convolutional networks for malware
detection, such as AvastNet [37] and MalConv [51]. Our results
show that in a permissive dirty label setting, such attacks may
succeed. In contrast, performing them in a more realistic setting
(i.e., clean label and limited number of poisoning samples) results
in failure. Moreover, successful backdoors implanted in this way
are easily washed away by simply fine-tuning the model with a
relatively small, but clean dataset.

The third and main contribution of this work is the design of
a more sophisticated backdooring attack, which aims to teach the
target classifier to disregard malware samples that are mapped by
the neural network itself to a certain latent representation. We
evaluate this attack strategy with varying degrees of knowledge of
the target model. We show that an adversary with full knowledge
can achieve a perfect backdoor with a very limited poisoning rate
(namely, 0.1%). Moreover, limiting the knowledge of the attacker to
the sole model architecture is not completely sufficient to prevent
the attack, as training a surrogate model on a different malware
distribution can lead to a successful backdoor that activates for over
32% of the cases when allowing a poisoning rate smaller than 9%.
In addition, allowing the attacker to possess partial knowledge over
the original training set (20% of the original dataset composition)
boosts the attack performance to 38% with a smaller poisoning
rate. In conclusion, our experimental evaluation shows that deep
convolutional neural networks are robust against simple attacks
involving superficial triggers in a clean label setting but not suffi-
ciently against more sophisticated attacks that target their latent
space. However, we intend to investigate further this aspect, an-
alyzing more in depth the possible correlation between varying
degrees of knowledge and the robustness of such classifiers.

As a last contribution, we validate our latent attack against
MNTD and STRIP, which showed some efficacy against older back-
dooring attacks against ML classifiers for malware detection. They
both failed when tested against our latent trigger attack. Nonethe-
less, we discuss some potential variations which may make them
effective against backdooring attacks that employ latent space trig-
gers, including ours.

ACKNOWLEDGEMENTS
Mario D’Onghia acknowledges support from TIM S.p.A. through
the PhD scholarship.

REFERENCES
[1] 2022. Avast. https://www.avast.com/technology/ai-and-machine-learning. [On-

line; accessed Dec 2nd, 2022].
[2] 2022. Chocolatey. https://chocolatey.org/.
[3] 2022. Eset. https://www.eset.com/uk/home/nod32-antivirus/. [Online; accessed

Dec 2nd, 2022].

218

https://www.avast.com/technology/ai-and-machine-learning
https://chocolatey.org/
https://www.eset.com/uk/home/nod32-antivirus/

Lookin’ Out My Backdoor! Investigating Backdooring Attacks Against DL-driven Malware Detectors AISec ’23, November 30, 2023, Copenhagen, Denmark

[4] 2022. Kaspersky. https://www.kaspersky.com/enterprise-security/wiki-section/
products/machine-learning-in-cybersecurity. [Online; accessed Dec 2nd, 2022].

[5] 2022. VirusShare. https://virusshare.com/.
[6] 2022. VirusTotal. https://virustotal.com/.
[7] T. Abou-Assaleh, N. Cercone, V. Keselj, and R. Sweidan. 2004. N-gram-based

detection of new malicious code. In Proceedings of the 28th Annual International
Computer Software and Applications Conference, 2004. COMPSAC 2004., Vol. 2.
41–42 vol.2. https://doi.org/10.1109/CMPSAC.2004.1342667

[8] Hojjat Aghakhani, Fabio Gritti, Francesco Mecca, Martina Lindorfer, Stefano Or-
tolani, Davide Balzarotti, Giovanni Vigna, and Christopher Kruegel. 2020. When
malware is Packin’Heat; limits of machine learning classifiers based on static
analysis features. In Network and Distributed Systems Security (NDSS) Symposium
2020.

[9] Hyrum S Anderson, Anant Kharkar, Bobby Filar, and Phil Roth. 2017. Evading
machine learning malware detection. black Hat 2017 (2017).

[10] Hyrum S Anderson and Phil Roth. 2018. Ember: an open dataset for training
static pe malware machine learning models. arXiv preprint arXiv:1804.04637
(2018).

[11] Daniel Arp, Erwin Quiring, Feargus Pendlebury, Alexander Warnecke, Fabio
Pierazzi, Christian Wressnegger, Lorenzo Cavallaro, and Konrad Rieck. 2022. Dos
and Don’ts of Machine Learning in Computer Security. In 31st USENIX Security
Symposium (USENIX Security 22). 3971–3988.

[12] Daniel Arp, Michael Spreitzenbarth, Malte Hubner, Hugo Gascon, Konrad Rieck,
and CERT Siemens. 2014. Drebin: Effective and explainable detection of android
malware in your pocket.. In Ndss, Vol. 14. 23–26.

[13] Niket Bhodia, Pratikkumar Prajapati, Fabio Di Troia, and Mark Stamp. 2019.
Transfer learning for image-based malware classification. arXiv preprint
arXiv:1903.11551 (2019).

[14] Brittain Blake. 2022. Apple lawsuit says ’stealth’ startup Rivos poached engineers
to steal secrets. https://www.reuters.com/legal/litigation/apple-lawsuit-says-
stealth-startup-rivos-poached-engineers-steal-secrets-2022-05-02/. [Online;
accessed Dec 2nd, 2022].

[15] Michele Carminati, Luca Santini, Mario Polino, and Stefano Zanero. 2020. Evasion
Attacks against Banking Fraud Detection Systems. In 23rd International Sympo-
sium on Research in Attacks, Intrusions and Defenses, RAID 2020, San Sebastian,
Spain, October 14-15, 2020, Manuel Egele and Leyla Bilge (Eds.). USENIX Asso-
ciation, 285–300. https://www.usenix.org/conference/raid2020/presentation/
carminati

[16] Bryant Chen, Wilka Carvalho, Nathalie Baracaldo, Heiko Ludwig, Benjamin
Edwards, Taesung Lee, Ian Molloy, and Biplav Srivastava. 2018. Detecting back-
door attacks on deep neural networks by activation clustering. arXiv preprint
arXiv:1811.03728 (2018).

[17] Xinyun Chen, Chang Liu, Bo Li, Kimberly Lu, and Dawn Song. 2017. Targeted
backdoor attacks on deep learning systems using data poisoning. arXiv preprint
arXiv:1712.05526 (2017).

[18] Xiaoyi Chen, Ahmed Salem, Michael Backes, Shiqing Ma, and Yang Zhang. 2021.
Badnl: Backdoor attacks against nlp models. In ICML 2021 Workshop on Adver-
sarial Machine Learning.

[19] Mario D’Onghia, Matteo Salvadore, Benedetto Maria Nespoli, Michele Carminati,
Mario Polino, and Stefano Zanero. 2022. Apícula: Static Detection of API Calls in
Generic Streams of Bytes. Computers & Security (2022), 102775.

[20] Mohammadreza Ebrahimi, Ning Zhang, James Hu, Muhammad Taqi Raza, and
Hsinchun Chen. 2020. Binary black-box evasion attacks against deep learning-
based static malware detectors with adversarial byte-level language model. arXiv
preprint arXiv:2012.07994 (2020).

[21] Alessandro Erba, Riccardo Taormina, Stefano Galelli, Marcello Pogliani, Michele
Carminati, Stefano Zanero, and Nils Ole Tippenhauer. 2020. Constrained Con-
cealment Attacks against Reconstruction-based Anomaly Detectors in Industrial
Control Systems. In ACSAC ’20: Annual Computer Security Applications Con-
ference, Virtual Event / Austin, TX, USA, 7-11 December, 2020. ACM, 480–495.
https://doi.org/10.1145/3427228.3427660

[22] Mojtaba Eskandari and Sattar Hashemi. 2011. Metamorphic malware detection
using control flow graph mining. Int. J. Comput. Sci. Netw. Secur 11, 12 (2011),
1–6.

[23] Zhang Fuyong and Zhao Tiezhu. 2017. Malware Detection and Classification
Based on N-Grams Attribute Similarity. In 2017 IEEE International Conference on
Computational Science and Engineering (CSE) and IEEE International Conference
on Embedded and Ubiquitous Computing (EUC), Vol. 1. 793–796. https://doi.org/
10.1109/CSE-EUC.2017.157

[24] Nicola Galloro, Mario Polino, Michele Carminati, Andrea Continella, and Stefano
Zanero. 2022. A Systematical and longitudinal study of evasive behaviors in
windows malware. Computers & Security 113 (2022), 102550.

[25] Yansong Gao, Change Xu, Derui Wang, Shiping Chen, Damith C Ranasinghe,
and Surya Nepal. 2019. Strip: A defence against trojan attacks on deep neu-
ral networks. In Proceedings of the 35th Annual Computer Security Applications
Conference. 113–125.

[26] Ian Goodfellow, Yoshua Bengio, and Aaron Courville. 2016. Deep learning. MIT
press.

[27] Ian J Goodfellow, Jonathon Shlens, and Christian Szegedy. 2014. Explaining and
harnessing adversarial examples. arXiv preprint arXiv:1412.6572 (2014).

[28] Tianyu Gu, Brendan Dolan-Gavitt, and Siddharth Garg. 2017. Badnets: Identifying
vulnerabilities in the machine learning model supply chain. arXiv preprint
arXiv:1708.06733 (2017).

[29] Tianyu Gu, Kang Liu, Brendan Dolan-Gavitt, and Siddharth Garg. 2019. Badnets:
Evaluating backdooring attacks on deep neural networks. IEEE Access 7 (2019),
47230–47244.

[30] Sanghyun Hong, Nicholas Carlini, and Alexey Kurakin. 2021. Handcrafted Back-
doors in Deep Neural Networks. CoRR abs/2106.04690 (2021). arXiv:2106.04690
https://arxiv.org/abs/2106.04690

[31] Ling Huang, Anthony D Joseph, Blaine Nelson, Benjamin IP Rubinstein, and
J Doug Tygar. 2011. Adversarial machine learning. In Proceedings of the 4th ACM
workshop on Security and artificial intelligence. 43–58.

[32] Roberto Jordaney, Kumar Sharad, Santanu K Dash, Zhi Wang, Davide Papini, Ilia
Nouretdinov, and Lorenzo Cavallaro. 2017. Transcend: Detecting concept drift
in malware classification models. In 26th USENIX Security Symposium (USENIX
Security 17). 625–642.

[33] Kesav Kancherla and Srinivas Mukkamala. 2013. Image visualization based
malware detection. In 2013 IEEE Symposium on Computational Intelligence in
Cyber Security (CICS). 40–44. https://doi.org/10.1109/CICYBS.2013.6597204

[34] Jeffrey O. Kephart, Gregory B. Sorkin, William C. Arnold, David M. Chess, Ger-
ald J. Tesauro, and Steve R. White. 1995. Biologically Inspired Defenses against
Computer Viruses. In Proceedings of the 14th International Joint Conference on
Artificial Intelligence - Volume 1 (Montreal, Quebec, Canada) (IJCAI’95). Morgan
Kaufmann Publishers Inc., San Francisco, CA, USA, 985–996.

[35] Bojan Kolosnjaji, Ambra Demontis, Battista Biggio, Davide Maiorca, Giorgio
Giacinto, Claudia Eckert, and Fabio Roli. 2018. Adversarial malware binaries:
Evading deep learning formalware detection in executables. In 2018 26th European
signal processing conference (EUSIPCO). IEEE, 533–537.

[36] Jeremy Z. Kolter and Marcus A. Maloof. 2004. Learning to Detect Malicious
Executables in the Wild. In Proceedings of the Tenth ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining (Seattle, WA, USA) (KDD
’04). Association for Computing Machinery, New York, NY, USA, 470–478. https:
//doi.org/10.1145/1014052.1014105

[37] Marek Krcál, Ondř Švec, Martin Bálek, and Otakar Jasek. 2018. Deep Convolu-
tional Malware Classifiers Can Learn from Raw Executables and Labels Only. In
ICLR.

[38] Alexey Kurakin, Ian J Goodfellow, and Samy Bengio. 2018. Adversarial examples
in the physical world. In Artificial intelligence safety and security. Chapman and
Hall/CRC, 99–112.

[39] Junyu Lin, Lei Xu, Yingqi Liu, and Xiangyu Zhang. 2020. Composite backdoor
attack for deep neural network by mixing existing benign features. In Proceedings
of the 2020 ACM SIGSAC Conference on Computer and Communications Security.
113–131.

[40] Kang Liu, Brendan Dolan-Gavitt, and Siddharth Garg. 2018. Fine-pruning: De-
fending against backdooring attacks on deep neural networks. In International
Symposium on Research in Attacks, Intrusions, and Defenses. Springer, 273–294.

[41] Yingqi Liu, Shiqing Ma, Yousra Aafer, Wen-Chuan Lee, Juan Zhai, WeihangWang,
and Xiangyu Zhang. 2017. Trojaning attack on neural networks. (2017).

[42] Keane Lucas, Mahmood Sharif, Lujo Bauer, Michael K Reiter, and Saurabh Shintre.
2021. Malware Makeover: breaking ML-based static analysis by modifying
executable bytes. In Proceedings of the 2021 ACM Asia Conference on Computer
and Communications Security. 744–758.

[43] Aleksander Madry, Aleksandar Makelov, Ludwig Schmidt, Dimitris Tsipras, and
Adrian Vladu. 2017. Towards deep learningmodels resistant to adversarial attacks.
arXiv preprint arXiv:1706.06083 (2017).

[44] Tajuddin Manhar Mohammed, Lakshmanan Nataraj, Satish Chikkagoudar, Shiv-
kumar Chandrasekaran, and BS Manjunath. 2021. Malware detection using
frequency domain-based image visualization and deep learning. arXiv preprint
arXiv:2101.10578 (2021).

[45] Robert Moskovitch, Dima Stopel, Clint Feher, Nir Nissim, and Yuval Elovici. 2008.
Unknown malcode detection via text categorization and the imbalance problem.
In 2008 IEEE International Conference on Intelligence and Security Informatics.
156–161. https://doi.org/10.1109/ISI.2008.4565046

[46] United States Attorney’s Office. 2020. Former Uber Executive Sen-
tenced To 18 Months In Jail For Trade Secret Theft From Google.
https://www.justice.gov/usao-ndca/pr/former-uber-executive-sentenced-
18-months-jail-trade-secret-theft-google. [Online; accessed Dec 2nd, 2022].

[47] United States Attorney’s Office. 2021. Fraudster Sentenced to Prison
for Long Running Phone Unlocking Scheme that Defrauded AT&T.
https://www.justice.gov/opa/pr/fraudster-sentenced-prison-long-running-
phone-unlocking-scheme-defrauded-att. [Online; accessed Dec 2nd, 2022].

[48] Feargus Pendlebury, Fabio Pierazzi, Roberto Jordaney, Johannes Kinder, and
Lorenzo Cavallaro. 2019. {TESSERACT}: Eliminating experimental bias in mal-
ware classification across space and time. In 28th USENIX Security Symposium
(USENIX Security 19). 729–746.

219

https://www.kaspersky.com/enterprise-security/wiki-section/products/machine-learning-in-cybersecurity
https://www.kaspersky.com/enterprise-security/wiki-section/products/machine-learning-in-cybersecurity
https://virusshare.com/
https://virustotal.com/
https://doi.org/10.1109/CMPSAC.2004.1342667
https://www.reuters.com/legal/litigation/apple-lawsuit-says-stealth-startup-rivos-poached-engineers-steal-secrets-2022-05-02/
https://www.reuters.com/legal/litigation/apple-lawsuit-says-stealth-startup-rivos-poached-engineers-steal-secrets-2022-05-02/
https://www.usenix.org/conference/raid2020/presentation/carminati
https://www.usenix.org/conference/raid2020/presentation/carminati
https://doi.org/10.1145/3427228.3427660
https://doi.org/10.1109/CSE-EUC.2017.157
https://doi.org/10.1109/CSE-EUC.2017.157
https://arxiv.org/abs/2106.04690
https://arxiv.org/abs/2106.04690
https://doi.org/10.1109/CICYBS.2013.6597204
https://doi.org/10.1145/1014052.1014105
https://doi.org/10.1145/1014052.1014105
https://doi.org/10.1109/ISI.2008.4565046
https://www.justice.gov/usao-ndca/pr/former-uber-executive-sentenced-18-months-jail-trade-secret-theft-google
https://www.justice.gov/usao-ndca/pr/former-uber-executive-sentenced-18-months-jail-trade-secret-theft-google
https://www.justice.gov/opa/pr/fraudster-sentenced-prison-long-running-phone-unlocking-scheme-defrauded-att
https://www.justice.gov/opa/pr/fraudster-sentenced-prison-long-running-phone-unlocking-scheme-defrauded-att

AISec ’23, November 30, 2023, Copenhagen, Denmark Mario D’Onghia et al.

[49] Fabio Pierazzi, Feargus Pendlebury, Jacopo Cortellazzi, and Lorenzo Cavallaro.
2020. Intriguing Properties of Adversarial ML Attacks in the Problem Space. In
2020 IEEE Symposium on Security and Privacy (SP). 1332–1349. https://doi.org/10.
1109/SP40000.2020.00073

[50] Xiangyu Qi, Jifeng Zhu, Chulin Xie, and Yong Yang. 2021. Subnet Replacement:
Deployment-stage backdoor attack against deep neural networks in gray-box
setting. CoRR abs/2107.07240 (2021). arXiv:2107.07240 https://arxiv.org/abs/2107.
07240

[51] Edward Raff, Jon Barker, Jared Sylvester, Robert Brandon, Bryan Catanzaro, and
Charles K Nicholas. 2018. Malware detection by eating a whole exe. InWorkshops
at the Thirty-Second AAAI Conference on Artificial Intelligence.

[52] Edward Raff, William Fleshman, Richard Zak, Hyrum S Anderson, Bobby Filar,
and Mark McLean. 2021. Classifying sequences of extreme length with constant
memory applied to malware detection. In Proceedings of the AAAI Conference on
Artificial Intelligence, Vol. 35. 9386–9394.

[53] Edward Raff, Richard Zak, Russell Cox, Jared Sylvester, Paul Yacci, Rebecca Ward,
Anna Tracy, Mark McLean, and Charles Nicholas. 2018. An investigation of byte
n-gram features for malware classification. Journal of Computer Virology and
Hacking Techniques 14, 1 (2018), 1–20.

[54] Ahmed Salem, Rui Wen, Michael Backes, Shiqing Ma, and Yang Zhang. 2022.
Dynamic backdoor attacks against machine learning models. In 2022 IEEE 7th
European Symposium on Security and Privacy (EuroS&P). IEEE, 703–718.

[55] Ashkan Sami, Babak Yadegari, Hossein Rahimi, Naser Peiravian, Sattar Hashemi,
and Ali Hamze. 2010. Malware detection based onmining API calls. In Proceedings
of the 2010 ACM symposium on applied computing. 1020–1025.

[56] Igor Santos, Felix Brezo, Javier Nieves, Yoseba K Penya, Borja Sanz, Carlos Laor-
den, and Pablo G Bringas. 2010. Idea: Opcode-sequence-based malware detection.
In International Symposium on Engineering Secure Software and Systems. Springer,
35–43.

[57] Giorgio Severi, Jim Meyer, Scott Coull, and Alina Oprea. 2021. {Explanation-
Guided} Backdoor Poisoning Attacks Against Malware Classifiers. In 30th
USENIX Security Symposium (USENIX Security 21). 1487–1504.

[58] Asaf Shabtai, Robert Moskovitch, Clint Feher, Shlomi Dolev, and Yuval Elovici.
2012. Detecting unknown malicious code by applying classification techniques

on opcode patterns. Security Informatics 1, 1 (2012), 1–22.
[59] Mahmood Sharif, Sruti Bhagavatula, Lujo Bauer, and Michael K. Reiter. 2016.

Accessorize to a crime: Real and stealthy attacks on state-of-the-art face recog-
nition. In Proceedings of the 23rd ACM SIGSAC Conference on Computer and
Communications Security. https://doi.org/10.1145/2976749.2978392

[60] Pramila P Shinde and Seema Shah. 2018. A review of machine learning and
deep learning applications. In 2018 Fourth international conference on computing
communication control and automation (ICCUBEA). IEEE, 1–6.

[61] Charles Smutz and Angelos Stavrou. 2012. Malicious PDF Detection Using
Metadata and Structural Features. In Proceedings of the 28th Annual Computer
Security Applications Conference (Orlando, Florida, USA) (ACSAC ’12). Association
for Computing Machinery, New York, NY, USA, 239–248. https://doi.org/10.
1145/2420950.2420987

[62] P Vinod, R Jaipur, V Laxmi, and M Gaur. 2009. Survey on malware detection
methods. In Proceedings of the 3rd Hackers’ Workshop on computer and internet
security (IITKHACK’09). 74–79.

[63] Bolun Wang, Yuanshun Yao, Shawn Shan, Huiying Li, Bimal Viswanath, Haitao
Zheng, and Ben Y. Zhao. 2019. Neural Cleanse: Identifying and Mitigating
Backdoor Attacks in Neural Networks. In 2019 IEEE Symposium on Security and
Privacy (SP). 707–723. https://doi.org/10.1109/SP.2019.00031

[64] Xiaojun Xu, Qi Wang, Huichen Li, Nikita Borisov, Carl A Gunter, and Bo Li.
2021. Detecting ai trojans using meta neural analysis. In 2021 IEEE Symposium
on Security and Privacy (SP). IEEE, 103–120.

[65] Limin Yang, Zhi Chen, Jacopo Cortellazzi, Feargus Pendlebury, Kevin Tu, Fabio
Pierazzi, Lorenzo Cavallaro, and Gang Wang. 2022. Jigsaw Puzzle: Selective
Backdoor Attack to Subvert Malware Classifiers. arXiv preprint arXiv:2202.05470
(2022).

[66] Yuanshun Yao, Huiying Li, Haitao Zheng, and Ben Y Zhao. 2019. Latent back-
door attacks on deep neural networks. In Proceedings of the 2019 ACM SIGSAC
Conference on Computer and Communications Security. 2041–2055.

[67] Richard Zak, Edward Raff, and Charles Nicholas. 2017. What can N-grams learn
for malware detection?. In 2017 12th International Conference on Malicious and
Unwanted Software (MALWARE). IEEE, 109–118.

220

https://doi.org/10.1109/SP40000.2020.00073
https://doi.org/10.1109/SP40000.2020.00073
https://arxiv.org/abs/2107.07240
https://arxiv.org/abs/2107.07240
https://arxiv.org/abs/2107.07240
https://doi.org/10.1145/2976749.2978392
https://doi.org/10.1145/2420950.2420987
https://doi.org/10.1145/2420950.2420987
https://doi.org/10.1109/SP.2019.00031

	Abstract
	1 Introduction
	2 Preliminaries
	2.1 DL for malware detection
	2.2 Threat Modeling
	2.3 Functionality-Preserving Trigger Injection

	3 Superficial Triggers
	3.1 Dirty Label
	3.2 Clean Label

	4 Latent Triggers
	4.1 Generating Triggered Binaries

	5 Attack Evaluation
	5.1 Datasets and Experimental Setup
	5.2 Superficial Trigger
	5.3 Latent Trigger

	6 Detecting Backdoors
	6.1 STRIP
	6.2 MNTD
	6.3 Backdooring Defense: Future Directions

	7 Related Work
	8 Conclusions
	References

