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Design of arbitrarily shaped acoustic cloaks through

PDE-constrained optimization satisfying sonic-metamaterial

design requirements

Sebastiano Cominelli ∗ Davide E. Quadrelli † Carlo Sinigaglia‡

Francesco Braghin§

Abstract

We develop an optimization framework for the design of acoustic cloaks, with the aim of over-
coming the limitations of usual transformation-based cloaks in terms of microstructure complexity
and shape arbitrarity of the obstacle. This is achieved by recasting the acoustic cloaking design as
a nonlinear optimal control problem constrained by a linear elliptic partial differential equation. In
this setting, isotropic material properties’ distributions realizing the cloak take the form of control
functions and a system of first-order optimality conditions is derived accordingly. Such isotropic
media can then be obtained in practice with simple hexagonal lattices of inclusions in water.

For this reason, the optimization problem is directly formulated to take into account suitable
partitions of the control domain Two types of inclusions are considered, and long-wavelength homog-
enization is used to define the feasible set of material properties that is employed as a constraint
in the optimization problem. In this manner, we link the stage of material properties optimization
with that of microstructure design, aiming at finding the optimal implementable solution. As a test
benchmark, cloaking of the silhouette of a ship is considered, for various frequencies and directions
of incidence. The resulting cloak is numerically tested via coupled structural/acoustic simulations.

1 Introduction

Inspired by the development of Transformation Theory, the quest for the implementation of invisibility
devices has spread during the last decade over diverse research fields [1], in which governing partial
differential equations have been shown to be invariant under coordinate transformations. Started in
electromagnetism [2, 3], this theory has indeed unlocked the possibility to achieve perfect concealment
from detection in acoustics [4, 5, 6], elastodynamics [7, 8], surface water waves [9], heat conduction [10]
and even matter waves [11]. The beauty and power of this analytical method stands in the fact that the
obtained cloak is theoretically exact for all frequencies and incoming directions of the probing incident
radiation.

In acoustics [6, 12], it has also been shown that the solution of the problem is not unique in terms
of material parameters distributions: inertial cloaks [13, 14, 15, 16] are made with anisotropic inertial
properties, pure pentamode cloaks [17, 18] are obtained with solids exhibiting singular anisotropic elas-
ticity tensors, while the most general acoustic cloak can comprise both mass and elasticity anisotropy.
On the flip side, however, this material distributions are hard to achieve in practice, and one is often
forced to resort to complex microstructures designed by homogenization-based optimization techniques
[19, 20], to obtain the required anisotropic material behavior. More than that, analytical solutions are
available for simple geometries only, such as the axisymmetric case [21], and the literature dealing with
arbitrarily shaped cloaks based on transformation theory is limited and almost entirely restricted to the
inertial cloak case [22, 23, 24, 25, 26].
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Several attempts have been made to overcome such restrictions and allow for simplified design, for
instance using quasi-conformal cloaks [27], in which the transformation is specifically constructed in such
a way that anisotropy is avoided in the obtained material distributions. However, the geometries that
allow for application of this technique are limited and the cloak should in principle comprise the overall
space, thus a truncation is required that makes the solution not exact.

Scattering cancellation, instead, is an alternative technique that relies on surrounding the target
with a distribution of small obstacles, in such a way that the resulting multiple scattering solution has
no influence on the incident field. Such distribution of scatterers can be obtained by setting a priori
their number and shape and optimizing for their location either with evolutionary algorithms [28] or
with gradient based optimization [29]. Increased degrees of freedom can instead be considered in the
optimization if not only the location, but the shape also is not fully determined a priori: in this case
one can use parametric optimization of Bezier shapes [30], or even topology optimization [31] which has
recently allowed to consider acoustic-elastic interactions [32] in the optimal design of acoustic cloaks.
The simplicity of construction unlocked by this techniques has also allowed for the design and validation
of three dimensional cloaks of axisymmetric obstacles [33], whose practical demonstration is still lacking
when considering classic transformation theory based cloaks. The downside of these methods is that
they are inherently narrowband and work for a limited set of incident angles. The broadbandness and
the number of working directions can be increased by augmenting the set of cases considered in the cost
function, accepting a trade-off between performance and number of working frequencies/directions.

In the search for simplified configurations, one can progressively rely more on optimization and less
on model based intuition by exploiting neural networks to compute the physical properties of a set of
layers of isotropic homogeneous fluids [34].

In this paper, we follow another route and reformulate the design phase such that the properties of
the cloak are obtained as the solution of a Partial Differential Equation (PDE)-constrained optimization
problem, that is an Optimal Control Problem (OCP). The control functions are infinite-dimensional and
space-varying fields of material properties that nullify the scattered wave. The state equation is repre-
sented by the inhomogeneous Helmholtz equation [35] describing the scattered wave in the domain. A
similar PDE-constrained optimization framework is considered in [36] with the additional complexity of
adding uncertainty in the problem formulation. Instead of considering the wave propagation velocity as
control function as in [36], we consider as separate control functions both the density and bulk modulus
fields, and introduce constraints in the optimization for such controls, thus taking into account for the
fact that in practical implementations these two parameters can hardly be chosen independently. This in
turns allows to derive an elegant and concise expression for the reduced gradient of the cost functional
with respect to these two control variables. More than that, our formulation is intended to facilitate
the link between the design of the macrostructure, i.e. the material property distribution, with that of
the microstructure that implements via long-wavelength homogenization the required density and bulk
modulus, thus unlocking the marriage between the two stages of the design of such two-scale optimization
problem. Indeed, the standard approach to implement inhomogeneous material property distributions in
acoustic cloaking is to discretize them and fill each resulting sub-domain with an appropriately optimized
microstructure [17, 18, 37]. This approach leads to sub-optimal solutions depending on the chosen dis-
cretization: provided that the sub-domains are sufficiently small compared to the wavelength considered,
the wave ”feels” a gradient of refraction index that might be different from the required one. In this
work we instead make use of appropriate control basis functions that allow to obtain optimal solutions
taking into account the size and shape of the cloak sub-domains at the level of the optimization prob-
lem. Finally, considering inhomogeneous but isotropic material distributions considerably reduces the
complexity of the required microstructure, which can be simply obtained considering hexagonal lattices
of solid inclusions in the hosting water medium. The manuscript is organized as follows: in the next two
sections the optimization problem is introduced, and the optimality conditions are derived. The OCP is
then discretized with the Finite Element Method (FEM) in order to allow for numerical solutions and the
solution of the usual axisymmetric cloak is shown. In the fourth section, an in deep analysis of the reach-
able set of homogenized material properties is conducted on simple hexagonal lattices of solid inclusions
in water, in order to build a set of constraints for the OCP that allow for practical implementations. In
Section 5, such constraints are introduced in the formulation of the problem, and constrained solutions
are compared to those obtained previously with the unconstrained problem. Before drawing conclusions,
Section 6 deals with the numerical validation of the cloak implemented with the microstructures ana-
lyzed in Section 4. A boat-shaped target is considered as an additional case study to validate the method
against arbitrarily shaped targets.

2



Figure 1: Schematic representation of the computational domain Ω with bounday Γ = Γi ∪ Γe. The
background fluid occupies the subdomain Da, while the cloak occupies the region Dc.

2 Problem Statement

We consider a two-dimensional acoustic scattering problem in an inhomogenous medium consisting of
water as background fluid and of a cloaking region modeled as an inhomogeneous yet isotropic equivalent
fluid. The computational domain Ω ⊂ R2 is divided in two subdomains: Dc is the domain occupied by
the cloak, Da corresponds to the surrounding ambient and it is occupied by the fluid. The domain’s
boundary is Γ = ∂Ω = Γi ∪ Γe, where Γi is the obstacle’s shape and Γe the external boundary. The
interface between cloak and fluid domains is denoted as Γc whereas the external boundary Γe is needed
for computational purposes and its role will be detailed in the following. The domain Da is filled with
water with standard physical properties (ρ0 = 998 [kg/m3], κ0 = 2.2 [MPa]). We denote as ρ0 and κ0 its
properties in the background domain Da. On the other hand, the physical properties in the domain Dc

are assumed as control functions and denoted as ρ and κ. These are considered as function of the space
variable x ∈ Dc. This layout is shown in Figure 1.

When the system is forced by time harmonic waves, the steady-state acoustic pressure P (x, t) can
be separated as <(p(x)ejωt), where <{·} denotes the real component of its argument. The complex
amplitude p(x) satisfies the Helmholtz equation for inhomogeneous media [35]:

∇ ·
(
a(x)∇p(x)

)
= −b(x)ω2p(x), (1)

where p(x) ∈ C is the pressure field phasor, ω the circular frequency of the forcing wave. The coefficients
a and b are defined as a := ρ−1 and b := κ−1, where ρ is the local mass density and κ the local bulk
modulus. The definition of a and b will turn out to be useful in manipulating Equation (1) and setting
up the resulting Optimal Control Problem (OCP).
The total pressure field can be decomposed into an incident and a scattered field, that is:

p(x) = ps(x) + pi(x). (2)

where pi is the solution of the Helmholtz equation obtained considering a homogeneous fluid without
obstacles. That is pi satisfies Equation (1) with homogeneous properties

a0∆pi(x) = −b0ω2pi(x). (3)

A plane wave solution to Equation (3) is pi = e−jk0 a·x where k0 = ω
c0

is the homogeneous wave number,

c0 =
√

κ0

ρ0
is the undisturbed sound velocity and a ∈ R2 is the unit vector associated to the direction of

the incident wave. Equation (1) can be rewritten in terms of the scattered pressure ps:

−∇ ·
(
a(x)∇ps(x)

)
− ω2b(x)ps(x) = ω2

(
b(x)− b0

)
pi(x) +∇ ·

[(
a(x)− a0

)
∇pi(x)

]
(4)

which is obtained plugging Equation (3) into Equation (1) and rearranging the terms. We remark that
the incident wave pi is a datum of the problem. We consider the scattering problem from an infinitely
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rigid obstacle at the boundary Γi. This in turns specifies a zero normal velocity of the total pressure p
as boundary condition, that is:

∇ps(x) · n(x) = −∇pi(x) · n(x) on Γi, (5)

where n is the outgoing normal. Note that Equation (5) is a standard inhomogeneous Neumann boundary
condition since pi is completely known. In order to approximate computationally an unbounded domain
we need to guarantee that the scattered wave is outgoing by satisfying the Sommerfeld radiation condition
[38]:

lim
r→∞

√
r
(∂ps(x)

∂r
+ jk0ps(x)

)
= 0 (6)

where r = ‖x‖. For the sake of simplicity, we substitute Equation (6) with the first-order Bayliss and
Turkel approximation for 2D domains, that is [39]:

∇ps(x) · n(x) +
(
jk0 +

1

2R

)
ps(x) = 0 on Γe, (7)

where R is the radius of Γe. Note that Equation (7) is a homogeneous Robin boundary condition. This
approximation guarantees reliable results without increasing the problem complexity (see e.g. [40]).
In the following we will omit the explicit dependence on the space variable when it is clear from the
context.

3 The Optimal Control Problem

In this section, the acoustic cloaking problem is formulated as an OCP where the state dynamics consists
of the scattered field ps(x) that solves the linear elliptic PDE (4). Space modulated density and bulk
modulus in the cloaking region take the role of control functions. Hence, the overall OCP is nonlinear
due to the way the control affects the state. The cloaking objective is achieved if the intensity of the
scattered wave vanishes, that is equivalent to minimize the quadratic objective ‖ps(x)‖2 = p̄s(x)ps(x)
in the ambient domain Da, where p̄s(x) represents the complex conjugate of ps(x). This objective can
be encoded in a quadratic cost functional which aims at finding the optimal trade-off minimizing the
scattered wave with control functions which deviate as little as possible from the background properties
of water. Then, the OCP can be written as follows:

min
v,u,ps

J(v, u, ps) =
λv
2

∫
Dc

v2 dΩ +
λu
2

∫
Dc

u2 dΩ +
1

2

∫
Da

p̄sps dΩ (8)

s.t.


−∇ · (a∇ps)− bω2ps = f in Ω

a∇ps · n = g on Γi

a∇ps · n + αps = 0 on Γe

(9)

where: 
f = ω2(b− b0)pi +∇ · [(a− a0)∇pi]
g = −a∇pi · n

α = a
(
jk0 +

1

2R

)
and the functional relationships between the control functions u and v and the perturbed material prop-
erties are:

a = a0 e
−v b = b0 e

−u

in this way the positivity of the density ρ and bulk modulus κ is ensured for any choice of the control
functions u and v. The exponential change of variables to ensure positivity of the control variables is
standard and was used in [36] when controlling the wave propagation velocity.

We now derive a set of first-order optimality conditions applying the Lagrangian method [41]. Using
this idea, we obtain an explicit expression for the gradient of the cost functional in the continuous setting.
First of all, we define suitable functional spaces for state and control functions. We select the complex-
valued Hilbert space H1(Ω) as the state space, that is V = H1(Ω). The state problem is well-posed as
long as its coefficients κ and ρ are bounded and positive [42]. Since we have selected an exponential
modulation of background properties we can select as control space U = L∞(Dc)

2, that is the space
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of real-valued two-dimensional vector functions which are essentially bounded. In other words, for each
x ∈ Dc we associate a real-valued control pair (u(x), v(x)) whose elements are bounded.
The Lagrangian functional L : V × U ×W∗ → R can be formed as:

L := J + <
{∫

Ω

(∇ · (a∇ps) + bω2ps + f)λ̄ dΩ
}

(10)

where the adjoint function λ : Ω→ C belongs to H1(Ω), that is we can identify W∗ = H1(Ω). Note that
the Lagrangian is defined as a real-valued functional and an equivalent formulation can be recovered by
using the imaginary part.
A system of first-order necessary conditions for optimality is obtained by taking the Gâteaux derivatives
of the Lagrangian with respect to state, control and adjoint variables independently (see e.g. [41]). The
adjoint dynamics is obtained by setting to zero the Lagrangian derivative with respect to an arbitrary
state variation ϕ ∈ H1(Ω). Applying the divergence theorem and substituting the boundary conditions,
the Lagrangian can be rewritten as:

L = J + <
{∫

Ω

−a∇ps · ∇λ̄+ bω2psλ̄+ fλ̄ dΩ +

∫
Γi

gλ̄ dΓ +

∫
Γe

αpsλ̄ dΓ
}
. (11)

L is a functional which maps complex-valued functions to real numbers, therefore to compute its Gâteaux
derivatives we make use of basic results from complex analysis, that is we apply Wirtinger’s calculus rules

[43], in particular recall that d<{c z}
dz = c/2 and d(z̄ z)

dz = z̄ for c , z ∈ C.
Hence, the Gâteaux derivative of L with respect to ps is:

L′ps [ϕ] =
1

2

∫
Da

p̄sϕdΩ +
1

2

∫
Ω

−a∇λ̄ · ∇ϕ+ bω2λ̄ϕ dΩ +
1

2

∫
Γe

α λ̄ϕ dΓ = 0 ∀ϕ ∈ H1(Ω) (12)

which is the weak formulation of the adjoint dynamics:

−∇ · (a∇λ)− bω2λ = ps χDa
in Ω

∇λ · n = 0 on Γi

∇λ · n +
(

1
2R − jk0

)
λ = 0 on Γe

(13)

being χDa
(x) the indicator function of the domain Da.

We now turn to the optimality conditions involving the control functions u and v. The Lagrangian
(10) can be rewritten substituting the explicit form of f and considering satisfied the boundary conditions
of the state PDE as:

L = J + <
{∫

Ω

bω2(ps + pi)λ̄ dΩ−
∫

Ω

a∇(ps + pi) · ∇λ̄ dΩ +

∫
Γe

a∇(ps + pi) · n λ̄ dΓ
}

(14)

so that we can easily take control variations ψ ∈ L∞(Dc) Physically, the control variations cannot modify
the background properties outside of the cloak. Hence, a = a0 on Γe, a

′
v[ψ] = b′u[ψ] = 0 on Da and

a′v[ψ] = {a0e
−v}′v[ψ] = −a0e

−vψ = −aψ

and similarly b′u[ψ] = −bψ, so that the control necessary conditions (i.e. the reduced gradient) in varia-
tional form results in:

L′v[ψ] = λv

∫
Dc

vψ dΩ + <
{∫

Dc

a∇(ps + pi) · ∇λ̄ ψ dΩ
}

= 0 ∀ψ ∈ L∞(Dc)

L′u[ψ] = λu

∫
Dc

uψ dΩ−<
{∫

Dc

bω2(ps + pi)λ̄ ψ dΩ
}

= 0 ∀ψ ∈ L∞(Dc).

(15)

The strong form of the reduced gradient can be identified as:

∇Jv = λvv + <
{
a∇(ps + pi) · ∇λ̄

}
∇Ju = λuu−<

{
bω2(ps + pi)λ̄

}
.

(16)

Equations (16) together with the adjoint Equation (13) and the state Equation (4) constitute a system
of first-order necessary conditions for optimality. Note that we did not make any assumption on the
structure of the control basis functions other than belonging to the space L∞(Dc). However, the actual
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Figure 2: the obstacle is surrounded by hexagonal domains Dc,j . Notice that ∪Nc
j=1Dc,j ⊂ Dc is the

control domain.

controlled material properties will be realized with piece-wise constant functions at the microstructure
level. In order to preserve the optimal properties at the microstructure, we express the control functions
as linear combinations of indicator functions describing the cell domain. In particular, let us define a
subdivision of the control domain Dc in Nc disjoint sets whose elements Dc,j satisfy:

Nc⋃
j=1

Dc,j ⊆ Dc and Dc,j ∩Dc,i = ∅ for i 6= j

and define the functions ψj(x) = χDc,j (x) as the indicator functions of such sets. Then it is natural to
express to control variables u and v as:

u =

Nc∑
j=1

ψj(x)uj = ψ(x)>u v =

Nc∑
j=1

ψj(x)vj = ψ(x)>v (17)

where the shape functions ψj are defined according to the cell shape and distribution in the domain
Dc and the constant coefficients ui and vi of the linear combination are the control variables of the
optimization problem. The control discretization layout is shown in Figure 2. This formulation allows to
preserve cloak’s optimal properties at the microstructure level, as was mentioned in the introduction.

The optimization problem is still set in the infinite-dimensional space for the state and adjoint vari-
ables. It is also clear that u =

∑Nc

j=1 ψj(x)uj ∈ L∞(Dc) and the functional setting of the OCP is still
consistent. Regarding the optimality conditions, it is easy to see that state and adjoint dynamics are
unchanged. Slightly more care is needed to recover the form of the reduced gradients ∇Jvj and ∇Juj

for
j = 1, . . . , Nc. We substitute Equations (17) in the Lagrangian formulation (14) as:

L =
λv
2

v>
(∫

Dc

ψψ> dΩ
)
v +

λu
2

u>
(∫

Dc

ψψ> dΩ
)
u +

1

2
<
{∫

Da

p̄sps dΩ
}

+ <
{∫

Ω

ω2b(u)(ps + pi)λ̄ dΩ−
∫

Ω

a(v)∇(ps + pi) · ∇λ̄ dΩ +

∫
Γe

a(v)∇(ps + pi) · n λ̄ dΓ
}

where :
a(v) = a0 e

−ψ>v b(u) = b0 e
−ψ>v.

Furthermore, since ∀x ∈ Dc there is at most one index k such that ψk(x) 6= 0 we have:

e−ψ
>v = e−

∑Nc
j=1 vj ψj =

Nc∑
j=1

e−vjψj (18)

for every vector v ∈ RNc . Note also that the gradient of a and b can be written as:

∇va = −ψ a ∇ub = −ψ b
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so that the reduced gradients can be expressed by taking the finite-dimensional gradient of the Lagrangian
with respect to v and u, that is:

∇Jv = λv

(∫
Dc

ψψ> dΩ
)
v + <

{∫
Dc

ψ a∇(ps + pi) · ∇λ̄ dΩ
}

∇Ju = λu

(∫
Dc

ψψ> dΩ
)
u + <

{∫
Dc

ψ bω2(ps + pi)λ̄ dΩ
}
.

(19)

Note that

∫
Dc

ψψ> dΩ is a diagonal matrix whose entries are the areas of the respective cells. We can

now turn to the full discretization of the problem.

Discretization of the OCP

For the numerical solution of the OCP we employ the Finite Element Method (FEM). We select piecewise
quadratic, globally continuous ansatz functions ϕi (P2 finite elements) for the space approximation of
state and adjoint in Ω while the control basis functions do not need any spatial approximation since their
functional form is expressed by Equation (17). The FEM approximation of the state equation reads:

A(u,v)p = f(u,v)

where:

Aij =

∫
Ω

a(v)∇ϕi · ∇ϕj −
∫

Ω

ω2b(u)ϕiϕj −
∫

Γe

αϕiϕjdΓ

since a = a0 in Ω \Dc it is useful to rewrite:

a = a0 + a0(e−ψ
>v − 1) b = b0 + b0(e−ψ

>u − 1)

so that using Equation (18) the components of A can be separated as:

Aij =

∫
Ω

a0∇ϕi · ∇ϕjdΩ +

Nc∑
k=1

(e−vk − 1)

∫
Dc,k

a0∇ϕi · ∇ϕjdΩ−
∫

Ω

b0ω
2ϕiϕjdΩ

−
Nc∑
k=1

(e−uk − 1)

∫
Dc,k

b0ω
2ϕiϕjdΩ−

∫
Γe

a0(jk0 +
1

2R
)ϕiϕjdΓ

=
(
A0

)
ij

+

Nc∑
k=1

(e−vk − 1)
(
Ak
)
ij

+
(
B0

)
ij

+

Nc∑
k=1

(e−uk − 1)
(
Bk
)
ij

+ C

(20)

where the matrices Ak,Bk and C can be precomputed and only their sum must be performed when
varying the control vectors u and v. Besides the presence of the exponential function that enforces the
positive definiteness of the material properties, Equation (20) highlights the bilinear structure of the
control problem. Finally, it is easy to notice that the matrix A is symmetric being the sum of symmetric
matrices. The components of the right-hand side f can be written as:

fi =

∫
Ω

(a− a0)∇pi · ∇ϕidΩ +

∫
Ω

(b− b0)ω2piϕidΩ−
∫

Γi

a0∇pi · nϕi dΩ

=

Nc∑
k=1

(e−vk − 1)

∫
Dc,k

∇pi · ∇ϕidΩ +

Nc∑
k=1

(e−uk − 1)

∫
Dc,k

b0ω
2piϕidΩ−

∫
Γi

a0∇pi · nϕi dΩ

=

Nc∑
k=1

(e−vk − 1)
(
lk
)
i
+

Nc∑
k=1

(e−uk − 1)
(
dk
)
i
− qi

which again shows the same bilinear structure in the way the control functions enter the right-hand
side. The adjoint discretization follows the same steps for the left-hand side while the right-hand side
corresponds to the FEM discretization of the of the state projected in L2(Ω). That is we have:

A†(u,v)λ = MDap

7



Figure 3: Optimal distribution of material properties computed solving the OCP when the shape of the
target Γi is a circle and the angular frequency ω is selected such that λ/r = 0.69, r being the radius of the
target. The incidence direction is a = [1, 0]. 390 hexagonal unit cells of edge l = 8.7 %λ are employed.
The external radius of the cloak is 1.57 r.

Figure 4: (a) Total pressure field, obstacle case. The pressure is normalized with respect to the amplitude
of the incident wave. (b) Scattered pressure field, obstacle case. (c) Decibel reduction in acoustic intensity
computed for the scattered field at 1 meter from the obstacle, with respect to the incident intensity. (d)
Total pressure field, cloak case, when the material properties in the cloak are the optimal ones shown in
Figure 3. (e) Scattered pressure field, cloak case. (f) Decibel reduction in acoustic intensity with respect
to the incident one, cloak case.
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where MDa
is the restriction of the usual mass matrix to the observation domain Da, that is the domain

in which we want to minimize the scattered field, and (·)† is the Hermitian operator. Note that since
A† = Ā the discretized version of the state operator remains self-adjoint. Finally, the FEM discretization
of state p and adjoint λ can be plugged in Equation (19) to obtain the fully discrete version of the
reduced gradient, that at component level of vk can be written as:

∇Jvk = λv|Dc,k|vk + e−vk
∫
Dc,k

a0∇(ps + pi) · ∇λ̄ dΩ

= λv|Dc,k|vk + e−vkλ†
(
Akp + lk

) (21)

where |Dc,k| is the measure of the set associated to the kth cell. For the uk control vectors we have:

∇Juk
= λu|Dc,k|uk + e−uk

∫
Dc,k

b0ω
2(ps + pi)λ̄ dΩ

= λu|Dc,k|uk + e−ukλ†
(
Bkp + dk

)
.

Once the fully discretized version of the optimality conditions is obtained, we setup Algorithm 1 using
an iterative steepest descent method to solve the OCP with microstructure specified by the functions ψk.

Algorithm 1 Steepest Descent for Optimal Cloak
1:

2: ψ, Nc ← Define microstructure shape and domain
3: FEM Model← Assemble constant FEM matrices
4: u0,v0 ← Assign control initial guesses
5:

6: for t = 1 : maxIter do
7:

8: pt ← Solve state equation: A(ut,vt)p = f(ut,vt)
9:

10: λt ← Solve adjoint equation: Ā(ut,vt)λ = MDa
pt

11:

12: ∇J(ut)k ← λu|Dc,k|utk + e−u
t
kλt †

(
Bkp

t + dk

)
13:

14: ∇J(vt)k ← λv|Dc,k|vtk + e−v
t
kλt †

(
Akp

t + lk

)
15:

16: if
∥∥∥(∇J(ut) , ∇J(vt)

)∥∥∥ < tol then

17: return
18: end if
19:

20: τ ← ArmijoBacktracking(J,∇J(ut),∇J(vt),ut,vt)
21:

22: ut+1 ← ut − τ∇J(ut)
23: vt+1 ← vt − τ∇J(vt) . Update control
24:

25: end for

The OCP is solved for a circular target surrounded by the set of Nc = 390 hexagonal unit cells as
shown in Figure 3 when probed by acoustic illumination from left to right at an angular frequency ω
corresponding to λ/r = 0.69, with λ = 2πc0/ω and r being the radius of the target. The solution is shown
in Figure 3 in terms of nondimensional material properties ρ̂ = ρ/ρ0 and κ̂ = κ/κ0. Figure 4 compares
the total (Figures 4(a) vs (d)) and scattered pressure fields (Figures 4(b) vs (e)) between the cloaked and
uncloaked case. The mean scattered intensity Imean at one meter from the surface of the obstacle is also
computed for all the azimuthal angles θ and in Figures 4(c) and (f) is shown for comparison in terms of
Decibel reduction with respect to the incident intensity Iinc:

∆(θ) = 10 log10

(
Imean(θ)

Iinc

)
[dB].
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Figure 5: (a) Schematic of a unit cell comprising a circular inclusion made by a solid phase filled with
air. (b) Dispersion relation computed along the boundary of the Irreducible Brillouin Zone. The reduced

frequency is computed as f̂ = fL/c0, while the reduced wavenumber stands for the adimensional kL,
which spans between the high symmetry points Γ , K and M.

An average reduction of 65 [dB] on the scattered intensity is obtained using the hexagonal microstructure
discretization. Note that, as shown in Figure 3, we need to obtain equivalent controlled properties both
higher and smaller than those of the background fluid.

4 Unit Cell Design

The required material parameter distribution obtained through the solution of the OCP introduced in the
previous section has to be practically realized with opportunely designed microstructures that show the
appropriate equivalent density and bulk modulus when homogenized. It is well known [44], that hexagonal
lattices of solid inclusions in water behave in the long-wavelength limit as isotropic acoustic fluids, whose
properties can be tailored upon control on the material and shape of the inclusion itself. For this very
reason the cloak sub-domains have been chosen to be shaped as hexagons: in this way they can naturally
be filled by hexagonal lattices. The basic configuration considered in the bidimensional setting consists
thus of a circular inclusion placed in each lattice point and made by a material with high contrast with
respect to the hosting medium, e.g. a metal. This allows to obtain a wide range of material properties
with densities and bulk moduli that are generally higher than that of water. Preliminary results shown
in the previous section (Figure 3) underline the need to go also for ρ and κ smaller than those of water:
it is thus implied that some kind of porosity has to be contemplated in the solid inclusion. Indeed, since
resonance phenomena are not exploited in this application, the density can be simply evaluated with the
rule of mixtures:

ρhom =
∑
i

χiρi (22)

where ρi is the density of the constituents and χi is the cell volume filling fraction of each constituent. This
in turn implies that a third light phase has to be included in the mix other than the fluid and the solid.
The simplest configuration considered consists thus of a hollow cylinder filled by air (ρ = 1.23 [kg/m3],
κ = 0.14 [MPa], ref Figure 5(a)).
The equivalent bulk modulus is instead computed via inspection of the dispersion relation of each con-
sidered lattice, computed via Bloch analysis on the unit cell [44]. A typical dispersion relation is shown
in Figure 5(b): in the long wavelength limit, the linearity of the branch justifies the evaluation of κhom

as:
κhom = c2phρhom (23)

where cph is the phase speed computed as the slope of the very branch emanating from the origin. In order
to compute the set of obtainable ρhom, κhom, the geometry is parametrized with the two characteristic
adimensional parameters r̂out = rout/L and r̂in = rin/L (Figure 5(a)), whose variation is considered to
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Figure 6: (a) The feasible set C� of unit cell geometries comprising a cylindrical inclusion defined in the
r̂out × r̂in space, which is enclosed by the curve ∂C�. (b) The corresponding reachable set of material
properties S� is enclosed in the curve ∂S�, obtained performing the long-wavelength homogenization of
the parametrized cell along curve ∂C�.

be bounded in the following way: 
r̂in ≥ δr̂1

r̂out ≤
√

3
2 − δr̂1

r̂out ≥ r̂in + δr̂2

(24)

where δr̂1,2 are the nondimensional minimum feature sizes, that is the thinnest gap and wall allowed.
These constraints define a closed feasible region C� in the plane r̂in × r̂out, that is shown in Figure 6(a).
By computing the homogenized properties of the associated lattices, the contour ∂C� going across the
extremal points ABC is mapped to a curve ∂S� joining A′B′C′ in the ρ̂ × κ̂ space, with ρ̂ = ρhom/ρ0

and κ̂ = κhom/κ0. This defines the set of the obtainable material properties S�. In Figure 6(b) such
curve is computed for a configuration where the solid phase is chosen to be aluminium (ρ = 2700 [kg/m3],
Young’s Modulus YM = 70 [GPa], Poisson’s ratio ν = 0.3) and the minimum features are selected as
δr̂2 = 5 % and δr̂1 = 4δr̂2. It can be seen how the inclusion of the light phase allows for obtaining ρ̂ < 1,
notice however how it is hard to reach the region where κ̂ is less than 1. To enlarge the feasible region,
another configuration is thus considered: the inclusion is now shaped as a N-pointed star, N being a
multiple of 3; other than maintaining the invariance of the lattice upon rotation of π/3, i.e. the symmetry
required for isotropy, the oblique walls allow to reduce the tangential stiffness of the inclusion. When
considering hydrostatic loads, this in turn increases the compressibility with respect to the case of the
hollow cylinder. A N-pointed star is completely characterized by the lengths of the internal and external
tips P̂ = P/L and p̂ = p/L, by the fillet radii and by the thickness of the wall (Figure 7(a)). The latter
two parameters are considered fixed and are chosen to be 2.5 % and 5 %, respectively. The bounds on
the remaining two geometrical features are: 

p̂ ≥ p̂min
p̂ ≤ P̂
P̂ ≤ P̂max

(25)

these also define a feasible p̂× P̂ region C? (Figure 8(a)) whose boundary ∂C? can be mapped to a path
∂S? in the ρ̂× κ̂ space. In Figure 8(b) it is shown how adopting this type of unit cell the feasible set of
material properties is enlarged also in the region that is not reachable with the hollow cylinder.

Note that, the higher the number N, the more similar is the N-pointed star to a hollow cylinder when
p̂ → P̂ . For this reason, the D′E′ curve for a 12-pointed star almost overlap with the A′B′ curve of the
circular inclusion. This allows to obtain a connected feasible set S := S� ∪ S? in the ρ̂ × κ̂ space, as
shown in Figure 9, that will be considered in the following the reachable region for the equivalent material
properties.
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Figure 7: Schematic of the unit cell comprising a hollow N-pointed star.

Figure 8: (a) The feasible set of unit cell geometries C? comprising a N-pointed star inclusion defined in
the P̂ × p̂ space, which is enclosed by the curve ∂C?. (b) The corresponding reachable set of material
properties S? is enclosed in the curve ∂S?, obtained performing the long-wavelength homogenization for
each cell described by the points on the curve ∂C?.

5 Constrained Optimal Control Problem

In this section we reformulate the fully discrete PDE-constrained optimization problem in order to satisfy
the constraints imposed by the realization of the actual microstructure. That is we solve a reduced
constrained optimization problem where the constrained control region generates equivalent material
properties that lie in the reachable region S of the ρ̂× κ̂ space. Furthermore, we include a regularization
term in the control weightings to impose a smoother transition of material properties between neighboring
cells. First of all, the optimal material properties obtained in Section 3 are plotted in Figure 9 as black
markers in the ρ̂×κ̂ plane. It can be noticed how part of them falls outside of the set of material properties
that can be practically implemented by means of the microstructures described in the previous section.

In order to constrain the control variables to lie on the feasible set described by the region S, we
equip the steepest descent Algorithm 1 with an additional projection step thus employing a standard
Projected Gradient (PG) method [45]. For each component-wise control pair (vk, uk), the corresponding
point Pk = (ρ̂k, κ̂k) = (evk , euk) must lie in the region of the ρ̂× κ̂ plane defined by S.
The feasible region in the control space is defined as S ′ = {(v, u) ∈ R2 : (ev, eu) ∈ S ⊂ R2} and we denote
the projection onto S ′ as ΠS′ . The pairwise vector projection ΠS′ is defined as:(

ΠS′(v,u)
)
k

= ΠS′(vk, uk)

12



Figure 9: The overall reachable set of material properties given as the union of those obtained separately
with the hollow cylinder inclusion and the 12-pointed star inclusion. A magnification around the ma-
terial properties of the background fluid shows how the A′B′ and D′E′ curves almost overlap creating
a connected set. Black markers in the graph are used to underline the location of the optimal material
properties computed with the unconstrained OCP, that are shown in Figure 3.

The PG method consists of replacing the gradient update in Algorithm 1 with:

(v,u)t+1 = ΠS′(vt − τ∇J(vt),ut − τ∇J(ut))

where the step-size τ satisfies the Armijo backtracking line-search along the projected directions [45].
Regarding the strong variation of material properties obtained in Section 3, we add a regularizing weight-
ing and force neighboring cells to have similar properties. The computed homogenized properties, indeed,
refer to infinite repetition of equal unit cells, while in the most simple implementable configuration each
hexagonal sub-domain is filled by a single unit cell which is thus surrounded by different ones. Limiting
the difference between adjacent cells is thus beneficial for the equivalence of the behavior of the graded
index metamaterial to the expected one.
Being the map from the geometrical parametrization to the equivalent properties regular and one-to-
one, we can limit the geometrical dissimilarity between neighboring cells by constraining the equivalent
properties on the ρ̂× κ̂ plane or equivalently on the control space u and v.
Thus, a penalty factor that weights the difference in the control intensity can be be introduced in the
cost functional as :

1

2

NC∑
j=1

∑
i∈Λj

(ui − uj)2 = u>Hu

where Λj is the set of cells adjacent to the jth cell and |Λj | its cardinality; the matrix H is defined as:

Hij =


|Λi| if i = j

−1 if j ∈ Λi

0 otherwise,

and we have used the identity
∑Nc

j=1

∑
i∈Λj

u2
i =

∑Nc

j=1 |Λj |u2
j . Note that the matrix H corresponds to

the Laplacian associated to the graph induced by the topology of the cells where an edge is present if the
cells are neighbors. The graph is fully connected and thence its eigenvalues are nonnegative (see e.g. [46]).
The eigenvalue zero appears with multiplicity one and corresponds to the eigenvector space spanned by
a vector of ones. Intuitively, this corresponds to the same control for all the cells.

As a result, the fully discrete cost function can be written as

J(v,u,ps) =
λv
2

v> (H +D) v +
λu
2

u> (H +D) u +
1

2
p†MDa

p,
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Figure 10: (a) Total pressure field computed with the cloak obtained with the material properties that
are solution of the constrained OCP. (b) Associated scattered field. (c) Decibel reduction in scattered
acoustic intensity with respect to the incident intensity. (d) Normalized bulk modulus distribution inside
the cloak. (e) Normalized density distribution. (f) Each unit cell in the cloak represented as a ρ̂× κ̂ pair
falling inside the set S.

where D is the diagonal matrix whose entries are the areas of the associated cell. Due to the structure
of H, it is clear that H +D is positive definite. The fully discretized reduced gradients become:

∇Jvk = λv ((Hv)k + |Dc,k|vk ) + e−vkλ†
(
Akp + lk

)
∇Juk

= λu ((Hu)k + |Dc,k|uk ) + e−ukλ†
(
Bkp + dk

)
.

The solution of the constrained optimization problem obtained by the PG method is shown in Figure 10.
In particular, in Figure 10(a)-(b) and (c) are depicted the total field, the scattered field, and the polar
dependence of the decibel gain in scattered intensity computed with respect of the incident intensity, as
previously done in the unconstrained scenario.

The performance in terms of scattering reduction are comparable to those obtained without the
constraints. Moreover, Figure 10(d)-(e) show the obtained solution of the constrained optimization in
terms of material properties distribution, i.e. the normalized bulk modulus and density, respectively.
Finally, Figure 10(f) show the location of each unit cell as black markers in the ρ̂× κ̂ plane. Note that the
obtained material properties lie inside the reachable set S or on its boundary ∂S whenever the feasibility
constraint is active.

6 Design of the Microstructured Cloak and Validation

Once the optimal required material properties are found, the inverse engineering problem of finding the
microstructure geometry that exhibit those ρ̂ and κ̂ pairs has to be solved. This being a much more
difficult problem than the direct one, it is usually tackled adopting optimization algorithms, either para-
metric of evolutionary, that employ as cost function the distance between the required desired material
properties and those obtained by homogenization on the considered lattice [18, 37]. In the case at hand,
the simplicity of the geometry of the considered unit cells, which is univocally determined in both con-
figurations by a pair of parameters, allows for a direct mapping of the whole C� and C? spaces into the
ρ̂ × κ̂ one. Once this map is computed, it can subsequently be used to solve the inverse engineering;
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Figure 11: Direct mapping between the space of geometrical parameters and the space of homogenized
material properties, that is inverted to solve for the design of the microstructure once the constrained
optimal control problem is solved. Colors help to trace visually each different point from the space of
homogenized material properties back to that of its geometrical features.

in particular, the homogenized material properties are computed for the grid of points shown on the
r̂in× r̂out and p̂× P̂ spaces in Figure 11 and the resulting discrete map is used for a first guess of the cells
geometrical parameters when required (ρ̂, κ̂) values are specified. An optimization routine allows then to
refine the properties of each cell with few iterations.

Following the aformentioned design procedure, the entire cloak geometry obtained from the solu-
tion of the constrained OCP is defined and the resulting microstructure is depicted in Figure 12, where
colors are used to distinguish between domains filled by air, aluminium or water. A fully coupled struc-
tural/acoustic frequency domain finite element simulation of the designed cloak is carried out by means
of the commercial software COMSOL Multiphysics®, in order to test its performances when considering
the actual implemented structure.

A first-order approximation of the Sommerfeld absorbing condition is assigned on the boundary Γe
to approximate an unbounded domain. The results are shown in Figure 13.

By looking at the scattered intensity plot of Figure 13(c), we can state that the outgoing energy is
two orders of magnitude lower with respect to the uncloaked case; then the obstacle is undetectable. The
discrepancies with respect to the simulation performed with the homogenized properties can be attributed
to the fact that one single unit cell has been considered to fill each cloak sub-domain, while an infinite
microstructure should ideally be placed there instead.

As a further test case, a constrained OCP is set to find the optimal material properties’ distribution
to cloak the silhouette of a ship, i.e. an obstacle with a non axisymmetric contour. The probing acoustic
field consists in the superposition of an incident plane wave with wavelength λ1 = 20.4 % of the ship
characteristic length L and direction a = [1, 0] (horizontal incidence) and a plane wave with wavelength
λ2 = 18.9 %L and direction a = [0, 1] (vertical incidence). The size of each hexagonal sub-domain is
8.7 %λ1 = 9.3 %λ2. Figure 14 shows the uncloaked case scenario in terms of total fields, scattered fields
and scattered intensity for both horizontal and vertical incidence. This choice for the probing incident
field allows to test the performance of the method when multiple frequencies and directions are taken into
account: for this reason, the definition of the OCP is modified as follows. Let us consider a number Nf
of incident pressure fields pi,h, h ∈ {1, . . . , Nf}. The governing equations are linear with respect to the
pressure, thus the superposition principle holds and we can modify the objective functional by weighting
the sum of the scattered fields for each probing frequency. Indeed, we can select as J :

JNf
=
λv
2

∫
Dc

v2 dΩ +
λu
2

∫
Dc

u2 dΩ +
1

2

Nf∑
h=1

∫
Da

p̄s,hps,h dΩ

where each scattered pressure ps,h satisfies the state dynamics (9) with frequency ωh and forcing terms
determined by pi,h. Note that the PDE constraints are now Nf . With similar arguments as for the
previous section, we can form a Lagrangian which comprises the sum of the PDE constraints. From the
latter, we can compute Nf adjoint equations of the form (13) where the right-hand side depends on ps,h
only. Note that the control functions are the same for each state and adjoint equation. In this way, the
reduced gradients can be computed as:
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(a) (b)

Figure 12: (a) Schematic of the geometry of the cloak made by the hexagonal lattice of inclusions.
Aluminium part are depicted in grey, air in yellow and water in light blue. (b) Magnification of the red
box depicted on (a) that shows the geometry of the inclusions.

∇Jv = λv

(∫
Dc

ψψ> dΩ
)
v +

Nf∑
h=1

<
{∫

Dc

ψ a∇(ps,h + pi,h) · ∇λ̄h dΩ
}

∇Ju = λu

(∫
Dc

ψψ> dΩ
)
u +

Nf∑
h=1

<
{∫

Dc

ψ bω2
h(ps,h + pi,h)λ̄h dΩ

}
.

The multi-frequency problem is solved with the PG method and the results are shown in Figure 15(a,b)
in terms of material properties distributions while in Figure 15(c) it is shown that they all lie in the feasible
set S. The corresponding acoustic fields and scattered intensity are shown in Figure 16 for comparison
with the uncloaked scenario. A 25 [dB] reduction of scattered intensity is obtained in both the backward
and forward scattering directions with respect to the uncloaked case. As done for the axisymmetric case,
the geometry of the actual cloak is deduced optimizing for each single unit cell, and the resulting design
is depicted in Figure 17(a). Such geometry can be easily extruded in the third dimension and fabricated
with state of the art 3D printing technologies for experimental validations (Figure 17(b)). In order to
provide an accurate numerical validation of the cloak design, a fully coupled acoustic/structure simulation
is performed with the commercial software COMSOL Multiphysics®.

Figure 18 shows the computed fields and figures of merit of the ship equipped with the cloak composed
by the actual microstructure, showing good agreement between the obtained performances and the ideal
ones obtained with the homogenized material properties (Figure 16).

7 Conclusions

In this paper, we have introduced a general acoustic cloaking design strategy that simultaneously aims
at reducing the complexity of the required microstructures and enlarge the set of geometries that can
be cloaked with respect to traditional Transformation-based methods. This is achieved by synergic use
of PDE-constrained optimization, to find the isotropic material distribution that minimizes scattering,
and parametric structural optimization, to design simple hexagonal lattices of inclusions that match the
required densities and bulk moduli. More than that, such two scale-optimization problem is formulated
in such a way that the two stages, i.e. the computation of the macroscale material properties distribution
and the microscale design, are not disconnected steps but intimately linked together, in order to retain
the optimality of the solution found. This is done at the OCP level by considering as control space a
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Figure 13: Fully coupled structural acoustic finite element simulation of the microstructured cloak. (a) To-
tal pressure field (b) Associated scattered pressure field. (c) Decibel reduction in scattered acoustic
intensity.

suitable linear combination of indicator functions which corresponds to the topology of the hexagonal
lattices, and constraining the controls to take values inside a feasible region that is pre-computed analyzing
all the possible considered unit cell geometries. The method is tested against the usual axisymmetric
cloaking scenario, producing a two orders of magnitude mean reduction of intensity over the whole
azimuthal scattering directions. Then, a more complicated scenario is considered, where an arbitrary
shaped obstacle is probed by two acoustic waves with different frequency and incident direction. The
solution is found to reduce the backscattered and forward scattered wave with performance comparable
to those obtained in the simple axisymmetric scenario. With the simplicity of the considered geometries,
this manuscript paves the way for experimental validation of the acoustic cloaking principle with arbitrary
obstacle shapes.
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(a) (b)

Figure 17: (a) Schematic of the entire cloak microstructure geometry for the ship obstacle. Grey is used
for the Aluminium inclusions, yellow for air and light blue for water. (b) 3D render of the extruded
geometry useful for experimental validation.

Figure 18: Fully coupled structural acoustic finite element simulation of the ship equipped with mi-
crostructured cloak. (a) Total pressure field for horizontal incidence (b) Associated scattered pressure
field. (c) Decibel reduction in scattered acoustic intensity. (d) Total pressure field for vertical incidence.
(e) Associated scattered pressure field. (f) Decibel reduction in scattered acoustic intensity.
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