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We prove a Nečas-Lions inequality with symmetric gradients on two and three 
dimensional domains of diameter R that are star-shaped with respect to a ball of 
radius ρ; we exhibit a bound for the constant appearing in that inequality, which is 
explicit with respect to R and ρ. Crucial tools in the derivation of such a bound are 
a first order Babuška-Aziz inequality based on Bogovskĭı’s construction of a right-
inverse of the divergence and Fourier transform techniques proposed by Durán. 
As a byproduct, we derive arbitrary order estimates in arbitrary dimension for 
Bogovskĭı’s operator, with upper bounds on the corresponding constants that are 
explicit with respect to R and ρ.

© 2024 The Author(s). Published by Elsevier Inc. This is an open access article 
under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

1. Introduction

We derive a Nečas-Lions inequality with symmetric gradients on star-shaped domains in two and three 
dimensions; first order Babuška-Aziz and Nečas-Lions inequalities are crucial tools to show an upper bound 
on the constant appearing in that inequality, which is explicit with respect to certain geometric quantities of 
the domain. As a byproduct, we also derive arbitrary order Babuška-Aziz inequalities in arbitrary dimension 
with explicit bounds on the corresponding constant.

Outline of the introduction After introducing the functional setting and the domains of interest, we review 
the literature and the main concepts related to the lowest order Babuška-Aziz and Nečas-Lions inequalities 
in Sections 1.1 and 1.2. In Sections 1.3 and 1.4, we discuss the generalisation of these two results to the 
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first order case. The Nečas-Lions inequality with symmetric gradients, based on all the foregoing results, is 
shown in Section 1.5. Finally, we describe the outline of the remainder of the paper.

Functional spaces and notation In what follows, ∇, ∇×, and ∇· denote the gradient, curl, and divergence 
operators. The operators ∇S and ∇SS are the symmetric and skew-symmetric parts of ∇:

∇ = ∇S + ∇SS . (1)

We use standard notation [14] for Sobolev spaces on Lipschitz domains Ω with boundary ∂Ω. The outward 
unit normal vector to ∂Ω is nΩ. Hs(Ω) denotes the Sobolev space of order s ≥ 0, which we equip with inner 
product (·, ·)s, seminorm |·|s,Ω, and norm ‖·‖s,Ω. The case s = 0 corresponds to H0(Ω) = L2(Ω). The space 
of functions in L2(Ω) with zero average over Ω is denoted by L2

0(Ω).
For s positive, we define Hs

0(Ω) as the closure of C∞
0 (Ω) with respect to the Hs(Ω) norm. In what follows, 

we shall particularly use the spaces H1
0 (Ω) and H2

0 (Ω), which coincide [22] with the spaces of functions with 
zero trace, and functions with zero trace and whose gradients have zero trace over ∂Ω, respectively.

Negative order Sobolev spaces are defined by duality. We introduce the spaces H−1(Ω) := [H1
0 (Ω)]∗

and H−2(Ω) := [H2
0 (Ω)]∗ equipped with the norms

‖u‖−1,Ω := sup 
v∈H1

0 (Ω)

−1〈u, v〉1
|v|1,Ω

, ‖u‖−2,Ω := sup 
v∈H2

0 (Ω)

−2〈u, v〉2
|v|2,Ω

, (2)

where −�〈·, ·〉� is the duality pairing between H−�(Ω) and H�
0(Ω).

The definitions above extend to the case of vector fields and tensors. With an abuse of notation, the 
norms on scalar, vector fields, and tensors are denoted with the same symbols.

For positive a and b, by a � b, we shall occasionally mean that there exists a positive constant c
independent of relevant geometric parameters such that a ≤ c b. An extra subscript makes it explicit a 
hidden dependence on a parameter of interest.

Domains of interest Henceforth, Ω in Rn is a

domain of diameter R that is star-shaped with respect to a ball Bρ of radius ρ. (3)

1.1. The lowest order Babuška-Aziz inequality

The standard, lowest order version of the Babuška-Aziz inequality was proven as early as 1961 by Cat-
tabriga [10]. However, the name is associated to the authors of the later work [5] and was assigned by Horgan 
and Payne [19]; see also [11].

The inequality reads as follows: there exists a positive constant CBA,0 such that for any f in L2
0(Ω) one 

can construct u in [H1
0 (Ω)]n satisfying

∇·u = f, |u|1,Ω ≤ CBA,0‖f‖0,Ω. (4)

The subscript in CBA,0 relates to Babuška-Aziz. Explicit constructions of a vector field u as in (4) may be 
performed in different ways; here, we shall follow the approach by Bogovskĭı in [6,7], where he showed a 
particular construction of the right inverse of the divergence based on integral kernels. Alternative avenues, 
which give less information on the constant CBA,0 and construct less smooth right-inverses of the divergence, 
are based on solving curl-div, diffusion, or Stokes problems; see, e.g., [4] and [9, Lemma 11.2.3]; as such, 
higher order estimates based on this approach require extra regularity assumptions on the boundary of the 
domain, which are instead not needed following Bogovskĭı’s approach.
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Minimal literature on the lowest order Babuška-Aziz inequality The literature associated with inequality (4)
is widespread. We refer to [15, pp. 227-228], [18], and [11] for a thorough historical review.

Here, we only mention that the divergence problem in (4) was raised as early as in 1961 by Cattabriga [10]; 
see also the later works [20,23]. Bogovskĭı introduced an explicit representation for v solving (4) in [6, 
7]. Several references discuss the validity of similar estimates; for instance, implicit constants for general 
Lipschitz domains are available in [8, Theorems 2.4 and 2.9]. The case of negative Sobolev norms is described 
in [16].

The explicit dependence of the constant CBA,0 on geometric parameters of Ω is studied in fewer references; 
see [1] for a list. For R and ρ as in (3), Galdi [15] gives estimates of the form

CBA,0 �n

(
R

ρ 

)n+1

. (5)

The main tool in the analysis is the one discussed originally by Bogovskĭı [6,7], i.e., the Calderón-Zygmund 
singular integral operator theory.

Improved estimates of the form

CBA,0 �n
R

ρ 

(
|Ω|
|Bρ|

) n−2 
2(n−1)

(
log |Ω|

|Bρ|

) n 
2(n−1)

(6)

were proven by Durán [13] based on the properties of the Fourier transform. In the same reference, it is shown 
that the estimates are optimal up to the logarithmic factor for n = 2. More precisely, a 2D counterexample 
is exhibited showing that the following holds true:

CBA,0�
R

ρ 
.

For the two dimensional case, Costabel and Dauge [11, Theorem 2.3] proved that the logarithmic factor in 
Durán’s estimates can be removed again for n = 2.

Minimal literature on higher order Babuška-Aziz inequalities Higher order Babuška-Aziz inequalities are far 
less investigated. They are stated in the original paper by Bogovskĭı [6] without mention on the behaviour 
of the constants. Galdi [15, Remark III.3.2] claims that similar bounds to the lowest order case can be 
derived; however, no explicit constants are given in that case as well; the analysis hinges upon the Calderón-
Zygmund theory. Costabel and McIntosh prove arbitrary order estimates [12] without explicit dependence 
on the geometry on the domain. Guzmán and Salgado [18] prove an explicit first order generalised Poincaré 
inequality, which is related to Bogovskĭı’s operator without imposition of boundary conditions, and give a 
road map on how to prove higher order explicit estimates; tools as those in [13] are employed; no estimates 
are given for Bogovskĭı’s operator.

1.2. The lowest order Nečas-Lions inequality

The standard, lowest order Nečas-Lions inequality is a very well known result in the theory of Sobolev 
spaces. It is proven in the book by Nečas [23, Lemma 3.7.1]; the connection to the name of Lions is less clear, 
and is probably due to [21, Note 27, page 320], where the result is mentioned as a private communication 
by Lions himself to Magenes and Stampacchia, yet without an explicit proof.

Given Π0 : L1(Ω) → R the average operator over Ω, the inequality reads as follows: there exists a positive 
constant CNL,0 such that ∥∥f − Π0f

∥∥
0,Ω ≤ CNL,0‖∇f‖−1,Ω ∀f ∈ L2(Ω). (7)
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The subscript in CNL,0 relates to Nečas-Lions. An equivalent statement for (7) is that the following constants 
are bounded from above and below, respectively:

CNL,0 := sup 
f∈L2(Ω)

∥∥f − Π0f
∥∥

0,Ω

‖∇f‖−1,Ω
, C−1

NL,0 := inf
f∈L2(Ω)

‖∇f‖−1,Ω

‖f − Π0f‖0,Ω
. (8)

The constants CBA,0 and CNL,0 in (4) and (7) are related to constants in other relevant inequalities in 
Sobolev spaces as well, including the standard inf-sup constant β0 defined as

inf
f∈L2

0(Ω)
sup 

u∈[H1
0 (Ω)]n

(∇·u, f)0,Ω
‖u‖1,Ω‖f‖0,Ω

=: β0. (9)

Proposition 1.1. Let CBA,0, CNL,0, and β0 be given in (4), (7), and (9). Then, the following holds true:

CBA,0 ≥ CNL,0 = β−1
0 .

Proof. For all f in L2
0(Ω), the definition of negative norms in (2) implies

sup 
u∈[H1

0 (Ω)]n

(∇·u, f)0,Ω
‖u‖1,Ω‖f‖0,Ω

= sup 
u∈[H1

0 (Ω)]n

−1〈∇f,u〉1
‖u‖1,Ω‖f‖0,Ω

=
‖∇f‖−1,Ω

‖f‖0,Ω
.

We take the inf over all possible f in L2
0(Ω), use (8), and deduce that β0 = C−1

NL,0.
On the other hand, for all f in L2

0(Ω), we can consider a specific u satisfying (4), which gives

sup 
u∈[H1

0 (Ω)]n

(∇·u, f)0,Ω
‖u‖1,Ω‖f‖0,Ω

≥
‖f‖2

0,Ω

‖u‖1,Ω‖f‖0,Ω
≥ C−1

BA,0.

Taking the inf over all possible f in L2
0(Ω) and recalling the standard inf-sup condition (9) give β0 ≥ C−1

BA,0. 
The assertion follows. �

Since an upper bound on CBA,0 is available from Lemma (4), which is explicit in terms of n, R, and ρ
as in (3), then Proposition 1.1 implies an upper bound for CNL,0 and a lower bound for β0 with the same 
explicit dependence. The relation with constants appearing in other inequalities is discussed, amongst others, 
in [2,11,19].

1.3. Main result 1: a first order Babuška-Aziz inequality

An important tool in the proof of Theorem 1.4 below is the proof of a Babuška-Aziz inequality, based 
on first order estimates for Bogovskĭı’s construction of the right-inverse of the divergence. More precisely, 
there exist positive constants CA

BA,1 and CB
BA,1 such that for all f in H1

0 (Ω) ∩ L2
0(Ω), one can construct u

in [H2
0 (Ω)]n satisfying

∇·u = f, |u|2,Ω ≤ CA
BA,1‖f‖0,Ω + CB

BA,1|f |1,Ω. (10)

We state the result here and postpone its proof to Section 2 below.

Theorem 1.2 (A first order Babuška-Aziz inequality). Let u and f be as in (10), and Ω, Bρ, R, and ρ be as 
in (3). Then, inequality (10) holds true with

CA
BA,1 � R

ρ2

[
1 +
(

|Ω|
|Bρ|

) n−2 
2(n−1)

(
log |Ω|

|Bρ|

) n 
2(n−1)

]
, CB

BA,1 � R

ρ 
. (11)
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We provide the reader with some comments on the optimality of the constant CA
BA,1 in (11) in Section 2.5

below.

1.4. Main result 2: a first order Nečas-Lions inequality

Introduce the space H−1(Ω)/R, which is the space H−1(Ω) equipped with the norm

‖f‖H−1(Ω)/R := inf
c∈R

‖f − c‖−1,Ω.

Recall the negative norms in (2). We discuss a first order Nečas-Lions inequality (for vectors): there exists 
a positive constant CNL,1 such that

‖f‖H−1(Ω)/R ≤ CNL,1‖∇f‖−2,Ω ∀f ∈ H−1(Ω)/R. (12)

An equivalent statement for (12) is that the following constants are bounded from above and below, respec-
tively:

CNL,1 = sup 
f∈H−1(Ω)/R

‖f‖H−1(Ω)/R

‖∇f‖−2,Ω
, C−1

NL,1 = inf
f∈H−1(Ω)/R

‖∇f‖−2,Ω

‖f‖H−1(Ω)/R
. (13)

The constants CA
BA,1 and CB

BA,1, and CNL,1 in (10) and (11), and (12) are related to constants in other 
relevant inequalities in Sobolev spaces as well, including the first order inf-sup constant β1 defined as

inf
f∈H−1(Ω)/R

sup 
u∈[H2

0 (Ω)]n

−1〈f,∇·u〉1
‖f‖H−1(Ω)/R|u|2,Ω

=: β1 (14)

and the positive constant CP appearing in the Poincaré inequality

‖f‖0,Ω ≤ CPR|f |1,Ω ∀f∈H1
0 (Ω). (15)

The constant CP is independent of R and ρ in (3); see, e.g., [14, Section 3.3].
The following result is the first order version of Proposition 1.1.

Proposition 1.3. Let CA
BA,1 and CB

BA,1, CNL,1, β1, and CP be given in (10) and (11), (12), (14), and (15). 
Then, the following holds true:

CA
BA,1CPR + CB

BA,1 ≥ CNL,1 = β−1
1 . (16)

Proof. For all f in H−1(Ω)/R, an integration by parts and the definition of negative Sobolev norms in (2)
imply

sup 
u∈[H2

0 (Ω)]n

−1〈f,∇·u〉1
‖f‖H−1(Ω)/R|u|2,Ω

= sup 
u∈[H2

0 (Ω)]n

−2〈∇f,u〉2
‖f‖H−1(Ω)/R|u|2,Ω

=:
‖∇f‖−2,Ω

‖f‖H−1(Ω)/R
.

We take the infimum over all such possible f and exploit the identities

β1
(14)= inf

f∈H−1(Ω)/R

‖∇f‖−2,Ω

‖f‖H−1(Ω)/R
=
(

sup 
f∈H−1(Ω)/R

‖∇f‖−2,Ω

‖f‖H−1(Ω)/R

)−1
(13)= C−1

NL,1,

which implies β1 = C−1
NL,1.
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On the other hand, (10) guarantees for all f̃ in H1
0 (Ω) the existence of u in [H2

0 (Ω)]n such that

∇·u = f̃ , |u|2,Ω ≤ CA
BA,1

∥∥∥f̃∥∥∥
0,Ω

+ CB
BA,1

∣∣∣f̃ ∣∣∣
1,Ω

.

This and the Poincaré inequality (15) give

sup 
u∈[H2

0 (Ω)]n

−1〈f,∇·u〉1
‖f‖H−1(Ω)/R|u|2,Ω

≥ sup 
f̃∈H1

0 (Ω)

−1〈f, f̃〉1
‖f‖H−1(Ω)/R[CA

BA,1

∥∥∥f̃∥∥∥
0,Ω

+ CB
BA,1

∣∣∣f̃ ∣∣∣
1,Ω

]

≥ sup 
f̃∈H1

0 (Ω)

−1〈f, f̃〉1
(CA

BA,1CPR + CB
BA,1)‖f‖H−1(Ω)/R

∣∣∣f̃ ∣∣∣
1,Ω

(2)= (CA
BA,1CPR + CB

BA,1)−1.

We take the infimum over all f in H−1(Ω)/R, recall the first order inf-sup condition (14), and deduce 
β1 ≥ (CA

BA,1CPR + CB
BA,1)−1. The assertion follows. �

Since an upper bound on CA
BA,1 and CB

BA,1 is available from Theorem 1.2, which is explicit in terms of n, 
R, and ρ as in (3), then Proposition 1.3 implies an upper bound for CNL,1 and a lower bound for β1 with the 
same explicit dependence. For more general Nečas-Lions inequalities, yet with unknown constants, see [3] 
and the references therein.

1.5. Main result 3: a Nečas-Lions inequality with symmetric gradients

The spaces RM(Ω) of rigid body motions in two and three dimensions have cardinality 3 and 6, and are 
given by

RM(Ω) :=
{{

r(x) = α + b(x2,−x1)T for any α ∈ R2, b ∈ R
}

in 2D{
r(x) = α + ω × (x1, x2, x3)T for any α,ω ∈ R3} in 3D.

Let ΠRM denote the L2(Ω) projection onto RM(Ω). We further introduce the space of symmetric tensors

Σ := {τ ∈ H(∇·,Ω) | τ is symmetric},

which we endow with the norm

‖τ‖2
Σ := ‖τ‖2

0,Ω + R2‖∇· τ‖2
0,Ω. (17)

Note that

−1〈∇v, τ 〉1 =−1 〈∇Sv, τ 〉1 ∀v ∈ [L2(Ω)]2, τ ∈ Σ. (18)

We state a Nečas-Lions inequality with symmetric gradients on two and three dimensional domains, which 
is explicit in terms of R, ρ, and n as in (3).

We state the inequality here and postpone its proof to Section 3 below.

Theorem 1.4 (A Nečas-Lions inequality with symmetric gradients). There exists a positive constant C∗
NL,0

depending only on n, R, and ρ as in (3) through CNL,0 in (7), CA
BA,1 and CB

BA,1 in (10), and CP in (15), 
such that
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‖v − ΠRMv‖0,Ω ≤ C∗
NL,0‖∇Sv‖−1,Ω

≤CNL,0

[
1 +

√
2
(
CA

BA,1CPR + CB
BA,1

)]
‖∇Sv‖−1,Ω ∀v ∈ [L2(Ω)]n.

(19)

Since upper bounds on CA
BA,1 and CB

BA,1, and CNL,0 are available from Lemma (10), and Proposition 1.1
and display (6), which are explicit in terms of n, R, and ρ as in (3), (bounds on CP are standard) then 
Theorem 1.4 implies an upper bound for C∗

NL,0 and a lower bound for β1 with the same explicit dependence. 
Roughly speaking, Theorem 1.4 is a Korn-type version of the standard lowest order Nečas-Lions inequality.

Introduce the spaces

Σ̃ := {τ ∈ Σ | 〈τ n,w〉∂Ω = 0 ∀w ∈ [H1(Ω)]n}; Ṽ := {v ∈ [L2(Ω)]n | ΠRMv = 0}.

A consequence of Theorem 1.4 is an inf-sup condition, which is of great importance in the analysis of the 
mixed (Hellinger-Reissner) formulation of linear elasticity problems: there exists a positive constant β∗

0 such 
that

inf
v∈Ṽ

sup 
τ∈Σ̃

(∇· τ ,v)0,Ω
‖τ‖Σ‖v‖0,Ω

=: β∗
0R

−1. (20)

Proposition 1.5. Let C∗
NL,0 and β∗

0 be given in (19) and (20). Then, the inf-sup condition (20) holds true 
with

β∗
0 ≥ (C∗

NL,0)−1(1 + C2
P )− 1

2 .

Proof. For all tensors τ , let τS denote its symmetric part. We have

β∗
0 = inf

v∈Ṽ
sup 
τ∈Σ̃

(∇· τ ,v)0,Ω
‖τ‖Σ‖v‖0,Ω

≥ inf
v∈Ṽ

sup 
τ∈Σ̃∩[H1

0 (Ω)]n×n

(∇· τ ,v)0,Ω
‖τ‖Σ‖v‖0,Ω

IBP= inf
v∈Ṽ

sup 
τ∈Σ̃∩[H1

0 (Ω)]n×n

−1〈∇v, τ 〉1
‖τ‖Σ‖v‖0,Ω

(18)= inf
v∈Ṽ

sup 
τ∈Σ̃∩[H1

0 (Ω)]n×n

−1〈∇Sv, τ 〉1
‖τ‖Σ‖v‖0,Ω

(17)
≥ inf

v∈Ṽ
sup 

τ∈Σ̃∩[H1
0 (Ω)]n×n

−1〈∇Sv, τ 〉1
(‖τ‖2

0,Ω + R2|τ |21,Ω) 1
2 ‖v‖0,Ω

(15)
≥ inf

v∈Ṽ
sup 

τ∈Σ̃∩[H1
0 (Ω)]n×n

−1〈∇Sv, τ 〉1
(1 + C2

P ) 1
2R|τ |1,Ω‖v‖0,Ω

= inf
v∈Ṽ

sup 
τ∈[H1

0 (Ω)]n×n

−1〈∇Sv, τS〉1
(1 + C2

P ) 1
2R|τS |1,Ω‖v‖0,Ω

.

Since |τS |1,Ω ≤ |τ |1,Ω for all tensors τ and the numerator involves ∇Sv, we deduce the assertion:

β∗
0 ≥ inf

v∈Ṽ
sup 

τ∈[H1
0 (Ω)]n×n

−1〈∇Sv, τ 〉1
(1 + C2

P ) 1
2R|τ |1,Ω‖v‖0,Ω

(2)= (1 + C2
P )− 1

2R−1 inf
v∈Ṽ

‖∇Sv‖−1,Ω

‖v‖0,Ω

(19)
≥ (1 + C2

P )− 1
2R−1(C∗

NL,0)−1. �

Outline of the remainder of the paper In Section 2, we prove Theorem 1.2, whereas in Section 3, we prove 
Theorem 1.4. We also prove an arbitrary order version of Theorem 1.2 in Appendix A.
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2. Proof of a first order Babuška-Aziz inequality

In this section, we prove Theorem 1.2 in several steps and further discuss the optimality of the bounds on 
the constants therein. To this aim, we follow Bogovskĭı’s construction [6] of a right-inverse of the divergence 
and generalise Durán’s analysis [13] to the first order case.

Explicit construction of Bogovskĭı’s right-inverse of the divergence Consider ω in C∞
0 (Ω) with

∫
Ω 

ω(x) dx = 1, supp(ω) ⊂ Bρ.

Given

G : Ω × Ω → Rn, G(x, y) :=
1 ∫

0 

x− y

t 
ω

(
y + x− y

t 

)
dt
tn

, (21a)

we define

u(x) :=
∫
Ω 

G(x, y)f(y) dy . (21b)

2.1. Preliminary results

We recall basic properties of the Fourier transform. Given f in L1(Rn), we define its Fourier transform 
as

f̂(ξ) :=
∫
Rn

e−2πix·ξf(x) dx . (22)

If f is in L2(Ω), we have the isometry

‖f‖0,Rn =
∥∥∥f̂∥∥∥

0,Rn
(23)

and the following property on the derivatives of the Fourier transform:

̂∂xj
f(ξ) = 2πiξj f̂(ξ) ∀j = 1, . . . , n. (24)

We consider the following splitting of each component k, k = 1, . . . , n, of u:

uk := uk,1 − uk,2

:=
1 ∫

0 

∫
Rn

(
yk + xk − yk

t 

)
ω

(
y + x− y

t 

)
f(y) dy dt

tn
−

1 ∫
0 

∫
Rn

yk ω

(
y + x− y

t 

)
f(y) dy dt

tn
.

In order to take derivatives of uk, it is convenient to take a limit in the sense of distributions [13, Section 2]:
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uk,1 = lim
ε→0

1 ∫
ε 

∫
Rn

(
yk+

xk − yk
t 

)
ω

(
y + x− y

t 

)
f(y) dy dt

tn
,

uk,2 = lim
ε→0

1 ∫
ε 

∫
Rn

yk ω

(
y + x− y

t 

)
f(y) dy dt

tn
.

By doing that, we can interchange the derivative with the limit ε → 0 and then pass with the derivative 
under the integral symbol; in fact, the functions under the integral are in L1 and admit L1 derivatives.

We take the second derivatives of uk,1 and uk,2 with respect to the j-th and 	-th directions (without loss 
of generality we assume j different from 	), and get

(∂2
xj ,x�

uk)(x) = [T̃k,j�,1(f(y)) − T̃k,j�,2(ykf(y))](x). (25)

In (25), given T̃ any of the two operators T̃k,j�,1 and T̃k,j�,2, we let

T̃ (g)(x) := lim
ε→0

1 ∫
ε 

∫
Rn

∂2
xj ,x�

[
ϕ

(
y + x− y

t 

)]
g(y) dy dt

tn
,

where, for all j, 	 = 1, . . . , n, we have set

g(y) :=
{
f(y) if T̃ = T̃k,j�,1,

ykf(y) if T̃ = T̃k,j�,2,
ϕ(x) :=

{
xkω(x) if T̃ = T̃k,j�,1,

ω(x) if T̃ = T̃k,j�,2.
(26)

In the forthcoming sections, we shall prove the continuity of the operators in (25). To this aim, we henceforth 
fix j and 	, and consider the decomposition

T̃ g := T̃αg + T̃βg, (27)

where

T̃αg(x) := lim
ε→0

1
2∫

ε 

∫
Rn

∂2
xj ,x�

[
ϕ

(
y + x− y

t 

)]
g(y) dy dt

tn
(28)

and

T̃βg(x) :=
1 ∫

1
2

∫
Rn

∂2
xj ,x�

[
ϕ

(
y + x− y

t 

)]
g(y) dy dt

tn
. (29)

The continuity estimates will follow summing over all j and 	.

2.2. Continuity of T̃α

We discuss the continuity of the operator in (28). We proceed in several steps. First, we prove some 
properties of the Fourier transform of T̃α(g).
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Lemma 2.1. If g in (26) belongs to C∞
0 (Rn), then the following identity is valid:

̂̃
Tαg(ξ) = (2πiξj) lim

ε→0

⎡⎢⎣
1
2∫

ε 

ϕ̂ (t ξ) ∂̂x�
g(ξ) dt+

1
2∫

ε 

∂̂x�
ϕ(tξ)ĝ((1 − t)ξ) dt

⎤⎥⎦ =: ̂

T̃α,1g(ξ) + ̂

T̃α,2g(ξ). (30)

Proof. By definition, we write

T̃αg(x) = lim
ε→0

T̃α,εg(x).

For all positive ε, we write

̂

T̃α,εg(ξ) =
∫
Rn

1
2∫

ε 

∫
Rn

∂2
xj ,x�

[
ϕ

(
y + x− y

t 

)]
e−2πix·ξg(y) dy dt

tn
dx .

Due to the regularity of g and ϕ, the integral exists. Therefore, we can change the order of the integrals, inte-
grate by parts twice, use the change of variable z = y+(x−y)/t, the definition of the Fourier transform (22)
twice, and (24), recall that the support of ϕ is compact, and arrive at

̂

T̃α,εg(ξ) = (2πiξj)(2πiξ�)

1
2∫

ε 

∫
Rn

∫
Rn

ϕ

(
y + x− y

t 

)
g(y)e−2πix·ξ dx dy dt

tn

= (2πiξj)(2πiξ�)

1
2∫

ε 

∫
Rn

∫
Rn

ϕ (z) e−2πi(t z+(1−t)y)·ξg(y) dz dy dt

= (2πiξj)(2πiξ�)

1
2∫

ε 

∫
Rn

ϕ̂ (t ξ) e−2πi(1−t)y·ξg(y) dy dt = (2πiξj)(2πiξ�)

1
2∫

ε 

ϕ̂ (t ξ) ĝ((1 − t)ξ) dt

= (2πiξj)

1
2∫

ε 

ϕ̂ (t ξ) [2πi(1 − t)ξ�]ĝ((1 − t)ξ) dt +(2πiξj)

1
2∫

ε 

ϕ̂ (t ξ) [2πitξ�]ĝ((1 − t)ξ) dt

= (2πiξj)

1
2∫

ε 

ϕ̂ (t ξ) ∂̂x�
g((1 − t)ξ) dt+(2πiξj)

1
2∫

ε 

̂∂x�
ϕ(tξ)ĝ((1 − t)ξ) dt .

The assertion follows taking the limit ε → 0. �
Next, we prove a technical result.

Lemma 2.2. Let ϕ be any of the two options in (26). Then, the two following inequalities hold true:

2π|ξj |
∞ ∫
0 

|ϕ̂(tξ)|dt ≤ Cϕ,ρ,0 := ρ−1‖ϕ‖L1(Rn) + ρ
∥∥∥∂2

x2
j
ϕ
∥∥∥
L1(Rn)

∀j = 1, . . . , n, (31a)

2π|ξj |
∞ ∫
0 

∣∣∣∂̂x�
ϕ(tξ)

∣∣∣ dt ≤ Cϕ,ρ,1 := ρ−1‖∂x�
ϕ‖L1(Rn) + ρ

∥∥∥∂3
x2
jx�

ϕ
∥∥∥
L1(Rn)

∀j = 1, . . . , n. (31b)
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Proof. The proof of (31a) is given in [13, Lemma 2.3] and is therefore omitted here. On the other hand, 
inequality (31b) may be shown as an application of (31a) to ∂ξ�ϕ. �

We are now in a position to prove the continuity of the operator T̃α.

Proposition 2.3. Let ϕ be any of the two options in (26). Then, for all g in H1(Rn), the operator T̃α defined 
in (28) satisfies the following continuity property:∥∥∥T̃αg

∥∥∥
0,Rn

≤ 2
n−1

2 
[
Cϕ,ρ,0‖∂x�

g‖0,Rn + Cϕ,ρ,1‖g‖0,Rn

]
.

If g vanishes outside Ω, we also have∥∥∥T̃αg
∥∥∥

0,Ω
≤ 2

n−1
2 
[
Cϕ,ρ,0‖∂x�

g‖0,Ω + Cϕ,ρ,1‖g‖0,Ω

]
.

Proof. We only prove the second assertion and focus on functions g in C∞
0 (Ω); the general statement follows 

then from a density argument.
We consider splitting (30) and show separate bounds for the two terms on the right-hand side. The first 

one can be handled as in [13, Lemma 2.4] and its proof is therefore omitted:∥∥∥∥̂T̃α,1g

∥∥∥∥
0,Rn

≤ 2
n−1

2 Cϕ,ρ,0

∥∥∥∂̂x�
g
∥∥∥

0,Rn
. (32)

Thus, we focus on the second term. By the definition of ̂T̃α,2g, the Cauchy-Schwarz inequality implies

∣∣∣∣̂T̃α,2g(ξ)
∣∣∣∣2 ≤

⎛⎜⎝
1
2∫

0 

2π|ξj |
∣∣∣̂∂x�

ϕ(tξ)
∣∣∣dt

⎞⎟⎠
⎛⎜⎝

1
2∫

0 

2π|ξj |
∣∣∣̂∂x�

ϕ(tξ)
∣∣∣|ĝ((1 − t)ξ)|2 dt

⎞⎟⎠ .

Using (31b), we deduce

∣∣∣∣̂T̃α,2g(ξ)
∣∣∣∣2 ≤ Cϕ,ρ,1

1
2∫

0 

2π|ξj |
∣∣∣̂∂x�

ϕ(tξ)
∣∣∣|ĝ((1 − t)ξ)|2 dt .

Integrating over ξ and employing the change of variable η = (1 − t)ξ give

∫
Rn

∣∣∣∣̂T̃α,2g(ξ)
∣∣∣∣2 dξ ≤ Cϕ,ρ,1

1
2∫

0 

∫
Rn

2π
(1 − t)n+1 |ηj |

∣∣∣∣̂∂x�
ϕ

(
tη

1 − t

)∣∣∣∣|ĝ(η)|2 dη dt

If we consider the change of variable s = t/(1 − t), which entails

dt = (1 + s)−2 ds, 1 
(1 − t)n+1 =

(s
t 

)n+1
= (1 + s)n+1,

then we arrive at

∫
Rn

∣∣∣∣̂T̃α,2g(ξ)
∣∣∣∣2 dξ ≤ 2n−1Cϕ,ρ,1

∫
Rn

⎛⎝ 1 ∫
0 

2π|ηj |
∣∣∣̂∂x�

ϕ(sη)
∣∣∣ ds

⎞⎠ |ĝ(η)|2 dη .
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We apply again (31b):∥∥∥∥̂T̃α,2g

∥∥∥∥2
0,Rn

=
∫
Rn

∣∣∣∣̂T̃α,2g(ξ)
∣∣∣∣2 dξ ≤ 2n−1C2

ϕ,ρ,1

∫
Rn

|ĝ(η)|2 dη = 2n−1C2
ϕ,ρ,1‖ĝ‖

2
0,Rn . (33)

The assertion follows using the Fourier isometry (23) in (32), identity (33), and the properties of ω detailed 
in Section 2.1. �
2.3. Continuity of T̃β

We discuss the continuity of the operator in (29). As discussed in [13], a direct application of the Hölder 
and Cauchy-Schwarz inequalities would end up with suboptimal estimates as those in [15]. Therefore, finer 
estimates are in order. To this aim, we extend [13, Section 3] to the first order case.

Proposition 2.4. Let g and T̃β be as in (26) and (29). Assume that g belongs to L2(Rn) and has support 
contained in Ω. Given 1 ≤ p < n/(n−1) and p′ the conjugate index of p, the following inequality holds true:

∥∥∥T̃βg
∥∥∥

0,Ω
≤ 2n

2 

(1 − n 
p′ )

p
2 
|Ω|1−

p
2 
∥∥∥∂2

xjx�
ϕ
∥∥∥ p

2 
L1(Ω)

∥∥∥∂2
xjx�

ϕ
∥∥∥1− p

2 
L∞(Ω)

‖g‖0,Ω.

Proof. The proof follows along the same lines of [13, Lemma 3.2], the only difference being the number of 
derivatives of ϕ. �
2.4. Continuity of T̃

We prove the continuity of the operator in (27).

Theorem 2.5. Let g and T̃ be as in (26) and (27). Assume that g belongs to H1
0 (Ω). Given 1 ≤ p < n/(n−1)

and p′ the conjugate index of p, the following inequality holds true:∥∥∥T̃ g∥∥∥
0,Ω

≤ 2
n−1

2 (ρ−1‖ϕ‖L1(Ω) + ρ
∥∥∥∂2

x2
j
ϕ
∥∥∥
L1(Ω)

)‖∂x�
g‖0,Ω

+ 2
n−1

2 (ρ−1‖∂x�
ϕ‖L1(Ω) + ρ

∥∥∥∂3
x2
jx�

ϕ
∥∥∥
L1(Ω)

)‖g‖0,Ω

+ 2n
2 

(1 − n 
p′ )

p
2 
|Ω|1−

p
2 
∥∥∥∂2

xjx�
ϕ
∥∥∥ p

2 
L1(Ω)

∥∥∥∂2
xjx�

ϕ
∥∥∥1− p

2 
L∞(Ω)

‖g‖0,Ω.

(34)

Proof. The assertion follows combining Lemmas 2.3 and 2.4, and the explicit representation of the constants 
Cϕ,ρ,0 and Cϕ,ρ,1 in (31). �

Next, we derive explicit constants with respect to R and ρ for inequality (34), i.e., we are in a position 
for proving one of the main results of the manuscript.

Proof of Theorem 1.2. For all j, 	 = 1, . . . , n, we have to bound the two terms on the right-hand side of 
splitting (25). We only prove bounds for T̃k,j�,2(ykf(y)), as the bounds for T̃k,j�,1(f(y)) are analogous. For 
the term T̃k,j�,1(ykf(y)), we have that ϕ(x) in (26) is given by ω(x), which is supported, with integral 1, in 
the ball Bρ of radius ρ. Without loss of generality, the ball can be centred at the origin.

We can write

ϕ(x) = ρ−nψ(ρ−1x),
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where ψ has the same smoothness as ϕ, is supported in the unitary ball B1(0) with integral 1, and is fixed 
once and for all.

The following properties of ϕ and its derivatives are valid:

‖ϕ‖L1(Rn) ≈ 1, ‖ϕ‖L∞(Rn) ≈ ρ−n;

∂xj
ϕ(x) = ρ−n−1∂xj

ϕ(ρ−1x), 
∥∥∂xj

ϕ
∥∥
L1(Rn) ≈ ρ−1, 

∥∥∂xj
ϕ
∥∥
L∞(Rn) ≈ ρ−n−1;

∂2
xjx�

ϕ(x) = ρ−n−2∂2
xjx�

ϕ(ρ−1x), 
∥∥∥∂2

xjx�
ϕ
∥∥∥
L1(Rn)

≈ ρ−2, 
∥∥∥∂2

xjx�
ϕ
∥∥∥
L∞(Rn)

≈ ρ−n−2;

∂3
x2
jx�

ϕ(x) = ρ−n−3∂3
x2
jx�

ϕ(ρ−1x), 
∥∥∥∂3

x2
jx�

ϕ
∥∥∥
L1(Rn)

≈ ρ−3, 
∥∥∥∂3

x2
jx�

ϕ
∥∥∥
L∞(Rn)

≈ ρ−n−3.

The definition of T̃k,j�,2(ykf), the chain rule, the inequality |yk| ≤ R, and the fact that ρ−1 ≤ Rρ−2 imply

|u|2,Ω �n R
[
ρ−1 + ρ ρ−2] |f |1,Ω +

[
ρ−1 + ρρ−2] ‖f‖0,Ω

+ R[ρ−1ρ−1 + ρρ−3]‖f‖0,Ω + R
2n

2 (
1 − n 

p′

) p
2 
|Ω|1−

p
2 (ρ−2)

p
2 (ρ−n−2)1−

p
2 ‖f‖0,Ω

� R

⎡⎢⎣ρ−1|f |1,Ω + ρ−2‖f‖0,Ω + 2n
2 (

1 − n 
p′

) p
2 
|Ω|1−

p
2 ρ−2−n

(
1− p

2 
)
‖f‖0,Ω

⎤⎥⎦
�n

R

ρ 
|f |1,Ω + R

ρ2 ‖f‖0,Ω

[
1 +
(

1 − n 
p′

)− p
2 
|Ω|1−

p
2 ρ−n

(
1− p

2 
)]

.

(35)

We focus on the last coefficient on the right-hand side. Using that

|Bρ|1−
p
2 ρ−n

(
1− p

2 
)
≈ 1,

we write (
1 − n 

p′

)− p
2 
|Ω|1−

p
2 ρ−n

(
1− p

2 
)
=
(

1 − n 
p′

)− p
2 ( |Ω|

|Bρ|

)1− p
2 
|Bρ|1−

p
2 ρ−n

(
1− p

2 
)

≈
(

1 − n 
p′

)− p
2 ( |Ω|

|Bρ|

) n−2 
2(n−1)

(
|Ω|
|Bρ|

) 1
2

(
n 

n−1−p
)
.

(36)

For |Ω|/|Bρ| sufficiently large (the ball Bρ is anyhow fixed once and for all in the reference framework), we 
choose p such that

1
2

(
n 

n− 1 − p

)
= 1 

log
(

|Ω|
|Bρ|

) .
Equivalently, we pick p such that

log
(

|Ω|
|Bρ|

)
= 1 

1
2

(
n 

n−1 − p
) =⇒ 

|Ω|
|Bρ|

= e
1 

1
2
(

n 
n−1−p

)
=⇒ 

(
|Ω|
|Bρ|

) 1
2

(
n 

n−1−p
)

= e1.

We plug the last identity in (36) and deduce
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(
1 − n 

p′

)− p
2 
|Ω|1−

p
2 ρ−n

(
1− p

2 
)
≈
(

1 − n 
p′

)− p
2 ( |Ω|

|Bρ|

) n−2 
2(n−1)

e1.

Going back to (35), we write

|u|2,Ω �n
R

ρ 
|f |1,Ω + R

ρ2 ‖f‖0,Ω

[
1 +
(

1 − n 
p′

)− p
2 ( |Ω|

|Bρ|

) n−2 
2(n−1)

]
.

We further note that

1 − n 
p′

=
(
n− 1
p 

)(
n 

n− 1 − p

)
= 2(n− 1) 

p log
(

|Ω|
|Bρ|

) .
We combine the two above displays:

|u|2,Ω �n
R

ρ 
|f |1,Ω + R

ρ2 ‖f‖0,Ω

[
1 +
(

|Ω|
|Bρ|

) n−2 
2(n−1) p

p
2 

2(n− 1) p
2 

log
(

|Ω|
|Bρ|

) p
2 
]
.

Using p < n/(n− 1), the following quantity is uniformly bounded in n and thus in p:

p
p
2 

2(n− 1) p
2 
.

Moreover, we know that p/2 < n/(2(n− 1)). We deduce that

|u|2,Ω �n
R

ρ 
|f |1,Ω + R

ρ2 ‖f‖0,Ω

[
1 +
(

|Ω|
|Bρ|

) n−2 
2(n−1)

log
(

|Ω|
|Bρ|

) n 
2(n−1)

]
,

which is the assertion. �
Compared to the lowest order estimate (6), we have an extra term involving the gradient of f and an 

extra ρ−1 scaling factor for the term involving f .

Remark 1. The issue on whether estimates as in Theorem 1.2 can be extended to union of star-shaped 
domains was addressed in [18]. Their proof relies on partition of unity techniques; this entails that estimates 
have constants that are not fully explicit with respect to the shape of the domain [17]. A simpler open prob-
lem is whether one may be able to prove arbitrary order Babuška-Aziz inequalities with explicit constants 
on the union of simpler star-shaped domains, e.g., on simplicial patches.

Remark 2. We have that u in (21) satisfies the boundary conditions, i.e., that u belongs to [H2
0 (Ω)]n; this is 

shown for instance in [15, Lemma III.3.1] for smooth functions; the corresponding result for Sobolev spaces 
is achieved via density arguments. As it is of independent interest, we discuss an alternative proof of this 
fact in Appendix B, which also holds in the non-Hilbertian setting.

2.5. On the optimality of the estimates in Theorem 1.2 in 2D

We comment on the optimality of the estimates in Theorem 1.2 for planar domains based on a coun-
terexample in [13, Section 3]. Introduce the domain

Ωa,ε := (−a, a) × (−ε, ε)
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and the function

f(x1, x2) = x1.

Let u be the solution to the divergence problem (10). We have

‖x1‖2
0,Ωa,ε

=
∫

Ωa,ε

x1 ∇·u = −
∫

Ωa,ε

u1 = −1
2

∫
Ωa,ε

x2
2∂

2
x2
2
u1 ≤ 1

2
∥∥x2

2
∥∥

0,Ωa,ε

∥∥∥∂2
x2
2
u1

∥∥∥
0,Ωa,ε

.

We use estimates as in (10) for the last term on the right-hand side: there exist positive constants C1 and C2
depending on R = 2a and ρ = ε such that

‖x1‖2
0,Ωa,ε

≤ 1
2
∥∥x2

2
∥∥

0,Ωa,ε

[
CA

BA,1‖x1‖0,Ωa,ε
+ CB

BA,1‖1‖0,Ωa,ε

]
.

We have

‖x1‖2
0,Ωa,ε

= 4
3a

3ε, 
∥∥x2

2
∥∥2

0,Ωa,ε
= 4

5aε
5, ‖1‖2

0,Ωa,ε
= 4aε.

Combining the two displays, we get

a3ε � CA
BA,1a

2ε3 + CB
BA,1aε

3,

whence

1 � CA
BA,1a

−1ε2 + CB
BA,1a

−2ε2 ≈ CA
BA,1

ρ2

R
+ CB

BA,1
ρ2

R2 .

This inequality implies that at least one of the following must hold true:

CA
BA,1 � R

ρ2 , CB
BA,1 � R2

ρ2 .

Using (11), we deduce

R2

ρ2 � CB
BA,1 � R

ρ 
,

which cannot be valid in general with hidden constants independent of R and ρ as in (3). This entails that

CA
BA,1 � R

ρ2 ,

i.e., the first bound in (11) is optimal up to a logarithmic factor.
We are not able to infer a clear statement on the optimality of CB

BA,1 from the bound above. A heuristic 
argument based on scaling techniques, suggests however that bound (11) on CB

BA,1 should be also optimal.

3. Proof of a Nečas-Lions inequality with symmetric gradients

We prove Theorem 1.4. To this aim, we first show an auxiliary result.
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Lemma 3.1. Let u be a sufficiently smooth vector field. Then, the following identities hold true:

[∇(∇× u)]T = ∇× (∇u + (∇u)T ) = 2∇× (∇Su), (37)

where, for a given tensor A, ∇×A denotes the matrix obtained by applying the curl operator row-wise to A.

Proof. Direct computations give

[∇(∇× u)]T =
[
∂x1(∂x2u3 − ∂x3u2) ∂x1(∂x3u1 − ∂x1u3) ∂x1(∂x1u2 − ∂x2u1)
∂x2(∂x2u3 − ∂x3u2) ∂x2(∂x3u1 − ∂x1u3) ∂x2(∂x1u2 − ∂x2u1)
∂x3(∂x2u3 − ∂x3u2) ∂x3(∂x3u1 − ∂x1u3) ∂x3(∂x1u2 − ∂x2u1)

]
.

Similarly, we may show that the above tensor coincides with ∇×(∇u+(∇u)T ), which gives the first identity 
in (37); the second identity in (37) is a consequence of the definition of the symmetric gradient. �

We are now in a position to prove Theorem 1.4. For any generic qRM in the space of rigid body mo-
tions RM(Ω) ∩ [L2

0(Ω)]n as discussed in Section 1.5, we have

‖v − ΠRMv‖0,Ω ≤
∥∥v − qRM − Π0(v − qRM)

∥∥
0,Ω ∀v ∈ [L2(Ω)]n.

An immediate consequence of the standard, vector version, lowest order Nečas-Lions inequality (7) is that

‖v − ΠRMv‖0,Ω ≤ CNL,0
∥∥∇(v − qRM)

∥∥
−1,Ω ∀qRM ∈ RM(Ω) ∩ [L2

0(Ω)]n. (38)

We are left to prove the existence of a positive constant C with explicit dependence on R and ρ as in (3), 
such that, for a specific choice of qRM, the following inequality is valid:∥∥∇(v − qRM)

∥∥
−1,Ω ≤ C‖∇Sv‖−1.

Using splitting (1) of the gradient into symmetric and skew-symmetric parts, and the triangle inequality 
entails ∥∥∇(v − qRM)

∥∥
−1,Ω ≤

∥∥∇S(v − qRM)
∥∥
−1,Ω +

∥∥∇SS(v − qRM)
∥∥
−1,Ω. (39)

Since qRM is a rigid body motion, ∇SqRM is the zero tensor in Rn×n: the first term on the right-hand 
side is equal to ‖∇Sv‖−1,Ω. As for the second term on the right-hand side, we define An×n as the space of 
(n× n) skew-symmetric matrices, n = 2, 3. We take qRM such that

∥∥∇SS(v − qRM)
∥∥
−1,Ω := inf

q̃RM∈RM(Ω)∩[L2
0(Ω)]n×n

∥∥∥∇SS(v − q̃RM)
∥∥∥
−1,Ω

= inf
c∈An×n

‖∇SSv − c‖−1,Ω.

With this at hand, elementary computations give

∥∥∇SS(v − qRM)
∥∥
−1,Ω = inf

c∈An×n
‖∇SSv − c‖−1,Ω ≤ 1 √

2
inf

c∈R2n−3
‖∇ × v − c‖−1,Ω. (40)

Note that the last two norms involve tensors and vectors, respectively.
An immediate consequence of the scalar and vector versions of (12), (15), and (16) is that

inf
c∈R2n−3

‖∇ × v − c‖−1,Ω ≤ CNL,1‖∇(∇× v)‖−2,Ω ≤ (CA
BA,1CPR + CB

BA,1)‖∇(∇× v)‖−2,Ω.
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Lemma 3.1 reveals that

inf
c∈R2n−3

‖∇ × v − c‖−1,Ω ≤ 2(CA
BA,1CPR + CB

BA,1)‖∇×∇Sv‖−2,Ω

≤ 2(CA
BA,1CPR + CB

BA,1)‖∇Sv‖−1,Ω.
(41)

Combining (38), (39), (40), and (41) yields the assertion.
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Appendix A. Arbitrary order Babuška-Aziz inequalities on star-shaped domains with explicit constants

In this appendix, we provide a road-map for proving arbitrary order Babuška-Aziz inequalities with 
upper bounds on the corresponding constants, which are explicit with respect to R and ρ in (3), based 
on a generalisation of the analysis in Section 2. In particular, we prove the following generalisation of 
Theorem 1.2.

Theorem A.1. Let d in N be larger than or equal to 1, and R and ρ be as in (3). Assume that f is in Hd−1
0 (Ω)∩

L2
0(Ω). Then, there exists u in [Hd

0 (Ω)]n such that ∇·u = f and

|u|d,Ω �n

d−1 ∑
�=1 

R

ρd−�
|f |�,Ω + R

ρd

[
1 +
(

|Ω|
|Bρ|

) n−2 
2(n−1)

(
log |Ω|

|Bρ|

) n 
2(n−1)

]
‖f‖0,Ω. (42)

We give some details on how to prove (42). Essentially, we have to prove the continuity of the counterpart 
of the operator in (27) involving all the derivatives of order d. More precisely, for each multi-index j =
(j1, . . . , jn) in {1, . . . , d}n, |j| = d, we study the continuity of the operator

T̃ g := T̃αg + T̃βg, (43)

where

T̃αg(x) := lim
ε→0

1
2∫

ε 

∫
Rn

∂d

x
j1
1 ,...,xjn

n

[
ϕ

(
y + x− y

t 

)]
g(y) dy dt

tn
(44)

and

T̃βf(x) :=
1 ∫

1
2

∫
Rn

∂d

x
j1
1 ,...,xjn

n

[
ϕ

(
y + x− y

t 

)]
g(y) dy dt

tn
. (45)

Above, g and ϕ are precisely as in (26). The general assertion then follows summing over all possible 
multi-indices j. In the remainder of the appendix,
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j is fixed, j1 �= 0. (46)

A.1. Continuity of T̃α

We discuss here the continuity of the operator in (44). We have the two following technical results.

Lemma A.2. Let j be as in (46). If g in (26) belongs to C∞
0 (Rn), then the following identity is valid:

̂̃
Tαg(ξ) = (2πiξ1) lim

ε→0

⎡⎢⎣ ∑
k,�∈{1,...,d}n,k+�=(j1−1,j2,...,jd)

1
2∫

ε 

̂

∂
|k|
x
k1
1 ,...,xkn

n

ϕ(tξ) ̂

∂
|�|
x
�1
1 ,...,x�n

n

g(ξ) dt

⎤⎥⎦ .
Proof. The proof is a modification of that of Lemma 2.1. Since this result contains most of the differences 
compared to the first order case, we prove the assertion for the second order case, i.e., we assume that j =
(j1, j2, j3) with j1 + j2 + j3 = 3. To further simplify the proof, we discuss the case j1 = j2 = j3 = 1. The 
general assertion is proven analogously.

In analogy to the proof of Lemma 2.1, we write

̂

T̃α,εg(ξ) = (2πiξ1)(2πiξ2)(2πiξ3)

1
2∫

ε 

∫
Rn

∫
Rn

ϕ

(
y + x− y

t 

)
g(y)e−2πix·ξ dx dy dt

tn

= (2πiξ1)

⎡⎢⎣
1
2∫

ε 

ϕ̂ (t ξ) [2πi(1 − t)ξ2][2πi(1 − t)ξ3]ĝ((1 − t)ξ) dt + 

1
2∫

ε 

ϕ̂ (t ξ) [2πitξ2][2πi(1 − t)ξ3]ĝ((1 − t)ξ) dt

+

1
2∫

ε 

ϕ̂ (t ξ) [2πi(1 − t)ξ2][2πitξ3]ĝ((1 − t)ξ) dt +

1
2∫

ε 

ϕ̂ (t ξ) [2πitξ2][2πitξ3]ĝ((1 − t)ξ) dt

⎤⎥⎦

= (2πiξ1)

⎡⎢⎣
1
2∫

ε 

ϕ̂ (t ξ) ̂∂2
x2x3

g((1 − t)ξ) dt +

1
2∫

ε 

̂∂x2ϕ(tξ)∂̂x3g((1 − t)ξ) dt

+

1
2∫

ε 

̂∂x3ϕ (t ξ) ∂̂x2g((1 − t)ξ) dt +

1
2∫

ε 

̂∂2
x2x3

ϕ(tξ)ĝ((1 − t)ξ) dt

⎤⎥⎦ .
This yields the assertion for the case d = 3, and j1 = j2 = j3 = 1. �

From Lemma A.2, it is apparent that we have to bound the norm of several derivatives of ϕ, which is 
what we accomplish in the next result.

Lemma A.3. Let ϕ and j be as in (26) and (46). Then, the following inequalities hold true: for all multi-
indices k in {1, . . . , d}n such that |k| ≤ |j| = d,

2π|ξ1|
∞ ∫
0 

∣∣∣∣ ̂

∂
|k|
x
k1−1
1 ,...,xkn

n

ϕ(tξ)
∣∣∣∣ dt ≤ Cϕ,ρ,k

:= ρ−1
∥∥∥∂|k|

x
k1−1
1 ,x

k2
2 ,...,xkn

n

ϕ
∥∥∥
L1(Rn)

+ ρ
∥∥∥∂|k|+2

x
k1+1
1 ,x

k2
2 ,...,xkn

n

ϕ
∥∥∥
L1(Rn)

.

(47)
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Proof. The proof is a modification of that of Lemma 2.2. �
The two above technical lemmas give the following result.

Proposition A.4. Let ϕ be any of the two options in (26). Then, for all g in Hd(Rn), the operator T̃α defined 
in (44) satisfies the following continuity property:

∥∥∥T̃αg
∥∥∥

0,Rn
≤ 2

n−1
2 

∑
k,�∈{1,...,d}n,k+�=(j1−1,...,jd)

[
Cϕ,ρ,k

∥∥∥∂|�|
x
�1
1 ,...,x�n

n

g
∥∥∥

0,Rn

]
,

where ϕ is any of the two options in (26).

Proof. The proof is a modification of that of Proposition 2.3, and further combines Lemmas A.2 and A.3. �
A.2. Continuity of T̃β

We discuss here the continuity of the operator in (45). We have the following result.

Proposition A.5. Let g, T̃β, and j be as in (26), (45), and (46). Assume that g belongs to L2(Rn) and has 
support contained in Ω. Given 1 ≤ p < n/(n − 1) and p′ the conjugate index of p, the following inequality 
holds true: ∥∥∥T̃βg

∥∥∥
0,Ω

≤ 2n
2 

(1 − n 
p′ )

p
2 
|Ω|1−

p
2 
∥∥∥∂d

x
j1
1 ...xjn

n
ϕ
∥∥∥ p

2 
L1(Ω)

∥∥∥∂d

x
j1
1 ...xjn

n
ϕ
∥∥∥1− p

2 
L∞(Ω)

‖g‖0,Ω.

Proof. The proof is a modification of that of Proposition 2.4. �
A.3. Continuity of T̃

We discuss here the continuity of the operator in (43). We have the following result.

Theorem A.6. Let g, T̃ , and j be as in (26), (43), and (46). Assume that g belongs to Hd−1
0 (Ω). Given 

1 ≤ p < n/(n− 1) and p′ the conjugate index of p, the following inequality holds true:∥∥∥T̃ g∥∥∥
0,Ω

≤ 2
n−1

2 
∑

k,�∈{1,...,d}n,k+�=(j1−1,...,jd)

[(
ρ−1
∥∥∥∂|k|

x
k1−1
1 ,x

k2
2 ...,xkn

n

ϕ
∥∥∥
L1(Rn)

+ ρ
∥∥∥∂|k|+2

x
k1+1
1 ,x

k2
2 ,...,xkn

n

ϕ
∥∥∥
L1(Rn)

)∥∥∥∂|�|
x
�1
1 ,...,x�n

n

g
∥∥∥

0,Rn

]

+ 2n
2 

(1 − n 
p′ )

p
2 
|Ω|1−

p
2 
∥∥∥∂d

x
j1
1 ,...,xjn

n
ϕ
∥∥∥ p

2 
L1(Ω)

∥∥∥∂d

x
j1
1 ,...,xjn

n
ϕ
∥∥∥1− p

2 
L∞(Ω)

‖g‖0,Ω.

Proof. The assertion follows combining Lemmas A.4 and A.5, and the explicit representation of the constants 
Cϕ,ρ,k in (47). �

Theorem A.1 follows using Theorem A.6, the chain rule, and proceeding as in the proof of Theorem 1.2.

An arbitrary order Nečas-Lions, generalising the first order version in (12), may be shown based on 
Theorem A.1 following the proof of Proposition 1.3; for d in N, it reads

‖f‖H−(d−1)(Ω)/Pd−1(Ω) ≤ CNL,d‖∇f‖−d,Ω ∀f ∈ H−(d−1)(Ω)/Pd−1(Ω),
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where H−(d−1)(Ω)/Pd−1(Ω) is the space H−(d−1)(Ω) equipped with the norm

‖f‖H−(d−1)(Ω)/Pd−1(Ω) := inf
qd−1∈Pd−1(Ω)

‖f − qd−1‖−(d−1),Ω.

The constant CNL,d depends on the Babuška-Aziz constants of all orders up to d and the Poincaré constant 
through [25].

Appendix B. An alternative proof of the zero boundary conditions

We present here an alternative proof of the properties discussed in Remark 2, as it is based on some 
technical results that are stated in the literature, the proof of which we were not able to find. Such results 
may be useful in the derivation of explicit estimates for the right-inverse of the divergence in W k,p spaces; 
see Remark 3 below for additional comments on this point.

We begin by providing the reader with a detailed proof of an alternative expression for the first derivatives 
of u, which has been stated in [15, Remark III.3.2], and then proceed along the same lines as in [1, Chapter 2].

We start by showing a preliminary result, which requires the definition of an operator G̃j : Ω × Ω → R

given by

G̃j(x, y) :=
1 ∫

0 

x− y

t 
∂xj

ω

(
y + x− y

t 

)
dt
tn

∀j = 1, . . . , n. (48)

Lemma B.1. Let G and G̃j, j = 1, . . . , n, be defined as in (21a) and (48). Then, for all positive ε, the 
following identity holds true:

∂xj
G(x, y) = −∂yj

G(x, y) + G̃j(x, y) ∀|x− y| > ε. (49)

Proof. We fix two indices j, k = 1, . . . , n and show the assertion on the k-th components of G and G̃. The 
fact that ω belongs to C∞

0 (Bρ) and direct computations reveal

∂xj
Gk(x, y) =

1 ∫
0 

[
δkj ω

(
y + x− y

t 

)
+ (x− y)k

t 
∂xj

ω

(
y + x− y

t 

)]
dt 
tn+1

and

∂yj
Gk(x, y) =

1 ∫
0 

[
−δkj
t 

ω

(
y + x− y

t 

)
+ (x− y)k

t 
∂xj

ω

(
y + x− y

t 

)(
1 − 1

t 

)]
dt
tn

= −
1 ∫

0 

[
δkj ω

(
y + x− y

t 

)
+ (x− y)k

t 
∂xj

ω

(
y + x− y

t 

)]
dt 
tn+1 + (G̃j)k(x, y).

A combination of the two previous displays gives the assertion. �
Next, we prove an identity involving the first derivatives of u.

Proposition B.2 (Galdi’s formula). Let G and G̃j, j = 1, . . . , n, be defined as in (21a) and (48). Given f
in H1

0 (Ω), consider u as in (21). Then, the following identity holds true:
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∂xj
u(x) =

∫
Ω 

G(x, y) ∂yj
f(y) dy +

∫
Ω 

G̃j(x, y) f(y) dy ∀j = 1, . . . , n. (50)

Proof. Without loss of generality, we assume that f belongs to C∞
0 (Ω); the general assertion follows from a 

density argument. Moreover, we prove the assertion on the k-th components of u, G, and G̃.
For any φ in C∞

0 (Ω) and j, k = 1, . . . , n, proceeding as in [1, Lemma 2.3], we have

−
∫
Ω 

uk(x) ∂xj
φ(x) dx = −

∫
Ω 

∫
Ω 

Gk(x, y)f(y) ∂xj
φ(x) dx dy

= −
∫
Ω 

f(y) lim
ε→0

⎛⎜⎝ ∫
|y−x|>ε

Gk(x, y) ∂xj
φ(x) dx

⎞⎟⎠dy

=
∫
Ω 

f(y) lim
ε→0

⎛⎜⎝ ∫
|y−x|>ε

∂xj
Gk(x, y) φ(x) dx−

∫
|y−ξ|=ε

Gk(ξ, y) φ(ξ) yj − ξj
|yj − ξj |

dξ

⎞⎟⎠dy.

Using (49) and switching the order of integration lead us to

−
∫
Ω 

uk(x) ∂xj
φ(x) dx = − lim

ε→0

∫
Ω 

φ(x)

⎛⎜⎝ ∫
|y−x|>ε

∂yj
Gk(x, y) f(y) dy

⎞⎟⎠ dx

+
∫
Ω 

∫
Ω 

(G̃j)k(x, y) f(y) φ(x) dx dy − lim
ε→0

∫
Ω 

∫
|y−ξ|=ε

Gk(ξ, y) φ(ξ) f(y) yj − ξj
|yj − ξj |

dξ dy

=: I1 + I2 + I3.

Integrating by parts with respect to the y variable and recalling that f belongs to C∞
0 (Ω), we obtain

I1 = lim
ε→0

∫
Ω 

φ(x)

⎛⎜⎝ ∫
|x−y|>ε

Gk(x, y) ∂yj
f(y) dy −

∫
|x−ζ|=ε

Gk(x, ζ) f(ζ) xj − ζj
|xj − ζj |

dζ

⎞⎟⎠dx

=
∫
Ω 

∫
Ω 

Gk(x, y) ∂yj
f(y) φ(x) dy dx + lim

ε→0

∫
Ω 

∫
|ζ−x|=ε

Gk(x, ζ) f(ζ) φ(x) ζj − xj

|ζj − xj |
dx dζ

=
∫
Ω 

∫
Ω 

Gk(x, y) ∂yj
f(y) φ(x) dy dx− I3.

Combining the two above displays, we infer

−
∫
Ω 

uk(x) ∂xj
φ(x) dx =

∫
Ω 

⎛⎝∫
Ω 

Gk(x, y) ∂yj
f(y) dy +

∫
Ω 

(G̃j)k(x, y) f(y) dy

⎞⎠φ(x) dx,

which gives (50) for any f in C∞
0 (Ω). �

We are in a position to prove that u satisfies homogeneous boundary conditions.

Corollary B.3. Given f in H1
0 (Ω) ∩ L2

0(Ω), consider u as in (21). Then, u belongs to [H2
0 (Ω)]n.
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Proof. Step 1: a decomposition of ∇u. Proposition B.2 allows us to express the first derivatives of u as a 
sum of two contributions. The first correspond to Bogovskĭı’s constructions applied to the first derivatives 
of f ; the second are equivalent to (21b) with ω in (21a) replaced by its first derivatives, which still belongs 
to C∞

0 (Ω).
In other words, we write ∇u = τ + η, where the j-th columns, j = 1, . . . , n, of τ and η are given by

τ j(x) =
∫
Ω 

G(x, y) ∂yj
f(y) dy; ηj(x) =

∫
Ω 

G̃j(x, y) f(y) dy.

Step 2: treating τ . Let j = 1, . . . , n be fixed. Consider a sequence gm in L∞(Ω) such that gm → ∂yj
f in 

L2(Ω) as m → ∞. We consider a sequence of tensors τm whose j-th columns are given by

(τm)j(x) =
∫
Ω 

G(x, y) gm(y) dy.

Applying [1, Proposition 2.1], it follows that (τm)j is continuous and vanishes on ∂Ω; Aa a result of [24], we 
obtain that (τm)j belongs to [W 1,∞

0 (Ω)]n. Using [18, Corollary 19, part (iii)] 1 applied to ∂yj
f−gm ∈ L2(Ω), 

we get (τm)j → τ j in [H1(Ω)]n. Since (τm)j is in [W 1,∞
0 (Ω)]n for all m, we deduce that τ j belongs to 

[H1
0 (Ω)]n.

Step 3: treating η and conclusion. The proof that ηj belongs to [H1
0 (Ω)]n essentially boils down to the proof 

that u in (4) vanishes on the boundary of Ω; the only difference resides in the presence of G̃ in lieu of G, 
which solely impacts the constant in (4). We conclude that ∇u belongs to [H1

0 (Ω)]n×n. In other words, u
belongs to [H2

0 (Ω)]n, since (4) already gives that u is in [H1
0 (Ω)]n. �

Remark 3. Identity (50) may allow us to prove a first order Babuška-Aziz inequality also in a non-Hilbertian 
setting, namely we may substitute Hk-type spaces by W k,p-type spaces, p �= 2. However, this would come 
at the price of suboptimal estimates as those in (5). The reason for this is the use of the Calderón-Zygmund 
theory instead of the Fourier transform approach by Durán while handling the term T̃α in Section 2.2.
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