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Abstract. Windplanes (i.e. Fly-Gen airborne wind energy systems) harvest wind power via
the turbines placed on the tethered wing, which flies crosswind trajectories. In this paper,
the optimal design of windplanes is investigated with simplified models, enabling an intuitive
understanding of their physical characteristics. The windplane is then idealized as a point mass
flying circular fully crosswind trajectories. If the gravity is neglected, the dynamic problem
is axial symmetric and the solution is steady. The generated power can be expressed in non-
dimensional form by normalizing it with the wind power passing by a disk with radius the
wingspan. Since the reference area is taken to be a function of just the wingspan, looking for
the design which maximizes this power coefficient addresses the question ”Given a wingspan,
which design maximizes power?”. This is different from the literature, where the design problem
is formulated per wing area and not per wingspan. The optimal designs have a finite aspect ratio
and operate at the maximum lift-to-drag ratio of the airfoil. Airfoils maximizing the lift-to-drag
ratio are then optimal for windplanes. If gravity is included in the model, gravitational potential
energy is being exchanged over one revolution. Since this exchange comes with an associated
efficiency, the plane mass and the related trajectory radius are designed to reduce the potential
energy fluctuating over the loop. However, for decreasing turning radii, the available wind
power decreases because the windplane sweeps a lower area. For these two conflicting reasons,
the optimal mass is finite.

1. Introduction
Crosswind airborne wind energy systems (AWESs) harvest wind power by flying crosswind one or
more wings, connected to the ground through a tether [1, 2]. AWESs have the potential to extract
more energy at lower carbon intensity and at lower cost than established wind technologies: they
are considered as one of the key technologies for the energy decarbonization [3].

Optimal design problems for fixed-wing AWESs are approached with engineering models to
perform the system design, or with higher fidelity models to perform the sub-systems design.
The key design metric used in the literature is the power harvesting factor [4], informing about
the power per wing area. Fasel et al. [5] optimize the aerodynamic shape, compliant structure,
and composite layup of a morphing wing, with the objective of maximizing the the average
annual power production per wing area. Candade et al. [6] perform the aero-structural design
for specific design load cases to minimize the wing mass. Bauer et al. [7] perform a system
design to maximize an economic metric per wing area. Trevisi et al. [8] perform a system design
to maximize the annual energy production and later the cost of energy. The wing area is fixed
within an optimization, leading to optimal designs per wing area. Makani Power [9] design their
Fly-Gen AWES prototype based on the power harvesting factor. Naik at al. [10, 11] study the
design problem for an underwater crosswind Ground-Gen system maximizing the power and
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minimizing the structural mass. The wing area is fixed within one optimization, leading to
optimal designs per wing area.

In this paper, we formulate the design problem in a different way compared to the literature,
by optimizing the system design per wingspan. This is similar to what is typically done for wind
turbines, where the design is optimized per lifting body span and not per lifting body area.
With this goal, the windplane (i.e. Fly-Gen AWES) is modeled as a point mass and we write its
equations of motion in a cylindrical reference frame. We look for a periodic approximate solution
of the equations of motion with a harmonic balance method, where the periodicity is driven by
the gravity and the periodic control inputs. Finally, we formulate and analyze an optimal design
problem, where the optimizer modifies the design variables and the control variables to maximize
the mean power.

The models and the results presented in this paper are derived and analyzed in more details
in the first part of the Ph.D. thesis of the first author [12].

2. Windplane point mass model
2.1. Equations of motion
Referring to Fig. 1, the ground coordinate system FG is inertial and fixed at the tether
attachment at the ground station. Its versor e1 points to the ground and e3 upwind. The
cylindrical coordinate system FC , where we write the point mass equations of motion, is defined
by the azimuth angle Ψ, the radial position r and the axial position z.

vw

g

e2

e3

Ψ
Φ

e1

er
ez

eτ

Figure 1: Ground coordinate system FG and cylindrical coordinate system FC .

The external forces acting on the windplane are the aerodynamic force F a, the tensile force
T acting on the tether and the gravitational force mg. The tether tensile force T acting on the
point mass is expressed as function of its axial component Tz as

T = Tz

 0
− tanΦ

1

 . (1)

The gravitational force is mg = mg [cosΨ,− sinΨ, 0]T , where m is the windplane mass and
g is the gravitational acceleration.

We assume here that the attitude of the windplane with respect to the wind is settled such
that to be the projected crosswind area is maximized, or -in simple words- that ”the windplane
catches as much wind as possible”. Referring to Fig. 2, the aerodynamic lift L and the parasite
drag Dp are, by definition, perpendicular and parallel to the apparent velocity va, respectively.
The onboard wind turbines thrust Tt is assumed to be parallel to the drag. The induced velocities
are avw, where a is the aerodynamic induction. The inflow angle γ is

tan γ =
vw(1− a)

u
=

(1− a)

λ
, (2)
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where λ is the wing speed ratio. The roll angle ϕ, assumed small, is used to create a lateral
force. Assuming ((Dp + Tt)/L)

2 ≪ 1 and (tan γ)2 ≪ 1, the aeordynamic force is

F a =

 L sin γ − (Dp + Tt) cos γ
(L cos γ + (Dp + Tt) sin γ)ϕ
−(L cos γ + (Dp + Tt) sin γ)

 ≈

 L
λ (1− a)− (Dp + Tt)

ϕL
−L

 . (3)

The aerodynamic lift is

L =
1

2
ρACLu

2, (4)

where ρ is the air density, CL is the lift coefficient, A = b2

AR , with AR being the wing aspect

ratio, is the wing area and va = u
√

1 + (1/λ)2 ≈ u. The aerodynamic parasite drag is

Dp =
1

2
ρACD,pu

2. (5)

CD,p is the parasite drag coefficient which contains not only the airfoil drag of the wing but also
contributions from any other component of the airplane that is exposed to the airflow [14]. We
model it as

CD,p = Cd,0 + kdC
2
L︸ ︷︷ ︸

airfoil polars

+ Cd,te
DteLte

4A︸ ︷︷ ︸
equivalent tether drag

, (6)

where (Cd,0, kd) model the idealized airfoil polars as function of the lift coefficient, Cd,te is
the tether profile drag coefficient, Dte and Lte its diameter and length [13]. The thrust force
produced by the onboard wind turbines is

Tt =
1

2
ρAtCT,tu

2, (7)

where CT,t is the thrust coefficient of the onboard wind turbines with respect to the total rotor
area At

At = nt · πR2
t = nt

πξ2t
4

b2, (8)

vw
u

Dp

γ

L

eτ

er

ez

Φ
Tz

Tz tanΦ

Fc
ϕL

ξt
b
2

va

Tt

b

a vw

Figure 2: Velocity triangle and forces acting on a windplane in crosswind circular trajectories.



The Science of Making Torque from Wind (TORQUE 2024)
Journal of Physics: Conference Series 2767 (2024) 072014

IOP Publishing
doi:10.1088/1742-6596/2767/7/072014

4

with nt being the number of rotors of rotor radius Rt = ξt
b
2 (Fig. 2).

Assuming a circular trajectory, the equations of motion are in equilibrium in the radial and
axial direction, such that the only degree of freedom is in the tangential direction

mu̇ = L
λ (1− a)− (Dp + Tt) +mg cosΨ

m u2

R0
= T tanΦ +mg sinΨ− ϕL

T = L

(9)

By substituting the third equation into the second, we find an algebraic equation for the roll
angle ϕ which is necessary to ensure the lateral equilibrium

ϕ = tanΦ− m

L

u2

R0
+

mg

L
sinΨ = tanΦ− m

1
2ρACLR0

+
mg

L
sinΨ. (10)

We now take the opening angle Φ such that it compensates the second term on the right-
hand-side [13]. Considering R0 = Lte sinΦ, the trajectory opening angle can be found with

sinΦ tanΦ =
m

1
2ρACLLte

, (11)

which does not depend on the tangential velocity because both the centrifugal forces and
aerodynamic forces scale with the tangential velocity squared. The roll angle ϕ is now settled
to compensate the radial component of gravity and not to turn.

The equation of motion along the tangential direction (first equation in 9) reads

mu̇ =
1

2
ρACLuvw︸ ︷︷ ︸

propulsive lift

(1− a)− 1

2
ρACD,pu

2︸ ︷︷ ︸
parasite drag

− 1

2
ρAtCT,tu

2︸ ︷︷ ︸
turbines thrust

+mg cosΨ︸ ︷︷ ︸
gravity

. (12)

2.2. Power balance
We derive now the power balance equation by multiplying Eq. (12) with the tangential velocity
u

mu̇u =
1

2
ρACLvwu

2(1− a)− 1

2
ρACD,pu

3 − 1

2
ρAtCT,tu

3 +mg cosΨu, (13)

where the left-hand-side is the variation of kinetic energy. On the right-hand side, the first term
is the aerodynamic power due to propulsive lift, the second the aerodynamic power dissipated in
parasite drag, the third is the onboard turbines thrust power and the fourth is the gravitational
power.

By normalizing the power balance in Eq. (13) with the wind power passing through a disk
with radius the wingspan [16], the non-dimensional power balance is

2

π
µ

b

vw
λ̇λ︸ ︷︷ ︸

∂ek
∂t

=
CL

πAR
λ2︸ ︷︷ ︸

CT

(1− a)−
CD,p

πAR
λ3︸ ︷︷ ︸

Cτ︸ ︷︷ ︸
Ca

−nt
ξ2t
4
CT,tλ

3 +
2

π
µ
bg

v2w
λ cosΨ︸ ︷︷ ︸
Cg

, (14)

where ∂ek
∂t is the non-dimensional change in kinetic energy, µ = m

ρb3
is the non-dimensional mass,

CT is the thrust coefficient, Cτ is the parasite power coefficient, Ca the aerodynamic power
coefficient and Cg the gravitational power coefficient.
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The power equation can be written with respect to the onboard turbines as

P =
1

2
ρAtCP,tu

3, (15)

where CP,t is the power coefficient with respect to the onboard wind turbines area At. We define
the power coefficient as the ratio the power and the wind power passing through a disk with
radius the wingspan [16]

CP =
P

1
2ρπb

2v3w
= CP,tnt

ξ2t
4
λ3. (16)

The mean value of the power balance equation over the loop is

1

T

∫ T

0

CT,t

CP,t
CP dt =

1

T

∫ T

0
(CT (1− a)− Cτ ) dt︸ ︷︷ ︸

Ĉa

(17)

where the integrals of the gravitational energy Cg and of the change of ∂ek
∂t over the period are

null. This equation then represents the balance between the mean aerodynamic power and the
mean turbines’ thrust power over the period.

The aerodynamic induction has a contribution from the near wake an and one from the far
wake af [15], which is modeled as constant over the loop

a = an + af =
CL

πAR
λ+

κ
π/2
0

4π

ĈT λ̂
2

(λ̂− ĈT )3/2
, (18)

where κ0 = b/(2R0).

3. Optimal design problem
3.1. Problem formulation
We want now to use this point mass model to formulate a high-level windplane optimal design
problem. We consider the aspect ratio AR, the non-dimensional mass parameter µ and the
tether diameter ratio dte =

Dte
b/2 as physical design variables. The lift coefficient CL and the axial

induction of the onboard turbines at (we assume momentum theory for the turbine coefficients)
are the control inputs, modeled with their correspondent Fourier expansions function of the
azimuth angle Ψ

CL(Ψ) = C̃L +ACL,s,1 sinΨ +ACL,c,1 cosΨ +ACL,s,2 sin(2Ψ) +ACL,c,2 cos(2Ψ), (19)

and
at(Ψ) = ãt +Aat,s sinΨ +Aat,c cosΨ. (20)

The design problem reads

maximize: ĈP (

dependent vars︷ ︸︸ ︷
af ,Λ ,

design variables︷ ︸︸ ︷
CL(Ψ), at(Ψ), AR, µ, dte,

independent variables︷ ︸︸ ︷
b, vw, ξt, Cd,0, kd, Cd,te, lte, σte)

subject to: [haf ;H] = 0 equality constraint

cσ < 0 inequality constraint,

(21)

where the dependent variables are modified by the optimizer to solve the equality constraints.
The axial induction due to the far wake af solves the far wake part of Eq. 18. The Fourier
coefficients of the wing speed ratio Λ, up to the fifth harmonic, set to zero the Fourier coefficients
of the residual of the equation of motion H [17]. The inequality constraint cσ defines the tether
diameter, by sizing it according to the maximum tether strength σte.

Note that the denominator in the power coefficient definition (Eq. 16) is just function
of independent variables, so that optimizing for the mean power coefficient is equivalent to
optimizing for the mean power.
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3.2. Optimal designs
A realistic windplane design is carried out accounting for the power generated in a range of wind
speeds. The design of a wind energy system is typically determined to maximize an economic
or a performance metric. A key performance indicator is the capacity factor, determined by
the wind resources and the power curve, and measuring how much energy is produced by the
system compared with its rated power. For a given rated power, the plane structure is expected
to be a small share of the initial capital cost. Thus, larger and larger planes can be designed,
without a big impact on the total costs [8]. This is the key to lower the rated wind speed and
thus to reach high capacity factors. To simplify the understanding of the results, the design of
a 10 m wingspan windplane is then carried out at a wind speed representative of the rated wind
speed for windplanes vw = 7 m/s, lower than typical values of conventional turbines, and for the
independent variables in Table 1. The airfoil parameters fit the NACA 2412 polars at Re = 106.
The tether drag coefficient is taken as Cd,te = 0.8, which is representative of a cylindrical tether
section. The design tether material strength σte is used to size the tether diameter.

Table 1: Values and description of the independent variables for the optimal design problems.

units Description
b 10 m Wing span
vw 7 m/s Wind velocity
ξt 0.15 - Non dimensional onboard wind turbines radius
nt 2 - Number of onboard wind turbines
Cd,0 0.004 -

Airfoil polar parameters
kd 0.008 -

Cd,te 0.8 - Tether drag coefficient
lte 20 - Tether length ratio
σte 600 MPa Design tether material strength

We solve three optimal design problems ODPs of incremental complexity to better understand
the results. The optimal designs are detailed in Table 2. The first optimal design problem,
denoted with PMS (Point mass steady), is solved by setting gravity to zero, then looking for
steady solutions, and for a constant non-dimensional mass parameter µ = 0.1. This is purely an
aerodynamic design problem. The second optimal design problem, denoted with PML (Point
mass light), is solved by including gravity and keeping the non-dimensional mass parameter
constant to µ = 0.1. The third optimal design problem, denoted with PMH (Point mass heavy),
is solved by considering the full design problem.

The power coefficient for the first two design problems is ĈP = 1.12 and the designs are
identical. The dynamics is then not influencing the aerodynamic design problem if the mass is
kept fixed. When including the non-dimensional mass among the design variables, the power
coefficient improves and the optimal design slightly changes.

The design lift coefficient is found to be ĈL ≈ 0.70 for all designs, corresponding to the
maximum lift-to-drag ratio of the airfoil. We then need to use airfoils designed to maximize the
lift to drag ratio. The optimal aspect ratios are finite and have low values. Keeping fixed the
wingspan, high aspect ratio wings would have low induced drag but low area, leading then to
a small lift force and thus small generated power. Low aspect ratio wings instead would have
a large area but high induced drag, leading then to not aerodynamically efficient planes. By
formulating the problem per wingspan, a finite optimal aspect ratio is then found. Note that
formulating the problem per wing area, as done in the literature, leads to very high aspect ratios.
Low aspect ratio designs are easier to be manufactured and meet the weight requirements. The
non-dimensional mass µ for the third optimization is among the design variables and its optimal
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value is finite. Depending on the independent variables, extremely light designs might be not
required and the optimal mass might be obtained with cheap and sustainable materials.

Table 2: Optimal designs for the three optimal design problems.

PMS (steady) ĈP = 1.12 ĈT = 2.96 ĈL = 0.70 λ̂ = 8.87 κ0 = 0.13 af = 0.05

(AR, dte) ⊂ dv AR = 6.0 µ = 0.1 m = 122 kg dte = 1.6 mm/m P̂ = 74.2 kW T = 4.0 s

PML (light) ĈP = 1.12 ĈT = 2.96 ĈL = 0.71 λ̂ = 8.86 κ0 = 0.13 af = 0.05

(AR, dte) ⊂ dv AR = 6.0 µ = 0.1 m = 122 kg dte = 1.6 mm/m P̂ = 73.8 kW T = 4.0 s

PMH (heavy) ĈP = 1.16 ĈT = 3.27 ĈL = 0.73 λ̂ = 8.71 κ0 = 0.08 af = 0.03

(AR, dte, µ) ⊂ dv AR = 5.3 µ = 0.32 m = 390 kg dte = 1.8 mm/m P̂ = 77.1 kW T = 6.3 s

The wing speed ratio λ as function of the non-dimensional time t/T is shown in Fig. 3a for
the three ODPs. The initial time corresponds to the position Ψ = 0, with the plane moving
downwards and thus accelerating (Ψ̇ < 0, see Fig. 1). The roll angle, necessary to fulfill the
radial equation of motion and maintain the circular trajectory, is shown in Fig. 3b. When the
plane approaches the top part of the loop, its velocity is the lowest. To compensate the radial
component of gravity (Eq. 10), the roll angle then has the largest value in the top part.

(a) Wing speed ratio λ as function of nondimen-
sional time t/T for the three ODPs.

(b) Roll angle ϕ as function of non-dimensional
time t/T for the three ODPs.

Figure 3

The onboard turbines induction at, thrust coefficient CT,t and power coefficient CP,t are shown
as function of non-dimensional time t/T in Fig. 4a. In Fig. 4b, the lift coefficient as a function

(a) Onboard turbines induction at, thrust coeffi-
cient CT,t and power coefficient CP,t as function of
non-dimensional time t/T for ODP PMS (-), ODP
PML (- -), ODP PMH (··).

(b) Lift coefficient CL as function of nondimen-
sional time t/T for the three ODPs.

Figure 4
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of the non-dimensional time is shown. The lift coefficient decreases when the plane moves
downwards, and it is in phase with the wing speed ratio (Fig. 3a). The tangential component
of gravity can be compensated by controlling the lift coefficient and the axial induction of the
onboard turbines. Gravity has its largest value in the tangential equation of motion at Ψ = 0
(t = 0) and at Ψ = π. The lift coefficient appears out of phase with respect to gravity, while the
turbines’ thrust in phase. This means that the cyclic control of the turbines’ thrust is aimed at
compensating gravity.

The axial induction of the windplane a (Eq. 18), is shown in Fig. 5a. For all designs, it
is constant over the period. The wing, which travels with a varying velocity in the circular
trajectory, generates constant induced velocities. This means that the trailed vorticity is
constant over the trajectory and so is the bound circulation. The power coefficient, function of
CP,t and λ (Eq. 16), is shown in Fig. 5b.

(a) Axial induction a as function of nondimen-
sional time t/T for the three ODPs.

(b) Power coefficient CP as function of nondimen-
sional time t/T for the three ODPs.

Figure 5

In Fig. 6a we show the power balance for the steady ODP PMS and for the ODP PML.
In the steady ODP PMS , the gravitational power is not present, thus the balance is steady.
The aerodynamic power Ca = CT (1 − a) − Cτ is exclusively balanced by the turbines’ thrust
power CP

1−at
. In the ODP PML, the gravitational power Cg is present and has its largest value

at Ψ = 0 and Ψ = π. The change in kinetic energy ∂ek
∂t is in phase with Cg, making the plane to

accelerate. The wind power CT (1− a) and power dissipated in drag Cτ fluctuate over the PMS

values.
The wing speed ratio shall be as constant as possible to minimize the power dissipated

in parasite drag. To obtain a constant velocity, the onboard turbines should convert all the
potential energy to electric energy, avoiding the conversion to kinetic energy. However, the
potential energy converted to electric energy is reduced by the onboard generation efficiency,

which decreases for increasing turbines’ axial induction
CP,t

CT,t
= 1− at. It is therefore optimal to

let a part of the gravitational energy be converted into kinetic energy and a part into electric
energy. The ratio of energy converted to kinetic and to electric is defined by the nonlinear
conversion processes efficiencies.

In the ODP PMH , the non-dimensional mass µ is considered among the design variables.
Increasing the nondimensional mass increases the opening angle (Eq. 11), thus increases the
trajectory radius and decreases the inverse turning ratio κ0. This results in a decrease of the
induction due to the far wake af and thus an increase in aerodynamic power. However, a larger
and larger mass also increases the gravitational power Cg. The conversion of the gravitational
power, as just discussed, has an associated efficiency. For these two conflicting reasons, the
optimal mass, which is the main parameter determining the trajectory radius, is finite. In Fig.
6b the dependency of the power coefficient with respect to the non-dimensional mass is shown,
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highlighting that the optimal mass is finite. Note that if this analysis was carried out at a lower
wind speeds, the optimal mass would reduce.

(a) Non-dimensional power balance for the steady
ODP PMS (- -) and for the light ODP PML (-).

(b) Power coefficient ĈP found by solving ODPs
with prescribed non-dimensional mass µ.

Figure 6

In Figure 7a, the optimal power coefficients found by solving ODPs with prescribed aspect
ratios are shown. The optimal aspect ratios are finite and have low values. Increasing the aspect
ratio is found to be detrimental for power production. The aspect ratio can be understood as
the solidity for wind turbines. Finally, the power coefficients found by solving optimal control
problems with prescribed lift coefficients C̃L are shown in Fig. 7b for the light design PMS and
the heavy design PMH . As for conventional turbines, the power coefficient is decreased when
decreasing or increasing the lift coefficient with respect to the optimal value.

(a) Power coefficient ĈP found by solving ODPs
with prescribed aspect ratio AR for the optimal
designs.

(b) Power coefficient ĈP as a function of the mean
lift coefficient in time ĈL, found by solving OCPs
with prescribed C̃L for the optimal designs.

Figure 7

4. Conclusions
To study the optimal design problem, the windplane is idealized as a point mass flying circular
crosswind trajectories. If gravity is removed from the model, the dynamic problem is axial
symmetric and the solution is steady. In this idealized case, the power balance involves only
the aerodynamic power and the turbine’s thrust power. The power balance is conveniently
expressed in non-dimensional form by normalizing it with the wind power passing through a
disk with radius the wingspan, leading to the definition of the power and the thrust coefficients
for windplanes. Since the reference area is taken to be a function of just the wingspan, looking
for the design which maximizes this power coefficient is equivalent to posing the question ”Given
a wingspan, which design maximizes power?”.

The optimal designs are obtained by operating the wing at the maximum lift-to-drag of the
airfoil. Airfoils designed for high lift-to-drag ratio are used for wind turbines and shall also be
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used for windplanes. The aspect ratio for windplanes has a similar physical meaning to the
solidity for wind turbines. The optimal aspect ratio is finite, as the optimal solidity for wind
turbines, and has a low value. If gravity is included in the model, the gravitational potential
energy is being exchanged with the kinetic energy, the aerodynamic energy and the electric
energy over one revolution. Since this exchange comes with an associated efficiency, the plane
mass and the related trajectory are designed to reduce the potential energy fluctuating over the
loop. Reducing the potential energy means reducing the turning radius and the mass. However,
for decreasing turning radii, the available wind power decreases because the windplane sweeps
a lower area. For these two conflicting reasons, the optimal mass is finite. Depending on the
independent variables, extremely light designs might then be not required. To conclude, it is
optimal to have a constant induction over the loop to maximize the raw wind power to be
harvested. Therefore, the optimal lift coefficient changes according to the windplane velocity to
ensure a constant intensity of the wing circulation, which translates in a constant induction.

This idealized optimization problem formulation enables the intuitive physical understanding
of key physical characteristics. More analyses are presented in the first part of the Ph.D. thesis
of the first author [12]. In the second part of the Ph.D. thesis, the multidisciplinary design,
analysis and optimization framework T-GliDe is introduced. T-GliDe will be used to explore
the design problem with more physical representation and including economic considerations in
the near future.
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